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Summary. An overview is given of finite volume central schemes for the numerical

solution of systems of conservation and balance laws. Well balanced central schemes

on staggered grid for the Saint-Venant model or river flow are considered. A scheme

which is well balanced for channels with variable cross section is introduced. Finally,

a scheme which preserves non static equilibria is introduced, and some numerical

results are presented.

1 Introduction

The numerical solution of hyperbolic systems of conservation laws has been a

challenging and fascinating field of research for the last decades.

The solution of conservation laws may develop jump discontinuities in

finite time, and the uniqueness of the (weak) solution is guaranteed only by

recurring to some additional selection rule, such as entropy condition (see,

for example, [Daf00] for a recent account of the theory of hyperbolic systems
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of conservation laws). The dissipation mechanism of a quasilinear hyperbolic

system is concentrated at the shocks, and its effect can be described in terms

of the balance laws and entropy condition.

The schemes more commonly used in this context are the so called shock

capturing schemes. At variance with front tracking methods, such schemes

solve the field equations on a fixed grid, and the shocks are identified by the

regions with large gradients. Among shock capturing schemes, the most com-

monly used are finite volume schemes, in which the basic unknowns represent

the cell average of the unknown field. In finite difference schemes, the basic

unknown represents the pointwise value of the field at the grid node.

The necessity of high accuracy and sharp resolution of the discontinuities

encouraged the development of high order schemes for conservation laws.

Most modern high order shock capturing schemes are written in conserva-

tion form (in this way the conservation properties of the system are automat-

ically satisfied), and are based on two main ingredients: the numerical flux

function, and the non-oscillatory reconstruction. High order accuracy in the

smooth regions, sharp resolution of discontinuities, and absence of spurious

oscillations near shocks strongly depend on the characteristics of these two es-

sential features (see for example the books by [LeV92], [GR96] or the lecture

notes in [CIME00]).

Among finite volume methods, we distinguish between semidiscrete and

fully discrete schemes. The first ones are obtained by integrating the conser-

vation law in a spatial cell, by using a numerical flux function at the edge of

the cell, and by providing a suitable reconstruction of the field at the two sides

of each edge of the cell in terms of the cell averages. In this way one obtains

a set of ordinary differential equations that can be then solved by some ODE

solver such as Runge-Kutta. High order semidiscrete schemes are described,

for example, in the chapter 4 of [CIME00] by Shu.

Alternatively, fully discrete schemes are obtained by integrating the con-

servation law on a cell in space-time. The flux function appearing in the
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scheme will be consistent, to the prescribed order of accuracy, with the time

average of the flux at the edge of the cell in one time step. A second order

fully discrete method can be obtained, for example, by combining second order

Lax-Wendroff method with a first order method by suitable flux limiter, which

prevents formation of spurious oscillations (see [LeV92] for some examples).

Another distinction can be made between upwind and central schemes.

Roughly speaking, we say that a scheme is upwind if it makes extensive use of

the characteristic information of the system, so that the scheme can take into

account the direction of propagation of the signal, while a scheme is central

if characteristic information is not used. The prototype of upwind schemes is

first order upwind, or its version for quasilinear systems, which is first order

Godunov method, based on the solution of the Riemann problem at cell edges.

The prototype of central scheme is first order Lax-Friedrichs scheme, which

requires neither Riemann solvers nor characteristic decomposition.

Generally speaking, upwind-based methods guarantee sharper resolution

than central schemes for the same order of accuracy and grid spacing, but

are usually more expensive, and more complicated to implement. For this

reason, central schemes have attracted a lot of attention in the last fifteen

years. Following the original work of Nessyahu and Tadmor [NT90], where a

second order, shock capturing, finite volume central scheme on a staggered

grid in space-time was introduced and analyzed, several extensions and gen-

eralizations have been performed about central schemes, both fully discrete

and semidiscrete (see [Rus02] and references therein for a review on central

schemes).

The distinction between the upwind and the central world is not sharp,

and in fact some characteristic information can be used to improve the per-

formance of central schemes. For example, by using different estimates of

the negative and positive characteristic speeds, Kurganov et al. [KNP01] im-

proved the original semidiscrete central scheme [KT00]. The latter, in turn, is

related to the finite volume schemes used by Shu, when a Local Lax-Friedrics
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flux (also called Rusanov flux) is used ([CIME00], chapter 4). Qiu and Shu

[QS02] showed that by using a reconstruction in characteristic variables for

the computation of staggered cell average in central schemes, one eliminates

the spurious oscillations produced by high order central schemes for the inte-

gration of Euler equation of gas dynamics near discontinuities.

Although semidiscrete schemes are very attractive because of their flexi-

bility and simplicity of use, fully discrete schemes provide sometimes better

performance with the same grid spacing. Because of this reason, it is of in-

terest to consider the use of fully discrete central schemes for systems with

source term.

High order central schemes on staggered grid for conservation laws have

been derived. See, for example, [LPR] and [PPR] for recent results in this

field, and [QS02] for a comparison between semidiscrete and fully discrete

high order central schemes.

When a source is introduced in the system (i.e. when dealing with a quasi-

linear system of balance laws) then several new interesting problems arise in

extending shock capturing schemes for conservation laws to this new case.

Straightforward extensions can be obtained by integrating the source term

in space (for semidiscrete schemes) and in space and time (for fully discrete

schemes) and using a suitable quadrature formula to compute the contribution

of the source.

Another general technique that is commonly used for systems with source

is based on the fractional step (also called time-splitting) method.

Both approaches, however, perform poorly in two cases, which require a

more detailed “ad hoc” treatment.

One case concerns the problem of hyperbolic systems with stiff source.

Here the source has to be treated by an implicit scheme, to avoid an excessive

restriction on the time step due to the small characteristic time of the source

term. The flux, on the other hand, is in general not stiff, and an explicit

scheme is certainly more convenient because the nonlinearity of the space
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discretization (mainly due to the non linear reconstruction) makes an implicit

treatment excessively too expensive.

Implicit-Explicit (IMEX) time discretization are a natural choice for this

kind of problems. See, for example, [LRR00] for a second order IMEX scheme

based on central discretization in space, and [KC03] for a review on recently

developed IMEX schemes.

Another important problem consists in the integration of systems in which

the source term is nearly balanced by flux gradients. In this case the solution is

a small perturbation of a stationary one. For this problem it would be desirable

to construct numerical schemes that maintain the stationary solutions at a

discrete level.

Such schemes are often called well balanced , after the paper by Green-

berg and Le Roux [GLR96], and their development and analysis has inter-

ested many researchers in the last decade [Go96], [LeV98], [GHS03], [Jin01],

[KL02], [BPV03], although some ideas based on characteristic decomposition

where introduced earlier (see [Roe91] for linear problems and [BV94] for the

extension to quasilinear problems). See also [To01] for a detailed explanation

of various numerical methods for shallow water equations.

Most well-balanced schemes have been derived either for semidiscrete or

for fully discrete schemes on a non staggered grid. However, staggered central

schemes are attractive since they have an automatic mechanism for controlling

spurious oscillations. In many cases, they allow better resolution than the non

staggered counterpart. It is therefore attractive to explore the possibility of

constructing well-balanced schemes on a staggered grid.

An example of well-balanced central scheme on a staggered grid was pre-

sented at the HYP2000 conference, and is briefly described in [Rus00]. A well

balanced second order central scheme for the Saint-Venant equations that

preserves static equilibria was derived.
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Here we extend the result by presenting a well-balanced central scheme on

a staggered grid that works also for channels of variable cross section, and a

scheme that preserves non static equilibria (in the case of subcritical flow).

The rest of the section is devoted to a brief review of hyperbolic systems

of conservation laws and conservative schemes for their numerical approxima-

tion.

The next section is a review of shock capturing central schemes for balance

laws. Section 3 presents central schemes that preserve static solutions, with

application to the Saint-Venant model of shallow water. Section 4 is quite

techincal, and describes in detail the derivation of a central scheme for the

Saint-Venant equations that preserves stationary, non static, equilibria. Some

applications of the schemes are illustrated in Sections 3 and 4.

1.1 Hyperbolic systems

Let us consider a hyperbolic system of balance laws. It takes the form

∂u

∂t
+

Df(x, u)
Dx

= R(x, u), (1)

where u ∈ Rm; f, R : Rm → Rm, A = ∂f/∂u has real eigenvalues and a basis

of eigenvectors. Here Df/Dx = ∂f/∂x + Aux.

Such system may develop discontinuities in finite time (shocks) and there-

fore one has to abandon the hope of finding regular solutions (strong solu-

tions), and one looks for weak solutions.

An admissible discontinuity that propagates in the media has to satisfy

the so called jump conditions, which can be derived directly from the balance

law, written in the original integral form. Such conditions, also called Rankine-

Hugoniot conditions can be written in the form

−VΣ [[u]] + [[f ]] = 0, (2)

where VΣ denotes the speed of the moving discontinuity Σ, and for any func-

tion h(x, t), [[h]] ≡ (h+ − h−) denotes the jump of the quantity across the

discontinuity Σ.
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A function u that satisfies Eq. (1) in the regions of regularity and con-

ditions Eq. (2) at discontinuities is a weak solution of the balance equation.

However, uniqueness is not guaranteed for such solution. In order to restore

uniqueness of the solution, one has to resort to additional selection rules. En-

tropy condition, for example, is often used to select the unique solution of

a conservation law. For a review of modern theory of hyperbolic systems of

conservation laws see, for example, the book by Dafermos [Daf00].

Conservation form, jump conditions, and entropy conditions are used as

guidelines in the development of modern shock capturing schemes, in order to

guarantee that the numerical solution of the scheme converges to the unique

entropic solution when the grid is refined.

1.2 Numerical schemes

A numerical scheme for balance laws has to admit the possibility of captur-

ing discontinuous solutions, providing a correct shock speed. For a system of

conservation laws (i.e. in the case of zero source term) it is desirable that a

numerical scheme maintains the conservation properties of the exact solution

of the system. For both purposes it is essential that the scheme is written in

conservation form.

The so called shock captuting finite volume schemes are usually derived by

integrating the system of balance laws on a suitable region of space-time.

Let us divide space into equally spaced cells Ij ≡ [xj−1/2, xj+1/2] of size

∆x, centered at xj , j ∈ Z.

Semidiscrete schemes are obtained by integrating the conservation law (1)

in each cell in space, and approximating the flux function at the boarder of

the cell by a suitable numerical flux function that depends on the values of

the field across the edge of the cell. These values, in turn, are obtained by a

suitable reconstruction of the function from the cell averages. In this way, one

obtains a system of ordinary differential equations for the cell averages, of the

form
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dūj

dt
= −Fj+1/2 − Fj−1/2

∆x
+ R̄j ,

where ūj is an approximation of the cell average

ūj ≈ 1
∆x

∫ xj+1/2

xj−1/2

u(x, t) dx,

and

Fj+1/2 = F (u−j+1/2, u
+
j+1/2)

is the numerical flux function, u±j+1/2 are the reconstructed values of the field

across the edge xj+1/2.

For an account of modern semidiscrete high order schemes for conservation

laws, see for example, the chapter by Shu in [CIME00].

Fully discrete schemes are obtained by integrating the conservation law on

a suitable cell in space-time. Integrating the equation on a cell Ij × [tn, tn+1]

one typically obtains a scheme of the form

Un+1
j = Un

j −
∆t

∆x
(Fj+1/2 − Fj−1/2) + ∆t R̄

n+1/2
j

where Fj+1/2 is the so called numerical flux function, which is consistent, to

the prescribed order of accuracy, with the time average of the flux f at the

edge xj+1/2 of the cell, and R̄
n+1/2
j is an approximation of the space-time cell

average of the source.

The piecewise constant solution Ũn(x) =
∑

j χj(x)Un
j , χj(x) being the

characteristic function of interval Ij , satisfies discrete jump conditions, and if

it converges to a function U(x, t) as ∆x → 0, then U(x, t) is a weak solution of

(1) (Lax-Wendroff theorem, see [RM67]). A nice description of a fully discrete

schemes of this form is presented, for example, in [LeV92].

2 Staggered central schemes for balance laws

A different family of schemes is obtained by integrating the conservation laws

on a staggered grid in space-time (see Fig.1)
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tn

tn+1
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Fig. 1. Staggered grid in space-time and central scheme

After integration one obtains

∆x ūn+1
j+1/2 =

∫ xj+1

xj

u(x, tn) dx−
∫ tn+1

tn

(f(uj+1(t))− f(uj(t))) dt

+
∫ xj+1

xj

dx

∫ tn+1

tn

dtR(x, u(x, t)),

with uj ≡ u(xj , t). The above formula is exact for piecewise smooth solutions.

To convert the formula in a numerical scheme one has to

(i) reconstruct u(x, tn) from ūn
j and use it to compute ūn

j+1/2,

(ii) approximate integrals in time by a quadrature formula,

(iii) compute approximation of uj(t) on the quadrature nodes,

(iv) approximate the integral of the source on the cell in space-time by a

quadrature formula.

The celebrated second order Nessyahu-Tadmor (NT) scheme [NT90], is

obtained (for R = 0) by approximating:

(i) u(x, tn) by a piecewise linear function,
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(ii) integrating the flux by midpoint rule,

(iii) using first order Taylor expansion for the computation of u(xj , t
n+∆t/2).

Its generalization to a system of balance laws (with no explicit dependence

of flux and source on x) can be written as a simple two line predictor-corrector

scheme

u
n+1/2
j = un

j − λ
2 f ′j + ∆t

2 R(un+β
j ) predictor

un+1
j+1/2 = 1

2 (un
j + un

j+1) + 1
8 (u′j − u′j+1)− λ

(
f(un+1/2

j+1 )
corrector

−f(un+1/2
j )

)
+ ∆t

2 (R(un+β
j ) + R(un+β

j+1 )

(3)

where λ = ∆t/∆x denotes the mesh ratio, and u′j/∆x, f ′j/∆x are first order

approximation of space derivatives.

NT scheme can be made (discretely) entropic and Total Variation Dimin-

ishing (TVD). These properties depend on the reconstruction of the deriva-

tives. In order to avoid spurious oscillations, suitable slope limiters for u′ and

f ′ are required. The simplest choice is given by the so called MinMod limiter,

which is defined as

MinMod(a, b) =





sign(a)min(|a|, |b|) if ab > 0

0 if ab ≤ 0

Therefore u′j can be computed as

u′j = MinMod(uj+1 − uj , uj − uj−1),

and f ′j can be computed either using the minmod function or by f ′j = A(uj)u′j .

Better slope limiters (e.g. Harten’s UNO limiter) can be used. For an

account of different slope limiters see, for example, [LeV92] or [NT90].

Note that the contribution of the source term can be completely explicit

(β = 0) or implicit (β = 1/2). Both cases will result in a second order scheme

in space and time. The time restriction due to the flux term, in absence of
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source, is the Courant-Friedrichs-Lewy (CFL) condition, which for the NT

scheme reads

λCmax ≤ 1
2
. (4)

where Cmax is the maximum spectral radius of the Jacobian matrix A on the

computational domain.

High order central schemes for conservation laws (R ≡ 0) are obtained by

using high order non-oscillatory reconstruction, such as WENO, and higher

order time evolution, such as Runge-Kutta schemes with Natural Continuous

Extension (see [LPR]) or Central Runge-Kutta [PPR].

The time step restriction due to the source term depends on the use of

explicit (β = 0) or implicit (β = 1/2) predictor, and on the stiffness of the

source, i.e. on its relaxation time. If the restriction introduced by explicit

treatment of the source is more severe than the CFL condition (4), then it is

preferable to use an implicit discretization of the predictor step. Note that the

above scheme with β = 1/2 is a simple example of Implicit-Explicit (IMEX)

time discretization, obtained by coupling explicit RK2 scheme (modified Euler

scheme) with an A-stable second order scheme (midpoint method). In the

case of very stiff relaxation terms, the above scheme is not suitable, and an

L-stable scheme is needed for a proper treatment of the source. An example

of IMEX central scheme for hyperbolic systems with stiff sources is presented

in [LRR00]. Other examples of IMEX schemes applied to relaxation systems

are shown in [PR04] and references therein.

We remark here that finite volume schemes are not suitable for high order

approximation of hyperbolic systems with stiff source, because the averaging

of the source couples all the cells, making implicit schemes expensive. Finite

difference schemes are more natural in this case, because the pointwise value of

the function rather than its cell average is used as basic unkwnon, and there-

fore the cells are decoupled (at the level of the source term). See [CIME00],

Chap. 4, for illustration of high order finite difference schemes in conservation

form.
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3 A well-balanced scheme that preserves static equilibria

In this section we develop a well-balanced central scheme for a system of

balance laws, with particular application to the Saint-Venant equations of

shallow water.

Consider a problem in which the solution of the following system

∂u

∂t
+

Df(x, u)
Dx

= R(x, u)

is a small deviation from the stationary solution ũ(x), for which

∂f(ũ)
∂x

= R(ũ). (5)

In this case, fractional step schemes or a scheme of the form Eq. (3) perform

poorly, because they will not preserve equilibria (5), even at a discrete level.

We consider here the specific case of the Saint Venant model of shallow

water equations. Let us start with the one dimensional equations in a channel

of constant cross section. The equations can be written in the form

∂h

∂t
+

∂q

∂x
= 0, (6)

∂q

∂t
+

∂

∂x

(
q2

h
+

1
2
gh2

)
= −ghBx, (7)

where h(x, t) denotes the water depth, q(x, t) is the water flux, B(x) denotes

h(x,t)

B(x)

H(x,t) = h(x,t)+B(x)

Fig. 2. Water height and bottom profile of the Saint-Venant model of shallow water
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the bottom profile, and g is the constant gravity acceleration.

Several well-balanced schemes have been developed in the literature, which

satisfy different requirements. We mention here the works by Greenbern and

Le Roux [GLR96], Gosse [Go96], LeVeque [LeV98], Perthame et al. [BPV03],

Jin [Jin01], Kurganov and Levy [KL02], Bouchut et al. [ABBKP04], Gallouet

et al. [GHS03], just to mention a few names.

Usual requirement for a well-balanbced scheme is the preservation of static

equilibria, which means a stationary solution of Eq. (5), for which the fluid

does not flow, i.e. q = 0.

In addition, other common requirements are:

i) preservation of all equilibria,

ii) preservation of non-negativity of h,

iii) capability of treating dry zones (i.e. zones for which h = 0),

iv) numerical entropy condition.

A recent scheme derived by Bouchut and collaborators [ABBKP04] is able to

fulfill all these requirements.

Let us consider, as a test, the initial condition

q(x, 0) = q0, h(x, 0) =





1.01 if |x− 0.2| < 0.05

1 otherwise
, (8)

with q0 = 0, and let the bottom profile be given by

B(x) =





1 + cos(10x− 5) if |x− 0.5| < 0.1

0 otherwise
. (9)

If we use scheme (3) (with β = 0) then we obtain the solution shown in

Fig.(3), where the total height H = h + B is reported at initial time (dashed

line) and final time t = 0.7. In all calculations we set the gravity constant g to

1. The number of grid points used in the calculation is N = 200. The dashed

line represents the initial condition.

Flat boundary conditions have been used here and for all calculations

presented in the paper.
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The spurious effect present in the center of the computational domain is

due to the fact that the scheme is not able to preserve stationary solutions of

Eqs.(6,7).

How can we construct well balanced schemes that preserve equilibria?

Several approaches have been considered in the literature.

The paper by Kurganov and Levy [KL02], for example, provides an ex-

ample of a semidiscrete central scheme that preserves static equilibria. The

scheme they present, however, can not be straightforwardly generalized in the

case of staggered grids, because NT scheme is not able to preserve solutions

of the equation
∂u

∂t
= 0,

unless u ≡ constant.

Taking this into account, a well balanced central scheme that preserves

static solutions has been derived and presented at the hyperbolic conference

in Magdeburg [Rus00].

The guidelines in the development of such scheme are:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.998

1

1.002

1.004

1.006

1.008

1.01

x

H

Fig. 3. Numerical solution of system (6, 7), with the use of scheme (3), with β = 0).

200 grid points.
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1.008

1.01

x

H

Fig. 4. Numerical solution of system (6,7), with the well-balanced central scheme

(10-11). The thin line represents the reference solution and is obtained by the well-

balanced scheme with N = 1600 gridpoints.

1) reformulate the problem using H = h + B as conserved variable

2) compute predictor by non conservative form using f ′ = δf +A(u)u′, where

δf ≈ ∆x∂f/∂x,

3) in the corrector use suitable approximation of functions and space deriva-

tives.

The last requirements are obtained for example, by setting (at even time

steps)

Bj =
1
2

(B(xj + ∆x/2) + B(xj −∆x/2), )

B′
j

∆x
=

B(xj + ∆x/2)−B(xj −∆x/2)
∆x

.

The scheme applied to SV equations takes the form

predictor:

H
n+1/2
j = Hn

j −
λ

2
q′j ,
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(10)

q
n+1/2
j = qn

j −
λ

2
,
(
2vn

j q′j − (vn
j )2(H ′

j −B′
j) + gH ′

j(Hj −Bj)
)

corrector:

H
n+1/2
j+1/2 = Hn

j+1/2 − λ(qn+1/2
j+1 − q

n+1/2
j ),

q
n+1/2
j+1/2 = qn

j+1/2 − λ(ψn+1/2
j+1 − ψ

n+1/2
j ) (11)

− g
λ

2
(Hn+1/2

j B′
j + H

n+1/2
j+1 B′

j+1),

where the staggered cell averages Hn
j+1/2 and qn

j+1/2 are computed as in

scheme (3), v ≡ q/(H −B), ψ
n+1/2
j ≡ ψ(Hn+1/2

j , q
n+1/2
j ) and

ψ(H, q) ≡ q2

H −B
+

1
2
H(H −B)

It is easy to check that H = const, q = 0 is a solution for this scheme.

The scheme is applied to problem (6, 7, 8), and the numerical results are

shown in Fig.3. Note that no spurious profile appears where B 6= 0.

Variable cross section

Saint Venant equations for a channel of variable cross section have the form

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂H

∂x
= 0,

where A(x, t) is the cross section of the part of channel occupied by the water,

and Q is the flux. The above approach can be extended to the case of channel

with rectangular cross section, A(H, x) = hW (x). A well-balanced scheme is

obtained as follows. Let A = W (x)h(x, t) = W (x)(H(x, t)−B(x)). Reformu-

late the problem using H and q = Q/W as unknown conservative variable.

This choice will not alter the jump conditions. Then the system becomes

∂H

∂t
+

∂q

∂x
= −q

Wx(x)
W (x)

,

∂q

∂t
+

∂

∂x

(
q2

H −B(x)
+

g

2
H(H − 2B(x))

)
(12)

= −gHBx(x)− q2

H −B(x)
Wx(x)
W (x)

.
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The scheme used before preserves static solutions of this system, because the

two additional terms vanish as q = 0.

As an application of the scheme we consider two test cases. The initial

conditions are given by Eq. (8), and the bottom profile by Eq. (9).

The results corresponding to these two cases are reported in Fig. 5 The

first corresponds to the choice

W (x) = 1−B(x),

while in the second one it is

W (x) =
1

1−B(x)
.

Notice that in the second case the area of the cross section of the channel

corresponding to the static solution H = 1 is basically constant, and this

reduces the amplitude of the reflected wave, while in the first case the cross

sectional area at the center of the channel becomes narrower than the case of

constant cross section, resulting in a larger reflected wave.

4 A well-balanced scheme for subcritical flows

The approach described before can not be directly applied to the case in

which the stationary solution is not static. Even if the scheme preserves the

equilibrium
Df

Dx
= R

at a discrete level, Nessyahu-Tadmor scheme does not preserve a solution of

the trivial equation ∂u/∂t = 0 unless u is also constant in space.

One possibility to obtain a scheme that preserves stationary solutions is

to perform a change of variables in such a way that in the new variables the

equilibrium is represented by constants.
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Fig. 5. Numerical solution of Saint-Venant equations with variable cross section,

at time t = 0.7. The thin dotted line represents the reference solution obtained by

1600 points. Upper: W (x) = 1−B(x); lower: W (x) = (1−B(x))−1
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Scalar equation

Let us consider the scalar case first. Let us denote by ũ(x) a stationary solu-

tion, i.e.
Df(x, ũ)

Dx
= R(x, ũ). (13)

Then we look for a solution of the form

u(x, t) = ũ(x)v(x, t).

The equation for u becomes

ũ(x)
∂v

∂t
+

Df(x, ũv)
Dx

= R(x, ũv).

Integrating on a staggered cell in space time one has

∆x ūn+1
j+1/2 =

∫ xj+1

xj

ũ(x)vn+1(x) dx =
∫ xj+1

xj

ũ(x)v(x, tn) dx

−
∫ tn+1

tn

(f(xj+1, ũj+1vj+1(t))− f(xj , ũjvj(t))) dt

+
∫ xj+1

xj

dx

∫ tn+1

tn

dtR(x, ũ(x)v(x, t)). (14)

A second order discretization of the conservation equations is obtained as

follows. Let us define the quarter cell values of the equilibrium solution (which

coincide with their average to second order)

ũj±1/4 ≡ ũ(xj ±∆x/4) = ũ(xj±1/4).

The cell average at time tn+1 (left hand side of Eq. (14)) is discretized as

1
∆x

∫ xj+1

xj

ũ(x)vn+1(x) dx ≈ 1
2
(ũj+1/4 + ũj+3/4)v̄n+1

j+1/2.

The first term on the right hand side (staggered cell average) is discretized as

follows. Assume vn(x) is approximated by a piecewise linear function

vn(x) ≈
∑

j

χj(x)Lj(x),
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where χj is the characteristic function of the j − th interval, and

Lj(x) = vn
j + v′j(x− xj)/∆x.

Here v′j/∆x denotes a first order approximation of the space derivative of

vn(x), and vn
j denotes an approximation of the pointwise value of vn(x) (which

agrees with its cell average to second order).

In each cell one has

ūn
j ≈

1
2
(ũj−1/4 + ũj+1/4)vn

j .

Staggered cell average at time n are computed as
∫ xj+1

xj

ũ(x)vn(x) dx = IR
j + IL

j+1

=
∫ xj+1/2

xj

ũ(x)Lj(x) dx +
∫ xj+1

xj+1/2

ũ(x)Lj+1(x) dx.

To second order accuracy, the integrals are evaluated as

IR
j = ∆x ũj+1/4

(
1
2
vn

j +
1
8
v′j

)
,

IL
j = ∆x ũj−1/4

(
1
2
vn

j −
1
8
v′j

)
,

and therefore the staggered cell average is

1
∆x

∫ xj+1

xj

ũ(x)vn(x) dx ≈ 1
2
(ũj+1/4v

n
j + ũj+3/4v

n
j+1)

+
1
8
(ũj+1/4v

′
j − ũj+3/4v

′
j+1).

Remark

A better approximation of the staggered cell value can be obtained by using
∫ h/2

0

ũ(xj + ξ)ξ dξ =
1
8
ũxj+h/3h

2 + O(h4),

however, this requires the storage of an additional value of the stationary

solution, and it does not improve the overall order of accuracy.
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The contribution of flux and source is computed by a predictor-corrector

type scheme

1
∆x

∫ ∆t

0

f(xj , uj(tn + τ) dτ ≈ f(xj , ũ(xj)v
n+1/2
j )

Predictor step

Can be computed by a non conservative scheme

u
n+1/2
j = un

j −
λ

2

(
δfj +

∂f

∂u
u′j

)
+

∆t

2
R(xj , u

n
j )

where δfj/∆x denotes a first order approximation of the space derivative of

f and

u′j = ũ′jv
n
j + ujv

′
j

Here

u′j = ∆x
du

dx

∣∣∣∣
(xj ,uj)

, v′j = ∆x
∂v

∂x

∣∣∣∣
(xj ,uj)

+ O(∆x2), ũ′j = ∆x
dũ

dx

Once the stationary equation 13 is solved for ũ, the quantity ũ′ is obtained

from the differentiation of Eq. (13) as

Aũ′ = ∆x

(
R(x, ũ)− ∂f

∂x

)
.

Corrector

The contribution of the source term is obtained by a suitable quadrature

formula

1
∆x

∫ xj+1

xj

∫ tn+1

tn

R(x, u) dx dt ≈ ∆t R̃(ũjv
n+1/2
j , ũj+1v

n+1/2
j+1 ).

The formula has to be consistent with the well balanced property of the

scheme, i.e.

λ(f(xj , ũj)− f(xj+1, ũj+1)) + ∆t R̃(ũj , ũj+1) = 0;

in fact, this relation can be used to define the function R̃ in the numerical

scheme.
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The extension to system of equations is obtained by repeating the above

steps component by component.

Let us apply this technique to the shallow water equations. We consider

1D shallow water equations in the form

∂H

∂t
+

∂q

∂x
= 0

∂q

∂t
+

∂

∂x

(
q2

H −B(z)
+

1
2
gH(H − 2B(x))

)
= −gHBx.

The stationary solution is q = q0 and H = H̃(x), obtained by solving the

equation
∂

∂x

(
q2
0

H̃ −B(z)
+

1
2
gH̃(H̃ − 2B(x))

)
= −gH̃Bx.

Integrating the equation one has

q2
0

2(H̃ −B)2
+ gH̃ = gH0 +

q2
0

2(H0 −B0)2
.

Therefore H̃ is obtained as solution of a cubic equation.

If, in the whole channel, the stationary flow is subcritical, i.e. if

|u| <
√

gh,

then the cubic equation has only one real solution. This is the case we consider.

The quantities H̃j , H̃j+1/2, H̃j+1/4, H̃j−1/4 are precomputed and stored

at the beginning of the calculation.

Particular care has to be used in the approximation of the derivatives.

Here we distinguish between predictor and corrector steps.

Predictor:

Use non conservative form of the equation. In particular

qn+1
j = qn

j −
λ

2
K,

with

K = 2
q

h
q′j −

(
q2

h2
− gh

)
(H ′ −B′) + gHB′,
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H ′ = v′H̃ + vH̃ ′.

Here h = H − B, B′ = Bx∆x, H̃ ′ = H̃x∆x, and H̃x is computed exactly

differentiating the equation for H̃.

Corrector:

The source has to be computed with a well-balanced formula. For example,

for the flux one has:

qn+1
j+1/2 = qn

j+1/2 − λ(fn+1/2
j+1 − f

n+1/2
j )

+ (H̃jv
n+1/2
j + H̃j+1v

n+1/2
j+1 )Sj+1/2,

with

Sj+1/2 =
f(H̃(xj), q0)− f(H̃(xj+1), q0)

H̃j + H̃j+1

.

Remark

In the new scheme the derivative of the bottom are computed exactly, and

not by finite difference, as in the old well balanced scheme (10,11).

4.1 Numerical results

We consider here a case where the solution is a small perturbation of a sta-

tionary non static equilibrium. The initial condition is given by Eq. (8), but

with q0 = 0.17. The numerical solution for the total height at two different

times is reported in Fig.6, where only 50 grid points have been used. The main

difference between the old well balanced scheme and the new one that pre-

serves non static equilibria is noticeable near the middle of the channel, where

the bottom is higher, and the water profile lowers. To enhance the effect, in

Figure 4.1 we report the quantity

I(x, t) =
q2

2(H −B)2
+ gH,

which is invariant at equilibrium. Notice the spurious effect near the center of

the channel in the numerical result obtained by scheme (10,11). We remark,
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however, that these effects are rather small, and quickly disappear as the grid

is refined. Figure 4.1, for example, represents the same quantity with 200 grid

points, and the effect is barely noticeable.

In all cases, the reference solution is obtained by the old well balanced

scheme with 1600 points.
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Fig. 6. Small perturbation of stationary, non static, equilibria. H(x, t) at different

times: t = 0.1 (top) and t = 0.6 (bottom). Well balanced central scheme that

preserves static equilibria (left), and scheme that preserves non static equilibria

(right). Number of grid points N = 50.
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Fig. 7. Plot of the equilibrium invariant at different times. Time t = 0.1 (top) and

t = 0.6 (bottom). Old well balanced scheme (left) and new well balanced scheme

(right). Number of grid points N = 50.

5 Conclusions

Staggered central schemes can be used for

• systems with stiff source (implicit-explicit schemes)

• quasi-stationary flows (well balanced schemes)
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Fig. 8. Same as in the previous figure, but with N = 200 grid points
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• accurate solutions (high order central schemes)

They may be more effective than non staggered central schemes in some

cases (higher resolution with the same number of grid points)

High order schemes can be constructed for problems with stiff source (high

order finite difference discretization + IMEX time discretization).

The construction of well-balanced central schemes on staggered grid that

preserves static equilibria is possible, but requires the solution of the station-

ary problem.

Future work in this topic may include the construction of schemes that do

not require this information. Second order schemes that preserve only static

equilibria perform rather well even when the unperturbed solution is non

static. The performance would improve with the increase of the accuracy of

the scheme. An interesting problem would be the construction of a third order

well-balanced scheme (on staggered or non staggered grid).
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