

Algebra Relazionale

Basi di Dati (Corso A-L) Ingegneria Informatica Ing. Corrado Santoro

Cos'è l' "Algebra Relazionale"?

- E' un linguaggio procedurale basato su concetti algebrici
- Permette di operare sulle tabelle (relazioni) attraverso particolari operatori
- Definisce operatori
 - Unari: op R1 \rightarrow R2 (con R1 e R2 omogenee)
 - Binari: R1 op R2 → R3 (con R1, R2 e R3 omogenee)
- E' basata sulle operazioni sugli insiemi

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

_

Gli operatori base: <u>Unione</u>, Intersezione, Differenza

• Unione: r1 ∪ r2

<u>Autore</u>

- r1 e r2 definite sullo stesso insieme di attributi
- Il risultato contiene tutte le tuple che appartengono a r1,
 r2 oppure sia a r1 che a r2

Umberto Eco		Il nome della rosa		
Umberto Eco		Il pendolo di Facault		
r1				
	<u>Autore</u>		<u>TitoloLibro</u>	
	Umberto Eco		Il nome della ro	sa
	Paolo Atzeni		Basi di Dati	
	Stefano Ceri	Stefano Ceri Basi di Dati		
	Stefano Paraboschi Riccardo Torlone Umberto Eco		Basi di Dati	
			Basi di Dati	
			Il pendolo di Fa	cault

<u>TitoloLibro</u>

<u>Autore</u>	<u>TitoloLibro</u>	
Paolo Atzeni	Basi di Dati	
Stefano Ceri	Basi di Dati	
Stefano Paraboschi	Basi di Dati	
Riccardo Torlone	Basi di Dati	
Umberto Eco	Il pendolo di Facault	
		r2
r1 ∪ r2		

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Gli operatori base: Unione, <u>Intersezione</u>, Differenza

r2

- Intersezione: r1 ∩ r2
 - r1 e r2 definite sullo stesso insieme di attributi
 - Il risultato contiene tutte le tuple che appartengono sia a
 r1 che a r2

<u>Autore</u>	<u>TitoloLibro</u>
Umberto Eco	Il nome della rosa
Umberto Eco	Il pendolo di Facault
r1	

Autore TitoloLibro
Paolo Atzeni Basi di Dati
Stefano Ceri Basi di Dati
Stefano Paraboschi Basi di Dati
Riccardo Torlone Basi di Dati
Umberto Eco II pendolo di Facault

Autore <u>TitoloLibro</u>
Umberto Eco II pendolo di Facault

r1 ∩ r2

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Gli operatori base: Unione, Intersezione, Differenza

- Differenza: r1 r2
 - r1 e r2 definite sullo stesso insieme di attributi
 - Il risultato contiene tutte le tuple che appartengono a r1 e che non appartengono a r2

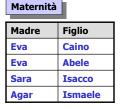
<u>Autore</u>	<u>TitoloLibro</u>
Umberto Eco	Il nome della rosa
Umberto Eco	Il pendolo di Facault

Umberto Eco	Il pendolo di Facault
r1	

<u>Autore</u> <u>TitoloLibro</u>		
Umberto Eco	Il nome della rosa	
	r1 – r2	

<u>Autore</u>	<u>TitoloLibro</u>
Paolo Atzeni	Basi di Dati
Stefano Ceri	Basi di Dati
Stefano Paraboschi	Basi di Dati
Riccardo Torlone	Basi di Dati
Umberto Eco	Il pendolo di Facault

r2


Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Ridenominazione

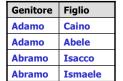
- Le operazioni di unione, intersezione e differenza si applicano a relazioni definite **sullo stesso insieme di**
- Ma cosa accade se vogliamo fare l'unione delle seguenti tabelle?

Paternità		
Padre	Figlio	
Adamo	Caino	
Adamo Abele		
Abramo	Isacco	
Abramo	Ismaele	

- L'unione dovrebbe essere la tabella
 - Genitore (NomeGenitore, NomeFiglio)

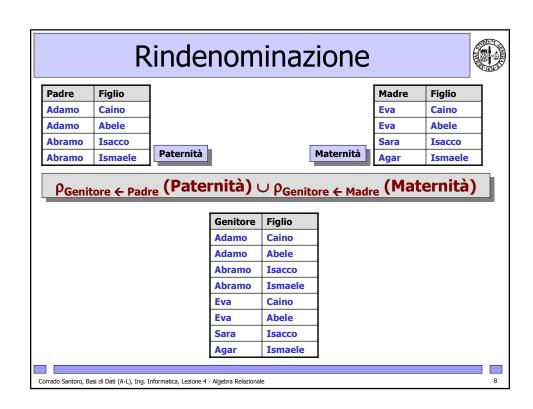
Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Ridenominazione

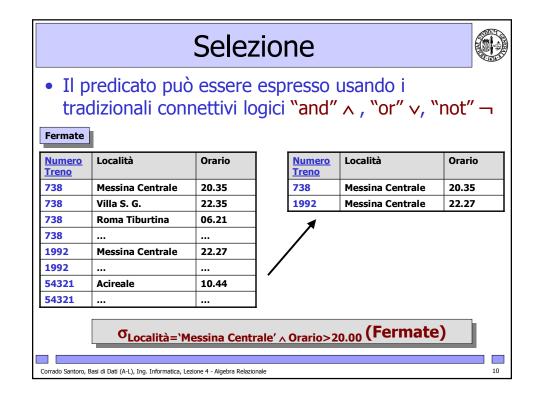


- Usiamo l'operatore di "ridenominazione" che permette di cambiare i nomi agli attributi:
 - $ρ_{B1,...,Bk}$ ← A1,...,Ak (r1) → nuova relazione con l'attributo A1 rinominato in B1, A2 in B2, etc.

Paternità

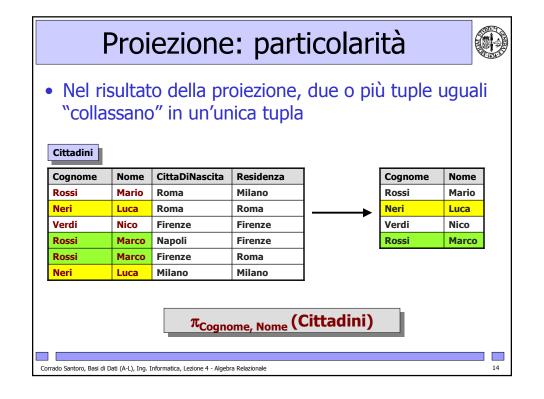

Padre	Figlio
Adamo	Caino
Adamo	Abele
Abramo	Isacco
Abramo	Ismaele

$\rho_{Genitore} \leftarrow Padre} (Paternità)$



Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

_



Join

- Permette l'unione di due tabelle collegate effettuando la correlazione dei dati
 - Natural-join (inner-join, join interno)
 - Outer-join (join esterno)
 - Theta-join
 - Equi-join

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

15

Natural Join

Fermate

 Correla i dati di relazione diverse in base ai valori uguali di attributi con lo stesso nome

Treni		
Numero	OrarioP	Dest.
738	18.35	Milano Centrale
1992	20.27	Roma Termini

10.34

Messina Centrale

54321

Numero	Località	Orario
738	Messina Centrale	20.35
738	Villa S. G.	22.35
738	Roma Tiburtina	06.21
1992	Messina Centrale	22.27
54321	Acireale	10.44
54321	Giarre-Riposto	11.30

Treni ⋈ Fermate

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Natural Join

<u>Numero</u>	OrarioP	Dest.
738	18.35	Milano Centrale
1992	20.27	Roma Termini
54321	10.34	Messina Centrale

Numero	Località	Orario	
738	Messina Centrale	20.35	
738	Villa S. G.	22.35	
738	Roma Tiburtina	06.21	
1992	Messina Centrale	22.27	
54321	Acireale	10.44	
54321	Giarre-Riposto	11.30	

Treni

Treni ⋈ Fermate

Fermate

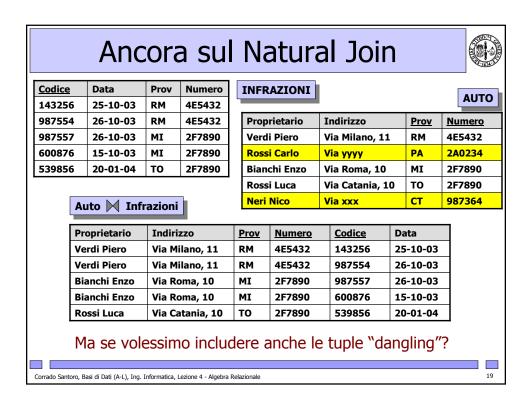
Numero	OrarioPrevisto	Destinazione	Località	Orario
738	18.35	Milano Centrale	Messina Centrale	20.35
738	18.35	Milano Centrale	Villa S. G.	22.35
738	18.35	Milano Centrale	Roma Tiburtina	06.21
1992	20.27	Roma Termini	Messina Centrale	22.27
54321	10.34	Messina Centrale	Acireale	10.44
54321	10.34	Messina Centrale	Giarre-Riposto	11.30

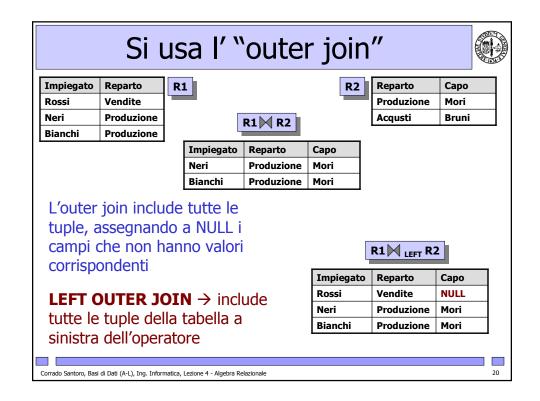
Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

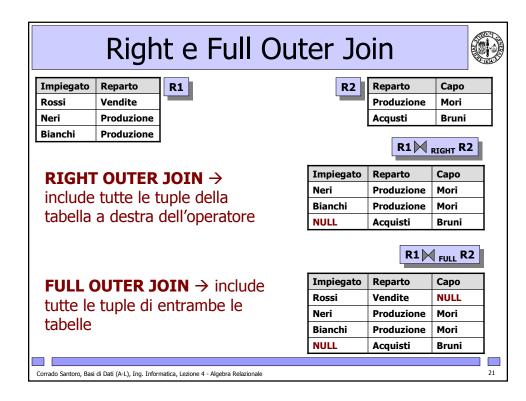
17

Ancora sul Natural Join

<u>Codice</u>	Data	Prov	Numero
143256	25-10-03	RM	4E5432
987554	26-10-03	RM	4E5432
987557	26-10-03	MI	2F7890
600876	15-10-03	MI	2F7890
539856	20-01-04	то	2F7890

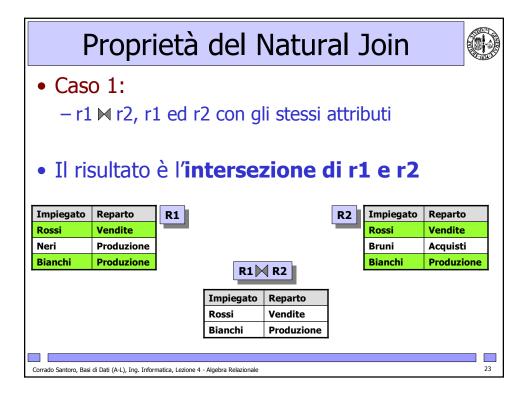

INFRAZIONI

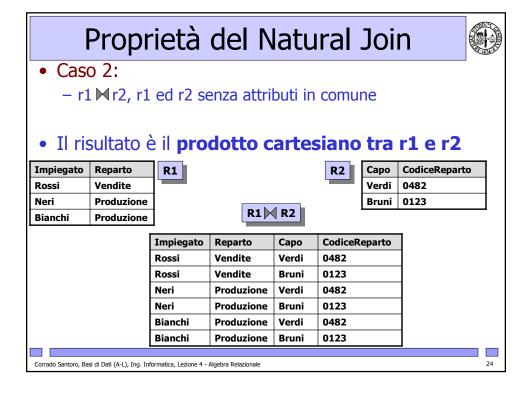

AUTO


Proprietario	Indirizzo	<u>Prov</u>	<u>Numero</u>
Verdi Piero	Via Milano, 11	RM	4E5432
Rossi Carlo	Via yyyy	PA	2A0234
Bianchi Enzo	Via Roma, 10	MI	2F7890
Rossi Luca	Via Catania, 10	то	2F7890
Neri Nico	Via xxx	СТ	987364

- Le tuple evidenziate della tabella "auto", non hanno corrispondenti nella tabella "infrazioni"
- Cosa accade dunque con l'operazione Auto ► Infrazioni ?
- Sono tuple "dangling" (ciondolanti) e non vengono considerate

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale




Proprietà del Natural Join

- L'operatore di natural join è commutativo e associativo:
 - $-(r1 \bowtie r3) \bowtie r2 = r1 \bowtie r2 \bowtie r3$
- Occorre però considerare i casi particolari:
 - r1 ⋈ r2, r1 ed r2 con gli stessi attributi
 - r1 ⋈ r2, r1 ed r2 senza attributi in comunte

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Prodotto cartesiano, theta-join ed equi-join

- Il prodotto cartesiano è di poca utilità
- Tuttavia esistono casi in cui occorre fare il join tra due relazioni senza attributi in comune
- E' il caso in cui le relazioni sono legate fra loro ma tramite attributi con nomi diversi

<u>Codice</u>	Data	Agente	Articolo	Prov	Numero
143256	25-10-03	567	44	RM	4E5432
987554	26-10-03	456	34	RM	4E5432
987557	26-10-03	456	34	MI	2F7890
600876	15-10-03	456	53	MI	2F7890
539856	20-01-04	567	44	то	2F7890

Codice Agente	Cognome	Nome
567	Rossi	Mario
456	Verdi	Carlo

AGENTI

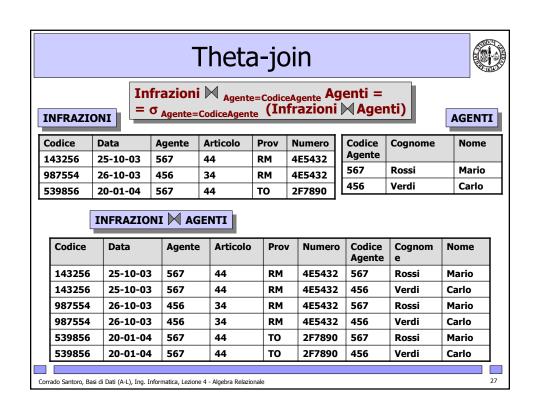
INFRAZIONI

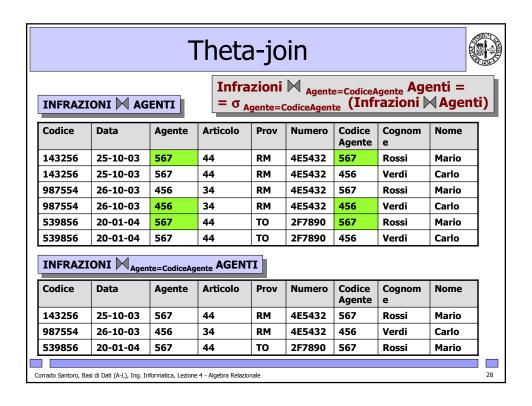
Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

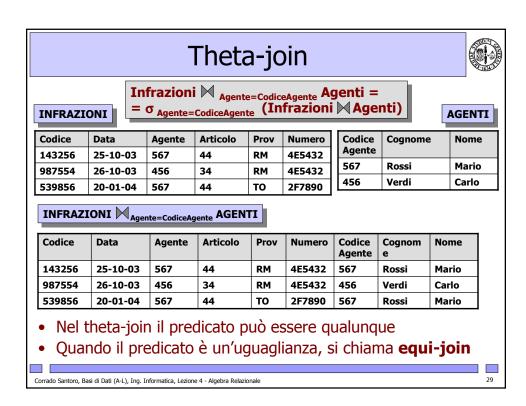
Prodotto cartesiano, theta-join ed equi-join

• In tal caso si ricorre all'operatore di **theta-join**, che è un natural join basato su un **predicato**

R1 \bowtie _F R2 = σ _F (R1 \bowtie R2)


<u>Codice</u>	Data	Agente	Articolo	Prov	Numero
143256	25-10-03	567	44	RM	4E5432
987554	26-10-03	456	34	RM	4E5432
987557	26-10-03	456	34	MI	2F7890
600876	15-10-03	456	53	MI	2F7890
539856	20-01-04	567	44	то	2F7890


Codice Agente	Cognome	Nome
567	Rossi	Mario
456	Verdi	Carlo


AGENTI

INFRAZIONI

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale

Sommario degli operatori

- Operazioni di insieme
 - Unione, Intersezione, Differenza
- Ridenominazione
- Decomposizione
 - Selezione
 - Proiezione
- Join
 - Natural-join
 - Left-, right-, full-outer-join
 - Equi-join
- SQL implementa questi operatori nelle istruzioni di interrogazione

Corrado Santoro, Basi di Dati (A-L), Ing. Informatica, Lezione 4 - Algebra Relazionale