The Analog to Digital Converter (ADC)

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, Iltaly
santoro@dmi.unict.it

G

-
(¥

L.S.M. Course

Corrado Santoro The Analog to Digital Converter (ADC)

What is an ADC?

An ADC (Analog-to-Digital-Converter) is a circuit which gets an
analog voltage signal (as input) and provides (to software) a
integer variable proportional to the input signal.

ADCVAL
Input Pin Analog-to-Digital *’E(:(])
. Converter
Vin Variable (SFR)
containing
the converted value

Corrado Santoro The Analog to Digital Converter (ADC)

ADC Characteristics

An ADC is characterised by:

@ The voltage range of the input signal, V,er, Viers
@ the input signal must always be in the interval [Vier—, Vier:]

@ The resolution in bits of the converter, NBITS.
@ The ADC works by using a linear law:

@ If Vi, = Vi, then ADCVAL = 0
o If Vm — Vref+; then ADCVAL = 2NBITS —1

ADCVAL

2NBITS-1

Vref- Vref+

2NBITS —1
ADCVAL = |(Vip — Vref—)W
ref+ — Vref—

Corrado Santoro The Analog to Digital Converter (ADC)

ADC Characteristics

@ Ingeneral, V. = 0 (GND) and V,.r. = VDD (power
supply voltage, i.e. 5 V or 3.3 V)

@ In our Nucleo board, VDD = 3.3 V therefore V., =3.3 V

@ In this case, the conversion law becomes:

2NBITS -1
ADCVAL = {\/,-,,3'.3]

Corrado Santoro The Analog to Digital Converter (ADC)

ADC: Basic working scheme

The ADC is a sequential circuit that performs conversion using a sequence
of steps:

Input signal sample and Hold

Conversion

1
P e

T 16-bit variable

@ Sample: the signal is sampled by closing the switch and charging the
capacitor; the duration of this phase is denoted as Tsamp

@ Conversion: the switch is open and the sampled signal is converted,
the result is stored in the 16-bit variable. The duration of this phase is
denoted as Teonv

© End-of-conversion: a proper bit is set to signal that the operation has
been done.

Corrado Santoro The Analog to Digital Converter (ADC)

ADC inputs

ADCIN_0 = ADCVAL
< . 15 87 0
ADCIN_1 = Analog-to-Digital 44::'
o Converter
ADCIN_n 3 Variable (SFR)
- containing

the converted value

@ In general, an ADC has several inputs

@ But only one input (channel) at time can be selected for conversion
(through the multiplexer)

@ To perform conversion, the software must:

@ Select the input channel to be converted
@ Start the conversion (by setting a proper bit in a SFR)
@ Wait for the end-of-conversion (by checking a proper bit in a SFR),

or
@ being notified of the end-of-conversion through an IRQ

Corrado Santoro The Analog to Digital Converter (ADC)

ADC inputs on STM32F401

@ Inthe STM32F401 MCU, ADC inputs share the same pin of GPIO ports

@ In particular, some GPIO pins can be programmed in order to be served
as analog input channel (and no more used as digital 1/0):

[Pin [Analog Channel || | Pin [Analog Channel |

PAO ADC1_INO PA1 ADC1_IN1

PA2 ADC1_IN2 PA3 ADC1_IN3
PA4 ADC1_IN4 PA5 ADC1_IN5
PA6 ADC1_IN6 PA7 ADC1_IN7
PBO ADC1_IN8 PB1 ADC1_IN9
PCO ADC1_IN10 PC1 ADC1_IN11
PC2 ADC1_IN12 PC3 ADC1_IN13
PC4 ADC1_IN14 PC5 ADC1_IN15

Corrado Santoro The Analog to Digital Converter (ADC)

The Nucleo64 Addon Board (look at ADC settings)

PB9

PC1l
ADC1_IN11

PB10 PB4
®ox O
2 |

]

Q

w

PCO
ADC1_IN10

Corrado Santoro The Analog to Digital Converter (ADC)

ADC characteristics on STM32F4xx

@ Inthe STM32F4xx MCUs, the ADCs have configurable resolution:
6 bits, range [0, 63]

8 bits, range [0, 255]

10 bits, range [0, 1023]

12 bits, range [0, 4095]

@ The conversion result may be aligned left or right in the 16 bit result,
e.g.:
@ 12bit Left-Aligned

(BT [b10 [b9 [b8 [b7 [b6 | 65 [b4 |[63 [b2 [b1 [B0 [0 [0 [0 [0]

@ 12bit Right-Aligned

[0] 000 bil]bio]bo | b8 | b7] b6 b5] bs] b3] b2] bl | b0

Corrado Santoro The Analog to Digital Converter (ADC)

The Software interface of ADCs

@ Each ADC has several special function registers

@ All of them are accessible by means of global variables
called ADCx, where X is the number of the adc (our micro
has only ADC1) (ADC1, ADC2, ...)

@ The type of these variables is ADC_TypeDef *,
i.e. pointers to a structure whose field are the SFR of the
ADC

Corrado Santoro The Analog to Digital Converter (ADC)

stm32_unict_lib Functions for ADCs

@ Initialize an ADC:
void ADC_init (ADC_TypeDef * adc, int res, int align);

@ adc, the ADC circuit

@ res, the resolution in bits
@ ADC RES_6
@ ADC RES 8
@ ADC RES_10
@ ADC RES 12

@ align, the bit alignment
@ ADC ALIGN RIGHT
@ ADC ALIGN_LEFT

Corrado Santoro The Analog to Digital Converter (ADC)

stm32_unict_lib Functions for ADCs

@ Configure the input(s):
void ADC_channel config (ADC_TypeDef * adc,

GPIO_TypeDef * port,
int pin, int chan);

adc, the ADC circuit

port, the GPIO port of the input

pin, the GPIO pin of the input

chan, the ADC channel associated to the input

@ Start an ADC circuit:
void ADC._on (ADC_TypeDef * adc);

@ Stop an ADC circuit:
void ADC_off (ADC_TypeDef x adc);

Corrado Santoro The Analog to Digital Converter (ADC)

stm32_unict_lib Functions for ADCs

@ Select a channel to convert:
void ADC_sample_channel (ADC_TypeDef * adc, int chan);

@ adc, the ADC circuit
@ chan, the ADC channel to be converted

@ Start a sample+conversion of the selected channel:
void ADC_start (ADC_TypeDef * adc);

@ Check if a conversion has been completed:
int ADC_completed (ADC_TypeDef * adc);

@ Read the converted value:
int ADC_read (ADC_TypeDef * adc);

Corrado Santoro The Analog to Digital Converter (ADC)

Sampling the A

#include <stdio.h>
#include "stm32_unict_lib.h"

void main (void)
{
DISPLAY_ init();

ADC_init (ADC1, ADC_RES_8, ADC_ALIGN_RIGHT);
ADC_channel_config(ADC1l, GPIOC, 0, 10);
ADC_on (ADC1) ;

ADC_sample_channel (ADC1, 10);

for (;;) {
ADC_start (ADC1) ;
while (!ADC_completed(ADC1)) {}

int value = ADC_read(ADC1);
char s[4];

sprintf(s, "%4d", value);
DISPLAY puts(0,s);

Corrado Santoro The Analog to

Exercise: Let’s flash a LED with a variable period

@ We want to make a LED flash (with a timer) with a period ranging from
50 to 500 ms

@ The period must be set using the trimmer in PCO/ADC1_IN10

@ Let’s initialize the timebase of a timer to 0.5 ms
@ The auto-reload value must be in the range [100, 1000]
@ If we set the ADC to 8 bit, we can use the formula:

1000 — 100
ARR = ADCVALT +100

Corrado Santoro The Analog to Digital Converter (ADC)

LED fla

with variable

#include <stdio.h>
#include "stm32_unict_lib.h"

int new_arr_value = 100;

void main (void)
{
DISPLAY init();
GPIO_init (GPIOB); GPIO_config_ output (GPIOB, 0);

ADC_init (ADC1, ADC_RES_8, ADC_ALIGN_RIGHT);
ADC_channel_config(ADC1, GPIOC, 0, 10);
ADC_on (ADC1); ADC_sample_channel (ADC1, 10);

TIM init (TIM2);

TIM config_ timebase (TIM2, 42000, 100);

TIM set (TIM2, 0); TIM enable_irq(TIM2, IRQ UPDATE);
TIM on(TIM2);

for (;;) {
ADC_start (ADC1) ;
while (!ADC_completed(ADC1)) {}
int value = ADC_read(ADC1);
new_arr_value = value * 900/255 + 100;
char s[4];
sprintf (s, "%4d", new_arr value / 2); // we will display the milliseconds
DISPLAY puts(0,s);

Corrado Santoro The Analog to Digital Converter (ADC)

LED flash with variable period (Il)

void TIM2_IRQHandler (void)
{

if (TIM update_check (TIM2)) {
GPIO_toggle (GPIOB, 0);
TIM update_clear (TIM2);
TIM2->ARR = new_arr_value;

// update the autoreload register with new value

Corrado Santoro

The Analog to Digi

al Converter (ADC)

The Analog to Digital Converter (ADC)

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, Iltaly
santoro@dmi.unict.it

G

-
(¥

L.S.M. Course

Corrado Santoro The Analog to Digital Converter (ADC)

