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A LEVEL-SET METHOD FOR THE EVOLUTION OF FACETED
CRYSTALS*
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Abstract. A level-set formulation for the motion of faceted interfaces is presented. The evolving
surface of a crystal is represented as the zero-level of a phase function. The crystal is identified by
its orientation and facet speeds. Accuracy is tested on a single crystal by comparison with the exact
evolution. The method is extended to study the evolution of a polycrystal. Numerical examples in
two and three dimensions are presented.
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1. Introduction. It is well established that under certain conditions gases and
liquids solidify into faceted crystals. By faceted we mean that the surface is piecewise
flat. The evolution of the crystal is often described by the motion of its surface,
which is uniquely determined once its normal velocity, vy, is known. In general v,
may depend on a wide variety of parameters such as orientation, curvature, adatom
concentration, and temperature. In some situations the growth depends only on the
orientation of the facets. This is called the van der Drift model [1, 2, 3]. In other
situations the growth is controlled by curvature. For faceted crystals the curvature
effects can be modeled by using crystalline curvature; for more details see Taylor [4, 5].

An example where the speed of the surface depends only on the orientation of
the facets is given to a good approximation by diamonds grown by chemical vapor
deposition. The (111) and (100) planes can grow at different speeds. The speed ratio
determines the characteristics of the surface of the final crystal.

In this work we shall consider the situation where v,, depends only on orientation
and the evolution of the interface is determined from

(1.1) z =~y(n)n.

If the function v(n) is smooth and convex, then an initially smooth curve remains
smooth. If y(n) is not convex, then singularities will develop on the surface. For
detailed explanations of these phenomena, see [6, 7]. In physical situations the for-
mation of facets is observed. In particular, Wulff and Frank studied the asymptotic
shape of a crystal, subject to a given v(n) law of motion [26]. Wulff proposed a
method to predict the shape. This method amounts to using the inner convex hull
of v(n) or, equivalently, the Legendre transformation of «(n). This shape is called
the Wulff shape. Frank [10] proposed a different construction which gives the same
answer. These constructions are well explained in [6, 7, 14].
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Wettlaufer, Jackson, and Elbaum devised a Lagrangian numerical method to
evolve a faceted seed which gives the correct Wulff shape [25]. A level-set method
based on (1.1) has been proposed by Osher and Merriman; see [13]. In their formu-
lation the interface is taken to be the zero-level set of a continuous function. Then
they solved the following PDE:

o¢ Vo
(1.2) 5 + v (|V¢|) V| = 0.
A similar formulation has been used by Taylor, Cahn, and Handwerker (consult [6, 7]).

Existence and uniqueness of such an equation are obtained in the framework
of viscosity solutions for Hamilton—Jacobi equations. Using this formulation, under
general assumptions, Osher and Merriman were able to prove that an initial interface
asymptotically approaches the Wulff shape associated to the vy(n) law [13]. Earlier,
Soravia [21] proved this result by a different approach. More recently Peng et al. [14]
used a numerical scheme based on this formulation to evolve an interface toward the
Wulff shape. They also explored the connection between motion of faceted interfaces
and motion of shocks for conservation laws. Another approach similar in spirit to
the level-set approach is based on phase field methods. There have been a number
of interesting papers on the evolution of faceted interfaces in this context (see, for
example, [22, 23, 11, 9]).

To use the formulation given by (1.2) for interface evolution, one needs to provide
an initial shape and a y(n) law for all directions n. On the other hand, in many
practical cases, the Wulff shape is a fully faceted surface. In this case the Wulff
shape is determined by the speeds of the facets, and the speeds in other directions
are irrelevant to the dynamics once the crystal is completely faceted. Thus, in the
case of fully faceted crystal having a speed law for all directions is something of a
mathematical convenience. In experimental situations only the speed of each facet
can be measured, therefore to use the framework given by (1.2) one must find a y(n)
(which is not unique) for all angles such that its Wulff shape agrees with experimental
measurements. This is a relatively simple task for regular polyhedra in two dimensions
but it does not seem so simple in three dimensions.

In this paper we propose an alternate level-set approach for the numerical compu-
tation of completely faceted crystals. This method only requires the velocity of each
facet. In some sense the method automatically finds a y(n) which has the correct
Wulff shape. As we shall see our approach is very closely connected with the work
found in [13] and [14], and in fact it should be viewed as an extension of that work. In
addition we also explore the evolution of polycrystals; each seed has its own level-set
function corresponding to the crystal orientation. When the crystals touch they do
not merge, but instead a grain boundary is formed.

2. Facet evolution. Each facet has a plane associated with it. The plane moves
with a given normal speed, which may be different for different facets. The boundaries
of the facets are determined by the intersection of the planes. The two-dimensional
(2D) evolution near a corner is shown in Figure 1. If we use a level-set method where
the normal speed is a simple interpolation between the two normal speeds, then the
corners would be rounded, as is shown in Figure 2. (In particular, they would be arc of
a circle if the two speeds are the same.) In order to keep flat facets and sharp corners,
we make the following observation. The evolution of a smooth curve depends only on
the normal speed, and the addition of a tangential component has the effect of just
changing the parameterization of the curve. We evolve the front with a velocity that
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Fi1G. 1. Facet evolution near a corner in two dimensions.

Y

FiG. 2. Evolution near a corner when the normal speed at the corner is a linear interpolation
of the normal speeds of the two facets.

has a component tangential to the facet and is directed toward the corner. With a
proper tangential velocity (which can be determined by the construction in Figure 1)
the facets will evolve, maintaining sharp corners. For example, for v; = vy and a
square corner, the necessary tangential velocity which has to be added on both sides
of the corner is v;. Note that this is a lower bound for the tangential velocity. In
fact, if we move the points with a tangential velocity which is greater than this value,
then the evolution of the interface will be the same. The addition of the tangential
velocity causes the characteristics to collide; the solution does not become multivalued
because we will use standard techniques for viscosity solutions to the Hamilton—Jacobi
equation. This causes a shock to form and the corner stays sharp (see Figure 3). Note
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Fic. 3. Addition of a velocity component tangential to the facets maintains sharp corners.

that the velocity that we add is tangential to the facet, not to the interface. This
has the effect of modifying the normal component of the interface if the latter is not
aligned along a facet. In this respect the method can be viewed as a technique to
construct a proper normal velocity law y(n), given the facet speeds.

2.1. Computation of the tangential velocity. In the approach that we use,
the speed of each facet must be specified. The crystal will have M facets, with normals
and normal speeds denoted by v,, and w,, with m =1,..., M. Let n be the normal
at a given point to the interface, which will be denoted by X.

In order to compute the proper velocity of the surface at a given point, we first
select the facet which is closest in direction to m, i.e., for which n - v,, is maximum,

(2.1) k = ArgMaxm - V.
Next we define the following velocity:

(2.2) vV = wEn + uT,
where

n—(n-vg)vg

[n— (n-vi)vg)]? + 2]

(2.3) T= 1/2

and u is the tangential speed, which will be specified below. The parameter € in the
denominator is a numerical parameter which ensures that 7 vanishes smoothly when
the numerator vanishes.

Simple geometric considerations show that at a corner between two facets, the
tangential speed that must be added to keep the corner sharp satisfies the following
relation (see Figure 4):

n Wo — W1 COS
Uy = —————— .
sin «
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Fia. 4. Minimal transverse velocity necessary to keep corners sharp.
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FiG. 5. Vector field v associated to a given surface.

Then the quantity u can be chosen equal to u*, where

(2.4) u* = max uiLj, with side 4 neighbor of side j, and w; > w;.
1,7 -
For a faceted interface, 7 = 0 because n = v and the face will evolve with the
standard normal speed. On the other hand, if we evolve the whole interface with
velocity v = wgn, then the corners would get rounded and the evolution would be
the one shown in Figure 2. When the corners become slightly rounded, then T becomes
directed toward the corner and the surface will move with a velocity that will try to
keep the corners sharp. The effect of formula (2.2) is illustrated in Figure 5. By
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choosing a small value for €, the vector 7 is basically a unit vector whenever n is not
aligned with the facets. Neglecting €, the normal velocity of our model is given by

(2.5) v(n) = wi + uy/1 — (n-vg)2.

It is essential that the v law provides the correct Wulff shape. We conjecture that
(2.5), with u > u*, satisfies this condition. On the other hand, if u < u*, then portions
of the crystal interface will be curved.

As a 2D example, we consider a seed with four facets, with normals (1,0), (0, 1),
(=1,0), (0,—1), and normal speeds all equal to 1. For this situation, u* = 1. In
Figure 6 we have plotted the Wulff shape corresponding to (2.5) for three values of w.
It is clear that for u = 0.55 the Wulff shape is not a square, but for u > 1 it is.

Our next example consists of a seed with four facets with the same normals as in
the previous example, but with speeds w = 2,1,2,1. In Figure 7 we have shown the
polar plot of v(n) (2.5), with u = 2.2 (in this case u* = 2), together with its Wulff
shape.

We remark that the transient evolution of a smooth initial surface rests on the
detailed dependence of v,, on m, but two v(n) which have the same Wulff shape will
give identical evolution laws for fully faceted crystals. In this respect, no particular
physical meaning is attached to expression (2.5): it is just a technique to compute
the correct evolution law of faceted interfaces. Note that the function (2.5) is not
necessarily continuous, as we have seen in the above example. However, this is not a
problem for computation, as we shall see later in the paper.

2.2. Polycrystals. Typically, many crystals grow from individual seeds, each
of them growing as a faceted crystal. Each individual crystal will grow until it hits
another crystal, forming a grain boundary. Once formed, a grain boundary moves on
a much longer time scale. In our model we shall assume that grain boundaries do not
move.

3. Level-set framework. In the level-set approach for a single crystal we in-
troduce a continuous function ¢(x,t), such that the crystal interface ¥ is given by

(3.1) 2 = {z|¢(z, t) = 0}.

Thus we see that the zero-level set of ¢ is the interface; furthermore, we take ¢ < 0
inside the crystal and ¢ > 0 outside. The unit normal on the interface is given by
n= Vo
Vo

evaluated at ¢ = 0. The velocity of the interface is given by

V= wpn +ut
6 o VO (W -V,
ol (Vo= (vi - Vo)upl? +£2)1/2

\Y%
2 —
(3.2) kTG

where & = ¢|V¢|, and k(zx,t) = argmax,, V,, - V¢. This expression, when evaluated
at ¢ = 0, gives the same velocity defined in the previous section. We note that this
velocity field is defined in the whole region €2, and therefore it can be used to evolve
the phase ¢ according to the equation

¢

(3.3) =

+v-V¢=0.
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F1G. 6. Gamma law and corresponding Wulff shape. y(n) (thick line) is given by (2.5) and the
Wulff shape is the envelope of the straight lines (see [6, 14]). The values of u are 0.55, 1.0, and 1.2
(from top to bottom,).

With this evolution law, the zero-level set of ¢(ax,t) will describe the evolution of the
interface.

At time t = 0, the phase function is initialized so that ¢(z,0) is continuous and



2080 GIOVANNI RUSSO AND PETER SMEREKA

90

4
120 60
3
150 2 30
180 0
210 330
240 300
270

FiG. 7. Polar plot of the normal velocity and the corresponding Wulff shape.

¢(x,0) <0 inside the crystal,
¢(x,0) > 0 outside the crystal.

4. Polycrystal and grain boundaries. The previous method can be extended
to describe the evolution of several crystals. Let us assume we have N, crystal seeds.
In this case we assign a different phase function ¢, ¢ =1,..., N, to each crystal. Each
phase evolves with equation

0y

and the velocity field vy is computed as in the l-crystal case. When two phase
boundaries touch, then their evolution speed is set to zero, i.e., n = 0.

5. Numerical implementation. We use two different numerical methods to
solve (3.2)—(3.3). They are both based on upwind methods on a fixed square grid.
If all the initial seeds lie within the computational domain, then the velocity field
on the boundary points outward, and therefore no boundary conditions have to be
prescribed. Such approaches are typical for level-set methods (consult [16, 18]).

5.1. Single phase.
Method 1. In the first scheme we calculate the velocity v by using center difference
approximation for V¢, for example,
n

0¢ i1, — it
8x(mz’y]7 n) 2Ax ’

and then ¢ is updated by a first-order upwind method,
¢"+1 = ;L’j — At(uiJD;pW(ﬁ + Ui’jD;pW)(b.

4,3
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FiG. 8. Contour plots of the zero level-set at different times and comparison with exact solution.
Grids: 25 x 25, 50 x 50, 100 x 100, 200 x 200.

In the above expression u;; and v; ; are, respectively, the x and y components of v
given by (3.2), where derivatives of ¢ are computed with center differences; further
we have

w Dloi; if wi; >0,
b %:{ Digw, if wiy <0
] ,] = Y
with
b Gij — bi-1; biv1j — i
Dlgi,; =~ and D¢ ; = Sty

and a similar formula holds for D P™.

The method developed here presents some resemblance to the method of arti-
ficial compression of Harten [8]. In that case, the characteristic velocities across a
discontinuity are artificially altered in order to make the discontinuities sharper.
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Fic. 9. The initial condition is a circle. The normal speeds of the faces are 1 and 2, and we
have used u = 2.2.

Method 2. The second scheme is based on writing the equation in a Hamilton—
Jacobi form, and using a modification of the scheme proposed by Rouy and Tourin
[17]. First we rewrite the equation as

0¢
% F ~0
O+ F(Y6)[Vl =0,
where the normal speed F(V¢) is given by
(5.1) F—v~n—v~|§zl

and the velocity v is given by (3.2). Equation (5.1) is discretized as follows: We
compute the velocity v using centered differencing as before and the normal speed is
then approximated as

u; ;DY) + v; ;DY
V(DI )2 + (D) + 22
Next the phase function ¢ is updated according to
(5.2) Pt = — AtgF

by =

where

\/maX(\(D2¢)+|, |(D6)-1)? + max(|(Dye)+ |, (D)¢)-)? if Fy; >0,
g =

\/maX(\(D%)flv |(DL¢)+1)? + max(|(Dye) |, [(Df6)+)? if Fp; <0,

and for any real number h, (h); = max(h,0) denotes the positive part and (h)_ =
min(h, 0) denotes the negative part. We remark that this latter method is very similar
in spirit to the method used by Peng et al. [14] and it may be viewed as an automatic
way to compute y(n) (see [13, 14]).
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Fic. 10. Contour plots of the zero level-set at different times. Velocity ratio vi1/vio: 0.8, 1.1,
1.3, 1.5. Grid size: 200 x 200.

5.2. Multiple phases. Multiple phases are handled in much the same way as
we handle a single seed except we must make a modification when two phases touch
and a grain boundary forms. We discretize (4.1) as follows: First compute a candidate
for the new phase, according to (5.2),

¢;j(£) = ?3(6) - anAtFing,
where @7 (€) = ¢u(xi,yj,tn)- qﬁ?jl(ﬁ) is computed from ¢; ;(£) once it has been
determined whether or not grain boundary has formed. This is done in two steps
explained below.

Step 1. Computation of n. When two phases meet, they stop moving. This is
obtained computationally as follows:

ntl _ 0 if any of the phases ¢; ;(£) overlap,
©J 1 otherwise.
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Fic. 11. Contour plots of the zero level-set at different times. The initial condition is a smooth
nonconvex curve. The figure on the left is computed using Method 1 (with w = .45), whereas the one
on the right is computed with Method 2. A 200 x 200 grid has been used.

Fic. 12. Contour plots of the zero level-set at different times. The initial condition is a smooth
nonconvex curve. The figure on the left is computed using Method 1 (with u = 1.0), whereas the one
on the right is computed with Method 2. A 200 x 200 grid has been used.

Phases are said to overlap at grid point (7, j) if ¢; ;(¢1) < 0 and ¢ ;(¢2) < 0 for any
pair (¢1,4s), 1 # ls.

Step 2. Computation of grain boundary. When two phases meet, to ensure that
the phases do not pass through each other we compute the new phase as follows:

QNSM (¢) if phase ¢ overlaps with another phase,
7 ;) otherwise.

oo ={
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Fic. 13. Formation of grain boundaries: (a) growth of two square seeds; (b) growth of isotropic
seeds and formation of the Voronoi diagram at grain boundaries; (c) growth of hexagonal seeds and
formation of polycrystal; (d) same as previous picture, but only seeds and grain boundaries are
shown.

51-, 4 is computed as follows: we consider two overlapping phases ¢; and {3 with ¢; < £
and define

Fig(00) = 365, (1) — 61, (=),
Bu3(62) = 5(61,(6) — 67, (02).

This step ensures that there is a grain boundary between two phases #; and /s, that
is to say ¢y, and ¢y, are both zero on the same set. Note that this procedure only
compares pairs of phases. Triple points are automatically captured by the method,
although there might be a slight dependence of the location of the triple point on
the order in which the pairs of phases are swept. An alternate procedure has been
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Fic. 14. Natural selection. Growth of hexagonal seeds. The seeds with an orientation which
gives the fastest speed of propagation in the y direction will survive.

considered by Merriman, Bence, and Osher in their study of multiple junctions [15].

6. Numerical results. In this section we show the results of some tests in two
and three dimensions.

2D tests. First we want to examine the resolution of the schemes. We consider
the evolution of a pentagonal seed and compare the exact solution with the numerical
solution obtained by Method 1. The result is shown in Figure 8. The exact solution
is obtained by the contour plot of the exact phase function on the same grid used
for the numerical calculation. On a 200 x 200 grid the numerical and exact contours
practically overlap. Increasing the magnitude of the tangential component u does
not affect the results other than sharpening the corners. Method 2 produces similar
results with slightly more rounded corners.

In the second example we return to the situation described in section 3, where 7y is
plotted in Figure 7. In this case the Wulff shape is a rectangle and ~ is a discontinuous
function of n. Nevertheless we see that our method provides the correct solution (see
Figure 9). The computation is performed using Method 2.

As a third example we consider the growth of an octagonal seed, for various values
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(a) (b)

Fic. 15. Growth of a diamond crystal in three dimensions, for various values of vi11/v100
ratio at t = .56 (a) Initial seed; (b) viii = 1.2, vico = 1.2; (¢) vinn = 1.0, vigo = 1.4; (d)
v111 = 1.4, v190 = 1.0.

of the speed ratios vy, /vig. For speed ratio between 1/4/2 and /2 the Wulff shape
is an octagon (regular only if v11/v19 = 1), while outside of this range it becomes a
square. The results of the computation for Method 1 are shown in Figure 10.

In the next test we consider the evolution of different seeds corresponding to the
same crystal. In this case the crystal has eight facets and the speeds are all the
same. The Wulff shape is a regular octagon. According to theory, the shape of the
crystal approaches the Wulff shape asymptotically in time (see, for example, [13]). In
Figure 11 we show the evolution of a smooth nonconvex irregular seed obtained with
the two methods. The speeds of the facets are all 1.0 and the tangential speed w is
0.45. The figure shows that the two methods give essentially the same result, which
is in agreement with theory.
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Fic. 16. Growth of 18 seeds in three dimensions. Each seed is the same as that in Figure 15
except each seed has been rotated by a random amount. Here vi11 = 1.0 and vi11/vioo = 1.4. This
shows the initial condition.

There is a small problem with Method 1, however. This occurs when the mag-
nitude of the tangential velocity, u, is too large and the initial seed is not faceted
and convex. This drawback is displayed in Figure 12, where we show results of both
methods when the magnitude of the tangential velocity is u = 1. It is clear that
with Method 1 the solution is not approaching the Wulff shape, whereas the solution
computed with Method 2 is. We suspect the reason for this is that Method 1 is not a
monotone scheme. For this reason we use Method 2 in all subsequent calculations. It
is well known that the viscosity solutions to Hamilton—Jacobi equations are unique.
Monotone schemes are known to produce numerical solutions that converge to the
viscosity solutions. Lack of monotonicity may result in convergence to a solution that
is not a viscosity solution.
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FiG. 17. Same as Figure 16, except t = 0.28.

The next tests are devoted to the evolution of several seeds and formation of grain
boundaries. In Figure 13 we show several examples of grain boundary formation. The
first picture shows the evolution of two square seeds, corresponding to a crystal with
four facets, all with the same speed. The lines represent the crystal surface at different
times. In the second picture, the evolution of the surface corresponding to isotropic
growth is shown. The initial seeds are small circles with the same radius; they grow
isotropically with the same speed. The grain boundaries in this case form the Voronoi
diagram associated with the center of the seeds. In the third picture we show how the
method can be used to study the formation of a polycrystal. In this case the Wulff
shape of the crystal is a regular hexagon. All the crystals start with a small seed
randomly placed in the plane and with random orientation. In the last picture only
the seeds and the final grain boundaries are shown.

A similar situation was examined by Kobayashi, Warren, and Carter [19] using
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Fic. 18. Same as Figure 16, except t = 0.56.

a vector-valued phase field model. They studied the growth of a large number of
seeds. Their model not only captured their dynamics of the growth of the seeds but
also the resulting grain boundaries. In addition their model allows the inclusion of
a large number of physical effects. In a related study Chen and Yang [20] use a set
of Ginzburg—Landau equations to model the evolution of grain boundaries. They
observe that the microstructure coarsens.

A more realistic model of crystal growth should specify the law according to which
the initial seeds are created. When spontaneous nucleation is neglected and when the
fraction of impurities of the material is low enough, a reasonable model consists of
placing a certain number of initial seeds near one of the boundaries and then letting
them grow. A 2D simulation of such a growth is shown in Figure 14. In this case a
certain number of seeds corresponding to hexagonal crystals are initially placed near
the bottom. When two phases meet, the grain boundary evolves at the intersection
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F1G. 19. Same as Figure 16, except t = 0.98.

of the two phases. There is an analogy between grain boundary and shocks. The
evolution of the grain boundary is the same as the evolution of a shock formed by
the intersection of two characteristics aligned along the normal to the surfaces X,. If
all the propagation speeds are the same, then the direction of the growth is aligned
along the bisector of the angle formed by the two phases. When two grain boundaries
meet, they merge into one. Because of their merging and of their geometric property,
a “natural selection” takes place as the crystal grows and only the seeds which allow
grain boundaries aligned with the direction of growth will survive. This corresponds
to seeds whose corners are oriented near the direction of growth (see Figure 14).
This problem has been studied using a vertex tracking approach by Paritosh et al.
[2]. They study in detail the coarsening phenomena and compute various statistical
properties of the evolving microstructure. In particular they show that the num-
ber of grains scale like t~/2. In addition, Thijssen, Knops, and Dammers [24] and
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F1a. 20. Ewvolution of nine needle-shaped crystals—the initial condition.

Kolmogorov [12] have studied this problem theoretically and predicted the observed
scaling. The vertex tracking algorithm is extremely difficult to implement in three
dimensions, whereas our level set approach is very easy to extend to three dimensions.

Three-dimensional tests. Next we consider crystal growth in three dimensions.
First we consider the evolution of a single crystal with 14 facets. Six facets (face-
facets) are aligned along the faces of a cube and 8 facets (corner-facets) have a normal
which is oriented according to the corners of the cube. The facets evolve with two
speeds of propagation: wygg is the propagation speed for the face-facets and vy is
the propagation speed for the 8 corner-facets. The asymptotic shape of a crystal
is determined by a single parameter, which is the ratio between the two speeds,
B = v111/v100- If B < 1/4/3 then the Wulff shape of the crystal is a regular octahedron;
if 3 > /3, then the Wulff shape is a cube, and for intermediate values of the parameter
the asymptotic shape of the crystal is a 14-facet crystal, the relative size of the facets
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F1c. 21. Ewvolution of nine needle-shaped crystals—time t = 0.72.

depending on 8. The results of the computation for three different values of g are
reported in Figure 15.

Finally, we consider the growth of several crystals in three dimensions. As in the
2D case, when two crystals meet their growth stops and a grain boundary is formed.
In the next set of figures (Figures 16-19) we show the evolution of 18 seeds. The
crystals are 14-facet crystals with v111/v100 = 1. The picture shows the zero-level of
the phases without making any distinction among them. Here we also see coarsening.

7. Conclusions and future directions. In this paper we have presented a
method to evolve faceted interfaces. The scheme is quite simple and robust and can
be used for 2D and 3D computations. The method is able to evolve single crystals,
as well as polycrystals. The effectiveness of the scheme is shown through several
numerical examples. At this stage the method is not very efficient when several
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crystals are present, both for cpu time and memory consumption. This is because all
the phases are defined in the whole computational domain. More efficient schemes,
based on narrow band level set methods, are presently under construction. The new
schemes should be one order of magnitude more efficient in the cpu time and two
orders of magnitude more efficient in terms of memory usage. We have included a
preliminary computation of a polycrystal where the single crystal has a needle-shaped
Wulff shape. This crystal has six facets on the long part, and the top and bottom
have six facets each. The normal speed of the top and bottom facets is 1, whereas
the normal speed of the side facets is 0.2. The initial condition is shown in Figure 20.
Here the seeds are like faceted spheres. As the polycrystal evolves the needle shape
emerges as shown in Figure 21. This computation was done with a 200 x 200 x 200
mesh using our narrow band method. This would have been almost impossible with
our previous method due to time and memory constraints.
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