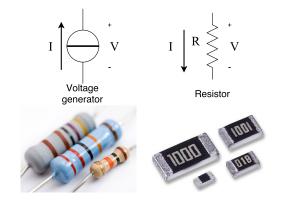
Elements of Electronics and Circuit Analysis

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

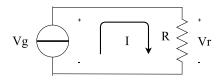
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it


Embedded Systems Course

Basic Element of Direct Current (DC) Circuits

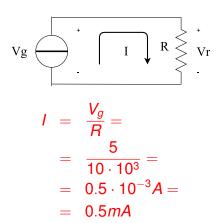
The Ohm's Law
The Kirchhoff Voltage Law (KVL)


Basic Elements of Direct Current (DC) Circuits

- V, voltage (Volt), difference of electrical potential
- I, current (Ampere), flow of electrons in circuit components
- R, resistance (Ohm), ability to "oppone" to electron flow

The Ohm's Law

$$V = R I$$

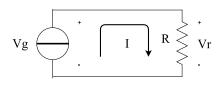


$$V_g = V_r$$

 $V_r = RI$

The Ohm's Law

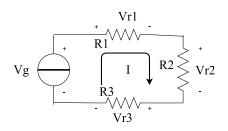
Given $V_g = 5V$ and $R = 10K\Omega$, calculate the current intensity


$$V = R I$$

The Ohm's Law

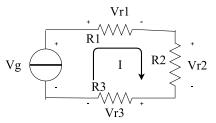
Given $V_g = 5V$, calculate the resistance to obtain a current of 3A

$$V = R I$$



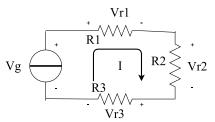
$$R = \frac{V_g}{I} =$$

$$= \frac{5}{3} =$$


$$= 1.\overline{6}\Omega$$

The algebraic sum of the voltages in a circuit **loop** is equal to 0

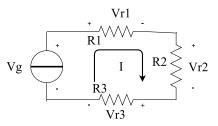
$$-V_g + V_{R1} + V_{R2} + V_{R3} = 0$$
 $V_{R1} + V_{R2} + V_{R3} = V_a$


Given $V_g=5V$, $R1=220\Omega$, $R2=150\Omega$, $R3=18\Omega$, calculate V_{R1} , V_{R2} and V_{R3} .

$$V_g = V_{R1} + V_{R2} + V_{R3}$$
 $V_g = R1 I + R2 I + R3 I$
 $V_g = (R1 + R2 + R3) I$
 $I = \frac{V_g}{R1 + R2 + R3} = \frac{5}{220 + 150 + 18} = 0.013A$

Given $V_g = 5V$, $R1 = 220\Omega$, $R2 = 150\Omega$, $R3 = 18\Omega$, calculate V_{R1} , V_{R2} and V_{R3} .

$$I = \frac{V_g}{R1 + R2 + R3} = \frac{5}{220 + 150 + 18} = 0.013A$$

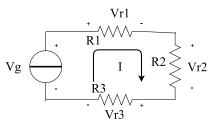

$$V_{R1} = R1 I = 220 \cdot 0.013 = 2.860 V$$

$$V_{R2} = R2 I = 150 \cdot 0.013 = 1.950 V$$

$$V_{R3} = R3 I = 18 \cdot 0.013 = 0.234 V$$

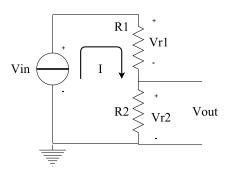
Given the circuit below, calculate e generic forumla that gives V_{R2} from V_g , R1, R2 and R3.

$$V_g = V_{R1} + V_{R2} + V_{R3}$$

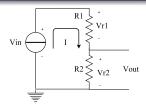

$$V_g = R1 I + R2 I + R3 I$$

$$V_g = (R1 + R2 + R3) I$$

$$I = \frac{V_{R2}}{R2}$$


$$V_g = (R1 + R2 + R3) \frac{V_{R2}}{R2}$$

Given the circuit below, calculate e generic forumla that gives V_{R2} from V_g , R1, R2 and R3.


$$V_g = (R1 + R2 + R3) I$$
 $I = \frac{V_{R2}}{R2}$
 $V_g = (R1 + R2 + R3) \frac{V_{R2}}{R2}$
 $V_{R2} = \frac{R2}{R1 + R2 + R3} V_g$

The Voltage Divider

$$V_{out} = \frac{R2}{R1 + R2} V_{in}$$

Exercise with Voltage Divider

Determine the resistors needed to adapt a 24V sensor, to a 5V microcontroller input (use resistors in the order to Kohms)

$$V_{in} = 24$$

 $V_{out} = 5$
 $\frac{V_{out}}{V_{in}} = 0.21 = \frac{R2}{R1 + R2}$

Let's choose $R2 = 10 K\Omega$

$$\frac{10}{R1 + 10} = 0.21$$
 $R1 = 37.619 K\Omega$

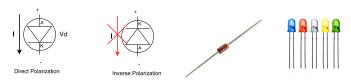
Standard Values of Resistors

- Resistors are made using some specific "standard values" of resistance
- In each order of magnitude, standard values are:

1.0	1.2	1.5	1.8
2.2	2.7	3.3	3.9
4.7	5.6	6.8	8.2

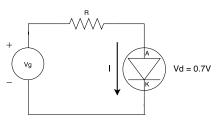
- So the value $R1 = 37.619 \ K\Omega$ cannot be found in a physical component, but the nearest value must be used $\Rightarrow R1 = 39 \ K\Omega$
- The real voltage adaptation is:

$$V_{out} = \frac{R2}{R1 + R2} V_{in} = \frac{10}{10 + 39} 24 = 4.9 V$$



Diodes and LEDs

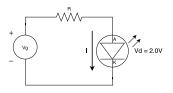
Semiconductors
Signal Diodes and Light Emitting Diodes (LEDs)


Diode

- A diode is an electronic component made of "semi-conductor" materials (germanium, silicon, arsenic, gallium, ...)
- It has two wires anode and catode
- If it is directly polarized, it causes a voltage fall of V_d
 (~0.7V in silicon diode, ~2.0V in LEDs) and permits current
 flow
- If it is inversely polarized, it impedes current flow
- A LED (Light Emitting Diode) emits visible light (of various colors) when directly polarized

Analysis with Diode

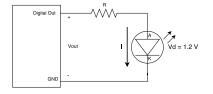
Given $V_g = 5V$, $R = 220\Omega$, calculate the current I



$$V_g = V_R + V_d$$
 $5 = V_R + 0.7$
 $V_R = 4.3$
 $I = \frac{V_R}{R}$
 $I = \frac{4.3}{220} = 0.02A = 20mA$

How to compute the limiting resistor for a LED

- LEDs have a forward voltage of 1.2–3.0 V
- LEDs have a forward current that depends on the luminosity, in general in the order of 20 mA

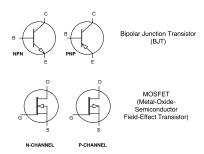

Given $V_g = 5V$, I = 20 mA and $V_d = 2V$, compute the limiting resistance

$$V_g = V_R + V_d$$

 $5 = V_R + 2.0$
 $V_R = 3$
 $R = \frac{V_R}{I} = \frac{3}{0.02} = 150\Omega$

Example: how to connect a LED to a NUCLEO Board

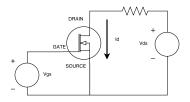
- Digital Output generates a voltage of 3.3 V
- We consider a LED with a forward voltage of 1.2 V
- We want a current of 20 mA
- Let's compute the limiting resistor:


$$V_{out} = V_R + V_d$$

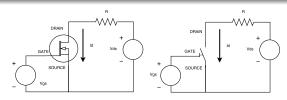
 $3.3 = V_R + 1.2$
 $V_R = 2.1$
 $R = \frac{V_R}{I} = \frac{2.1}{0.02} = 105\Omega$

Transistors

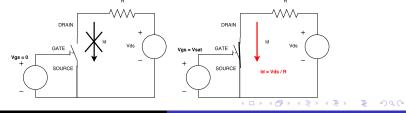
Semiconductors Transistors

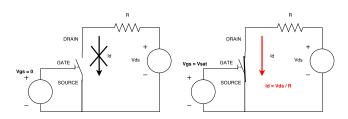

Transistor

- A Transistor is an electronic component made of "semi-conductor" materiales (germanium, silicon, arsenic, gallium, ...)
- It has three wires and acts as a voltage/current amplifier
- There are several types of transistors which differ in internal structure, functioning and applications:
 - Bipolar Junction Transistor (BJT)
 - Junction Field-Effect Transistor (JFET)
 - Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

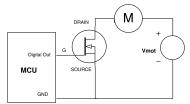


MOSFET Transistor


- A MOSFET Transistor acts as voltage-to-current amplifier
- It has three wires called Gate, Source, Drain
- When a certain gate-to-source voltage V_{GS} is applied, the drain-to-source line starts to conduct thus resulting in a certain current flow I_D
- The MOSFET behaviour is (basically) governed by a linear transconductance law: I_D ≅ G V_{GS}
- G is called transconductance and its value (in the order of 100 500) is specific of any type of MOSFET


MOSFET in non-linear region

- The most interesting behaviour of MOSFET, for digital circuits, is the non-linearity
- The MOSFET can act as a voltage-controlled-switch
- When V_{GS} reaches a certain saturation voltage V_{SAT}, the Source and the Drain are short-circuited, like a classical mechanical switch


MOSFET in non-linear region

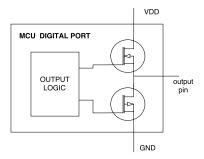
- The non-linearity is featured not only by MOSFETs but also BJTs
- The non-linearity is exploited in all digital circuits
- All the components of a computer/CPU/MCU are made by BJTs or MOSFETs working in the non-linear region

Example: Driving a motor from a MCU

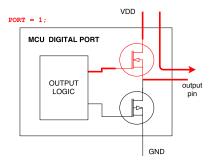
- Power components (e.g. electric motors) cannot be directly driven by a MCU digital output
- Small Electric Motor:
 - Working voltage of 6 V, 12 V, 24 V, 48 V (and even higher voltages)
 - Typical current in the order of 100 mA − 10 A
- MCU digital outputs:
 - Output voltage of 5 V or 3.3 V
 - Able to drive currents in the order of 100 μ A 200 mA
- A MOSFET can be used as a motor driver: activated from a digital output, it can drive the motor connected in the drain-source net:

Digital Outputs

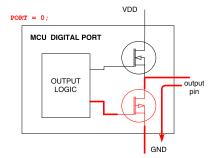
The Output Stage of a MCU Digital Port


The Output Stage of MCU Digital Port

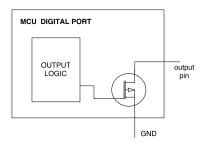
- In a MCU, the circuit of a digital output line is composed of two stages:
 - The output logic
 - The output stage, that can be configured via software


The "Push-Pull" Output Stage

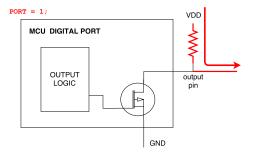
 The Push-Pull output stage (also called totem pole) is made of two MOSFETs connected as in Figure, the "upper" and the "lower" one


Push-Pull — Writing "1"

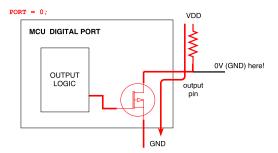
- When the software writes "1" in the output port, the output logic activates the upper MOSFET
- The output is thus physically connected to VDD (5 V or 3.3 V according to power voltage)


Push-Pull — Writing "0"

- When the software writes "0" in the output port, the output logic activates the lower MOSFET
- The output is thus physically connected to ground


The "Open-Drain" Output Stage

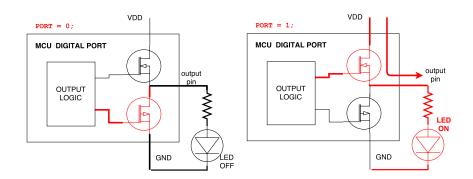
- The Open-Drain output stage is made of only one MOSFET, the "lower" one
- Its drain of the MOSFET is connected only to the output and thus left "floating" (i.e. "open")


Open-Drain — Writing "1"

- When the software writes "1" in the output port, nothing happens and the drain is left floating
- The logic state must be maintained by an external pull-up resistor

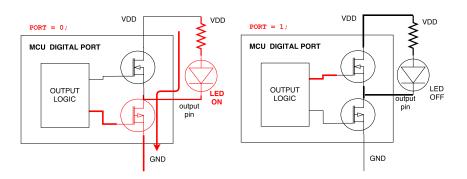
Open-Drain — Writing "0"

- When the software writes "0" in the output port, the output logic activates the lower MOSFET
- The output is thus physically connected to ground



Digital Outputs and LEDs

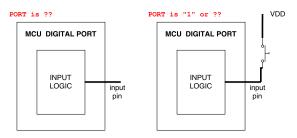
Connecting a LED to a MCU Digital Port


LED connected from output to ground

- When the LED is connected from output to ground
 - Writing "0" in the output port means to turn off the LED
 - Writing "1" in the output port means to turn on the LED

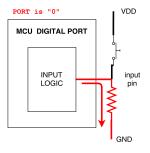
LED connected from output to VDD

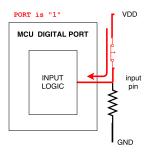
- When the LED is connected from output to VDD
 - Writing "0" in the output port means to turn on the LED
 - Writing "1" in the output port means to turn off the LED



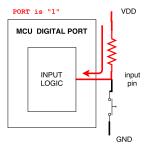
Digital Inputs

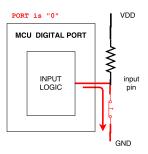
Digital Inputs and Pushbuttons


Digital Inputs

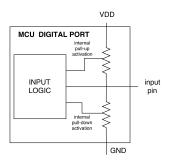

- A digital input of a MCU, when used, cannot be left open/floating
- Even if (apparently) no current flows, a floating input can "capture" everything from the environment (it is like an "antenna")
- If a pushbutton is connected as in figure:
 - Software reads "1" when the button is pressed
 - but if the button is not pressed, the value could be either "0" or "1"
 - We must force a state when the button is not pressed

Digital Inputs wih "Pull-Down" configuration


- A resistor is connected through the input and the ground
- The pushbutton is connected through the input and the VDD
 - When the pushbutton is not pressed, the resistor "pulls down" the input, so the software reads "0"
 - When the pushbutton is pressed, the pin is directly connected to positive voltage (VDD), so the software reads "1"



Digital Inputs with "Pull-Up" configuration


- A resistor is connected through the input and VDD
- The pushbutton is connected through the input and the ground
 - When the pushbutton is not pressed, the resistor "pulls up" the input, so the software reads "1"
 - When the pushbutton is **pressed**, the pin is directly connected to ground, so the software reads "0"

Digital Inputs with interla "Pull-Up"/"Pull-Down"

- Pull-up/pull-down resistors are not necessary when the digital port provides them "internally"
- In the STM32, each port pin can be configured to activate an internal pull-up or pull-down resistor
- Configuration is made per-pin through a proper special function register

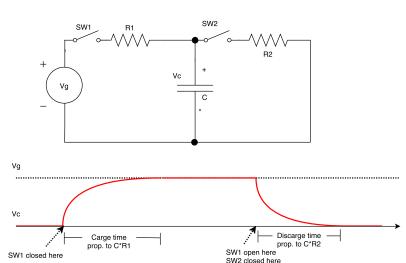
Bouncing

Switch and Pushbutton bouncing effect

The Bouncing Effect

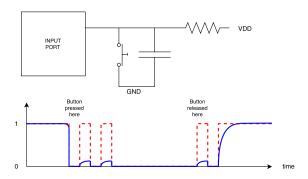
- Switches and pushbutton contain springs so, from the mechanical point of view, they are oscillating systems
- In a digital circuit, these systems provoke a "bouncing effect": the signal "bounces" between "0" and "1" when the button is pressed or relased
- Bouncing can be read by the software (that is very fast) thus causing malfunctioning of the system
- Bouncing can be removed by using capacitors

Capacitors


Capacitors

Capacitors

- A capacitor is a circuit element able to gather/store electric charge
- It is composed of two plates separated by a dielectric (insulator)
- The electric energy is stored in plates and depends on the size and material of plates and insulator
- The capacity (ability to store electric energy) is measured in Farad (μF, nF, pF)



Dynamics of a capacitor

Debouncing Circuit with Capacitor

- A Debounce capacitor is placed in parallel of push-buttons or switches
- The result is removing the "bouncing effect" of the mechanical parts
- During bouncing, when the pushbutton is "off", the capacitor is charged through the resistance, so the voltage increases but it does not reach a value enough to make the port read as "1"

Elements of Electronics and Circuit Analysis

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Embedded Systems Course