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Abstract

In this work, we introduce new finite-difference shock-capturing central schemes on staggered grids.
Staggered schemes may have better resolution of the corresponding unstaggered schemes of the same
order. They are based on high order non oscillatory reconstruction (ENO or WENO), and a suitable
ODE solver for the computation of the integral of the flux. Although they suffer from a more severe
stability restriction, they do not require a numerical flux function. A comparison of the new schemes
with high order finite volume (on staggered and unstaggered grids) and high order unstaggered finite
difference methods is reported.

1 Introduction

The purpose of this work is to introduce a new family of high order finite difference (FD) central schemes
on staggered grids for the solution of systems of conservation laws.

The original central scheme of Nessyahu and Tadmor [12], and the subsequent high order extensions
[11], [2], [10] are based on a finite volume (FV) discretization. Central schemes have the advantage over
upwind schemes that they do not require the knowledge of the characteristic structure of the system.
This feature arises naturally when the schemes are constructed on a staggered grid, as in the papers
cited above. Central schemes can be constructed also on nonstaggered grids, as shown in [9], where a de-
staggering procedure is used to reconstruct the field on the original mesh, or in [6], where a semi-discrete
central scheme has been derived. Several improvements and high order extensions of semidiscrete central
schemes have been developed (see, for example, [5], [7]).

Although semi-discrete schemes have the advantage of greater flexibility in time discretization, and
they allow a simpler treatment of boundary conditions, staggered schemes are attractive since, in some
cases, they may give lower error for the same cell size (see, for example, Table 3.1 in Section 2.3).

Conservative FD schemes for conservation laws have been introduced by Osher and Shu [19]. In such
schemes the basic unknown is the pointwise value of the field variable. High order schemes (both FV
and FD) can be obtained by combining high order nonoscillatory reconstruction (such as ENO or WENO,
see [18]), with high order ODE solvers, such as Runge-Kutta. FD schemes are more efficient than FV for
conservation laws in higher dimensions, since the reconstruction step in FD schemes can be done dimension
by dimension. Both FD and FV methods can be extended to treat balance laws, i.e. hyperbolic systems
with a source term. If the source is stiff then it is desirable to treat it by an implicit scheme, thus avoiding
unnecessary stability restrictions on the time step; the flux term can be treated explicitly, and the overall
time discretization takes the form of an implicit-explicit (IMEX) scheme (see, for example, [1], [14], [3]). If
schemes of order three or higher are desired, then FD discretization appears more natural than FV, since
in a high order FV scheme the source term couples the cells, making the implicit step more expensive than
in the case of FD schemes.
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The motivation of the paper is twofold. First we wish to complete the spectrum of central schemes by
constructing a finite difference version on a staggered grid (FD central schemes are available in the literature
only on unstaggered grids, while F'V schemes have been developed both on staggered and unstaggered
grids). Second, the work provides the framework for developing high order central schemes for stiff systems
of balance laws. The latter problem is considered in [15].

FD methods appear to be less robust than standard FV schemes. For example they are more sensitive
to the use of characteristic variables in the reconstruction. For a review on high order FD and FV schemes,
see [18]. For a comparison between high order staggered and unstaggered FV schemes see [16], where the
effect of using characteristic variables in the reconstruction is shown. It appears that staggered FV schemes
are less sensitive to the use of characteristic variables than their unstaggered counterpart. We find that
the use of a staggered grid improves the robustness of the schemes also when finite differences are used.

The structure of the paper is the following. We start in §2 by reviewing the reconstruction algorithms.
Next, after a brief review of FD schemes on unstaggered grids, we describe our new FD schemes on staggered
grids. Finally in §3 we compare the new schemes with FV schemes on staggered and unstaggered grids,
and also with traditional FD schemes on unstaggered grids

2 Finite difference schemes for conservation laws

We start this section with a brief review of the construction of standard FD schemes. Next, we describe
the new FD schemes on staggered grids. In this way we can emphasize the main differences between the
two families of schemes, and better specify the actual implementation used in the tests.

We consider hyperbolic systems of conservation laws of the form:

ug + fo(u) =0. (2.1)

Here, u(z,t) is a function from R x R™ to R™ and f is a function from R™ to R™. Moreover, we suppose
that the Jacobian of f has real eigenvalues and a complete set of eigenvectors for each u € R™.

We define a uniform grid, with grid spacing h and time step At. Let x; denote the grid points,
Tjy1 —x; = h, while 2, /5 denotes the point z; + h/2.

We will specialize the description to the construction of fourth order schemes. But the same technique
can be applied to schemes of any order of accuracy.

2.1 WENO reconstruction

Before describing the actual schemes for the system (2.1), we briefly outline the WENO type reconstruction
algorithms needed in the space discretization.
A reconstruction is a piecewise polynomial function:

R(z) = 3 Py(@)x; (@)

with possible jumps at the end points of the interval I; = (z; — h/2,z; + h/2]. The purpose of the
reconstruction is to use information about the field u (for instance, the point values u; or the cell averages
@; of the numerical solution u of (2.1)) to obtain highly accurate information about the field at some other
location, according to the structure of the scheme. In this work, we use the piecewise parabolic WENO
reconstruction. Here each polynomial P;(z) is the result of the superposition of three parabolas, with
weights chosen in order to maximize accuracy and prevent the onset of spurious oscillations:

Pi(x) = > w'Pl(x). (2.2)
=—1

The parabolas P]l (x) are computed solving a suitable interpolation problem on the cells I;_14; Ij1q; Ijt141
for [ = —1,0, 1. Therefore the parabolas PJl(x) can be written as:

Pl(x) = Rltj—141, w11, ujy141] (7). (2.3)



In other words, the quantity R is an operator that associates its input data to the interpolation polynomial
Pj. The structure of R depends on the particular interpolation requirement that motivates the computation
of PJI»: in the present case, either interpolation in the sense of point values or interpolation in the sense of
cell-averages.
The weights wé are given by [18]:
1 o L di 2.4
wj 22271 04?7 Q; (6 _,'_ﬁé_)Q ( )

The constants d; are the accuracy constants, and they depend on the particular quantity that must be
reconstructed with high accuracy, see [18] and [10]. The quantities 6} are the smoothness indicators. Their
task is to bias the scheme towards smooth stencils, thus preventing the onset of spurious oscillations. For
systems of equations, the performance of the scheme improves if the smoothness indicators are computed
globally, summing up the contributions due to each component, namely:

l 2
2k—1 Js7 —
§ ||ur||2 §j/ h ( = ) da I=-1,0,1, (2.5)

where r denotes the r-th component of the solution. Due to the finite speed of propagation, the smoothness
indicators do not change qualitatively within one time step. For this reason, we distinguish between
a heavy reconstruction step, in which the reconstruction is computed together with the corresponding
smoothness indicators, and a light reconstruction step, in which the reconstruction utilizes previously
computed smoothness indicators.

When time integration is performed through a fourth order Runge-Kutta scheme, as in the tests
presented in this work, at least four reconstructions are needed. If only the first reconstruction is heavy,
the performance of the scheme does not change, while the CPU time is reduced considerably.

The piecewise parabolic WENO reconstruction is fifth order accurate for the evaluation of point values
for unstaggered schemes, while it is fourth order accurate for central schemes based on staggered grids,
unless a splitting of the weights in their positive and negative parts is used, see [17].

2.2 Finite difference scheme on non-staggered cells

In this section we sketch the construction of standard FD schemes based on unstaggered cells. More details
appear for instance in the review [18].

In the FD approach, the equation (2.1) is transformed in a system of ODE’s in time. Each ODE is
evaluated at a grid point x;, namely:

d 1
“uj(t) = — (Flulay +h/2,) ~ Flu(e; —h/2,0). (26)
where the function F is the cell primitive of the flux, in the sense that:
1 z+h/2 R R 1
St ) = [ P@ED) A = 0ufla ()= [Py b2~ b2, 1)

In this fashion, the system of ODE’s is naturally written in conservation form, see [19].

In order to build a numerical scheme, it is necessary to construct numerical fluxes F ji+1/2, starting from
the point values of the unknown function w;(t), which must be consistent approximations of the real fluxes
F(x; + h/2,t). The semidiscrete numerical scheme will read as:

d 1/ .
&uj(t) = s (Fj+1/2 - Fj—1/2> . (2.7)

To enforce stability, it is necessary to introduce upwinding in the numerical flux. For this reason, the
physical flux is split into a positive and a negative part:

flulz;,t)) = f(u(z;, 1) + £ (u(z;,1)),



where, f* and f~ are chosen so that their Jacobians have only non-negative and non-positive eigenvalues
respectively. Moreover, to preserve high accuracy, both f™ and f~ must be a smooth functions of their
arguments. In this work, we used the local Lax-Friedrichs flux splitting, namely:

f* (u(a;, 1)) 3 (f(ulz;, 1) + aulz;, 1))

e t) = 5 (fulzst) — aulz;,t)

where p(f’(u)) denotes the spectral radius of the Jacobian matrix of f. As a consequence, the numerical
flux will also be split as:

a = p(f'(w)), (2.8)

Fj-‘,—l/Q :F+

j+1/2 + F

j+1/2°

To compute FE two separate reconstruction algorithms are used: R¥(x) and R~ (x) which interpolate

j+1/2
the data f*(u;) and f~ (u;) respectively in the sense of cell averages, namely:

) =7 / R )= i R

J

Both reconstructions are piecewise polynomial: let Pj+ () and P (x) be the two polynomials computed
on the interval I;. Now we can finally define the two numerical fluxes as:

th_1/2 = R+($C;+1/2) = PjJr(ijrl/Z)a
(2.9)
Fiiypy = R (xj+1/2) = Pia(@igy)-

This completes the recipe to compute the numerical flux Fj—s-l /2, starting from the point values u;. Next,
the system of ODE’s (2.7) will be integrated with a v stage explicit Runge-Kutta scheme.

Remark. Local Lax-Friedrichs, also known as Rusanov flux, can be used to construct general purpose high
order finite volume semidiscrete central schemes, such as the one developed by Kurganov and Tadmor [6].
By using a little more characteristic information (namely a lower and an upper bound of the eigenvalues
rather than an upper bound of their absolute value), a flux function that provides sharper resolution can
be derived (see [4], [5]).

Remark. Following section 2.1, we note that here we need two heavy reconstructions per time step, one
to compute F'* and one to compute '™, at the beginning of each step, because the fluxes f™ and f~ can
be very different. Next, for a 4 stage Runge-Kutta scheme, 6 light reconstructions are required (3 for f*
and 3 for f7).

2.3 Staggered finite difference schemes

We now describe how FD schemes based on a staggered grid can be constructed. We cover the computa-
tional domain with grid points of the form (x;,t") for even values of n. For odd values of n we consider a
staggered grid, with grid points of the form (x;1,9,t"), with z;,1/2 — x; = h/2.

The evolution of the point values of the solution u on the staggered grid points is given by:

@ i1o0) =~ (Plu(eya,1) — Plu(z; 1)

where, as before, F' denotes the cell primitive of the physical flux f.

As in all central schemes based on staggered grids, see [20], the main idea is to construct piecewise
polynomial interpolants which are smooth in the intervals I; centered around the grid points x; on which
the numerical solution is known. Thanks to grid staggering, the numerical fluxes need to be computed at
the points x;, where the interpolants are smooth. This feature will make upwinding un-necessary. Thus
the computation of the numerical flux will not require flux splitting. The semidiscrete numerical scheme
will be given by:

d 1/, .
i a(t) = — (Fj+1 - Fj> . (2.10)



Again, the time discretization is performed with a v stage Runge-Kutta scheme. Thus, if we start from
the unstaggered grid (even n), the updated solution can be written as:

E : (4)
J+1/2 ]+1/2 At b; KJ+1/27 (211)
where the b;’s denote the weights of the Runge—Kutta scheme, and:

Ky =7 [Fj h- B0

J+1/2 =

we need the stage values u;-i)

To compute the Runge-Kutta fluxes, K @ of the solution at the grid

j+1/2)
points x;. Since the reconstruction polynomlals are smooth at the grid points x;, these quantities can be

computed using the differential form of the PDE, as in CRK schemes [13]:

u(l) =u”
i) g i—1 o-(1) (1) (2.12)
u;’ =uf A+ ALY a K where now K" = —0, f(u®)|; i=2,...,v.

Once the stage values {ugi)} for all j are known, the corresponding stage values of the fluxes are immediately

obtained: f;i) = f(ugz)) With these data, a WENO interpolant R(z) can be constructed using the
procedure outlined in §2.1, where the parabolas PJl(x) are determined imposing the constraints:

. .
Pj(xj+l+k) = f]@l.;.ka k=-1,0,1,
and the WENO constants d; are determined imposing the accuracy requirement:

dR of
@) = () + O,

In this fashion we obtain high accurate values for 9, f(u(?|;, and all stage values {ugl)} can be computed
for all levels ¢ of the Runge-Kutta scheme. _

Next the cell primitives Fj(z) must be computed from the stage values fj@. This is achieved with a
WENO reconstruction, where now the parabolas PJl(az) are determined imposing interpolation in the sense
of cell averages, namely: _

< P]l'(xj+l+k) >= f](—?l-‘rk? k= _170717

where < . > denotes the cell average operator, which for a given function g is defined as:

1 I]+h/2
< g>j= E/ o g(x) du.

The WENO constants d; this time are computed imposing that:
R(z;) = F(x;) + O(h),

where F' is the primitive of the physical flux f. For a fourth order scheme, it is required p = 4. For a fifth
order scheme (p = 5), two accuracy constant turn out to be negative, and this may cause problems in the
WENO reconstruction. This case, however, can be treated by the wight splitting technique proposed in
[17].

Finally, the term u” , , is obtained through the following staggering procedure. Given a smooth

J+1/
function u(x), compute a WENO approximation to the primitive of u. More precisely, the parabolas le» (x)
must satisfy the interpolation requirement:

< P} > k= w(@jirk), k=-1,0,1,
and the accuracy constants are determined in order to have:
<R >j41/2= u(xj + h/?) + O(h5)

For more details on these applications of the WENO reconstruction procedure and for the values of all
constants involved, see [10].



Remark. To implement a scheme of order 4, based on the central WENO reconstruction and a 4 stage
RK scheme, 8 interpolation steps are needed for a single time step. More precisely, one reconstruction
step is needed to compute u;‘ 11/2 starting from the data u}, 3 interpolation steps are required to compute
&J\gi), starting from the values of f(uy)
the data f(ugl))

However, if we use only one heavy reconstruction at the beginning of each time step, the number of
deconvolution steps needed to compute F; reduces substantially. In fact, the numerical flux at the i-th
stage can be written as:

), and 4 deconvolution steps are needed to obtain each F@ from

1 (4)
BV = P (x;) = (Z wé-P;(xj)) ,

I=—1

see (2.2). The parabolas P} are computed through linear interpolation, namely:

(PHD (@) =R [fy,), F @), 1l )] (@)

Since the smoothness indicators remain constant within the time step, the weights wé- do not depend on
the level 4. Thus the numerical flux can be computed exploiting the linearity of R:

Z?:l biﬁj'(i) = 211:—1 wé- (Z;j:l bi(P})(i) (xj))

1 v 7 v i v [
= 21:71 Wé‘R (Zi:l binglHa Zi:l bifj(Jr)U Zi:l bifg(Jr)Hz) (xj)

With this formulation only one deconvolution step is needed to compute the global numerical flux, and
therefore the total number of interpolation steps per time step is reduced to five, i.e. four light recon-
struction steps for the flux and one heavy reconstruction step for the evaluation of u? 12 Recall that the
corresponding unstaggered finite difference scheme instead needs 8 reconstruction steps.

3 Numerical results

In this section, we compare our new FD scheme on a staggered grid with other high resolution schemes
for conservation laws. More precisely, we will compare four different fourth order schemes. All schemes
considered here are based on the piece-wise parabolic WENO reconstruction, coupled with the standard
4th order Runge-Kutta scheme for time discretization.

The acronym FDS denotes the scheme proposed in this work (Finite Difference on Staggered grid).
FDS-5 is again a FD scheme on staggered grid, but it is based on the 5th order accurate reconstruction
for point values, obtained with a splitting into positive and negative weights [17]: this scheme differs from
FDS only in the evaluation of the primitive of the flux at the end of each time step. However, it has a
stricter CFL limit than plain FDS, see [13]. FDU is the Finite Difference scheme on Unstaggered grids
described above and found in [18]. We also consider four FV schemes. FVS is the 4th order Central
Runge Kutta scheme described in [13] (Finite Volume on Staggered grid). FVS is based on the 4th order
Central WENO reconstruction . It has the same predictor step of the present FDS method to compute
the intermediate states u(”, but it does not require the computation of the primitive of the fluxes. FVS-5
is the FVS scheme with the 5th order reconstruction described, as before, in [13]. FVU (Finite Volume
on Unstaggered grid) has again been drawn from [18]. It has the 5th order piecewise parabolic WENO
reconstruction, while the numerical flux is the local Lax-Friedrichs flux. Thus at the cell interface x;, /2,
the numerical flux is given by:

_ 1 _ .
Fit12 = F(u;r+1/2,uj+1/2) =3 [f(uj+1/2) + f(uj+1/2) -« (“;‘:-1/2 - uj+1/2>} . (3.13)

Here « is the stabilization parameter, based on the characteristic velocities: for these tests it was chosen
as a = max(p(f’(u;+1/2)), p(f’(uj+1/2))) , while uj++1/2 and u, , are the right and left boundary extrap-
olated data. Therefore this scheme requires two flux evaluations for each computation of the numerical
flux.



L' norm of the error

N FVS FVS-5 FVU FVU-KNP FDS FDS-5 FDU

10 0.58291 0.62727 | 0.61649 0.62214 0.58077 | 0.62635 0.62292
20 0.15184 0.20264 0.30372 0.26770 0.15204 0.20210 0.30729
40 | 0.879E-2 | 0.113E-1 | 0.185E-1 0.157E-1 0.876E-2 | 0.112E-1 | 0.196E-1
80 0.427E-3 | 0.405E-3 | 0.693E-3 | 0.585E-3 | 0.424E-3 | 0.405E-3 | 0.751E-3
160 | 0.241E-4 | 0.128E-4 | 0.231E-4 | 0.198E-4 | 0.240E-4 | 0.128E-4 | 0.244E-4
320 | 0.146E-5 | 0.400E-6 | 0.832E-6 | 0.743E-6 | 0.146E-5 | 0.400E-6 | 0.858E-6
640 | 0.912E-7 | 0.123E-7 | 0.363E-7 | 0.344E-7 | 0.911E-7 | 0.123E-7 | 0.362E-7

Table 3.1: L' error on point values for several fourth order schemes

Finally, FVU-KNP is as the FVU scheme, but with the KNP (alias HLL) numerical flux, see [4],[5].

We only consider the basic componentwise implementation of these schemes, with the global smooth-
ness indicators computed only at the beginning of each time step (see [10]). Thus no projection along
characteristic directions is required. The only information that these schemes need is the physical flux
function and an estimate of the characteristic velocities to satisfy the CFL condition. The schemes based
on unstaggered grids require sharper information on the size of characteristic velocities to compute sta-
ble and not too diffusive numerical fluxes, so that a in (2.8) and (3.13) is not overestimated. The KNP
numerical flux also needs precise information on characteristic velocities.

Note that the addition of characteristic information improves the quality of the results even for staggered
schemes, especially for higher order schemes. However, staggered schemes are less sensitive to the use of
characteristic variables in the reconstruction. These effects are studied with some detail in [16], [13].

3.1 Linear advection
We consider the initial value problem:
ug + Auy =0 on [0, 1],
with periodic boundary conditions. The matrix A and its eigenvalues p are:

0
0 =  u=-11,3.
~1

A:

S =N
(el Nl

The initial condition is:
up(z) = (sin(2rx), sin(4rx), cos(2rz)) "

The integration is stopped at T' = 3. In Table 3.1 we report the error in the L! norm for the point values
at the center of each cell. We report only the error computed on the second equation of the system, since
here the error is largest. The mesh ratio is A = At/h = 0.3 for the schemes based on unstaggered grids,
while it is A = 0.3 x 0.5 for FVS and FDS, since staggered grids require a stricter CFL condition, see [20].
FVS-5 and FDS-5 require A = 0.3 % 0.4, see [13].

The behavior of the errors is comparable for all seven methods. The FDS and FVS display smaller
errors on coarse grids, but they loose ground on fine grids with respect to unstaggered schemes. This is
due to the fact that the Central WENO reconstruction used by these staggered schemes is only fourth
order accurate on point values, while the reconstruction of the unstaggered schemes is fifth order accurate
on point values. The staggered schemes with the 5th order accurate in space reconstruction, FDS-5 and
FVS-5, have smaller errors than the corresponding unstaggered schemes on almost all grids studied: the
gap increases as the grid is refined. The results of FVU and FVU-KNP are very close.

Next, we compare the efficiency of these schemes in Table 3.2. The CPU time is sampled from the
accuracy runs that produced Table 3.1. The number of time steps corresponds to the finest grid of Table 3.1.
It is really difficult to give reliable CPU times for different methods, since the CPU time depends heavily



Efficiency

FVS | FVS-5 | FVU | FDS | FDS-5 | FDU
CPU time 48.75 | 68.20 | 56.59 | 55.55 | 72.56 | 47.29
Number of time steps 12800 | 16000 | 6400 | 12800 | 16000 | 6400
Flux evaluations (per time step) 4 4 8 4 4 4
Heavy reconstructions (per time step) 1 1 1 1 1 2
Light reconstructions (per time step) 3 3 3 4 4 6
Numerical fluxes (per time step) 0 0 4 0 0 8
Cell staggering (per time step) 1 1 0 1 1 0

Table 3.2: CPU time and operation count for several fourth order schemes

on the particular implementation considered. This is why the data reported here should be considered
only qualitatively. Specifically, they simply show that the execution time is comparable for all schemes
tested, even though the methods based on staggered grids require at least twice as many time steps.

The remaining information reported in Table 3.2 tries to explain why the schemes based on staggered
grids have a faster time step, although all schemes considered are central type schemes. In particular, we
note that FVU requires 8 flux function evaluations per time step, since the flux must be computed for
both the left and the right boundary extrapolated data, at each intermediate step of the RK scheme. On
the other hand, FDU requires the splitting of the flux into its positive and negative parts. This doubles
the number of reconstructions and the number of numerical flux computations required at each step. In
both FDU and FVU the heavy reconstructions are computed the first time the numerical flux is needed
in each time step.

For the staggered schemes, the heavy reconstruction is applied when the deconvolution step is needed
to obtain (O /2 from u}. Beside the deconvolution, the evaluation of ult, o Tequires a quadrature on
the cell. This simple operation is accounted for as “cell staggering” in the Table. Note that no numerical
flux is needed for the staggered schemes. This is due to the fact that the flux is computed only in regions
of smoothness of the solution, thus the numerical flux can be chosen to coincide with the physical flux.
All staggered schemes require 3 light reconstructions, to compute the 3 intermediate values of f, (u(i)) j

from the knowledge of f (ugl)). The FD version needs one more light reconstruction step to compute the
primitive of the assembled flux, as specified in the remark at the end of §2.3. FVS-5 and FDS-5 differ from
FVS and FDS only in the evaluation of point values, which occurs only once per time step: the higher
value of the CPU time for these schemes is due to the fact that they require a larger number of time steps.

3.2 Shock tube problem

To assess the shock capturing properties of these schemes and their ability to prevent the onset of spurious
oscillations, we consider the classical Lax’ Riemann problem for gas dynamics, [8]. Here the initial condition
isu = uy, for x < 0.5, and u = ug for z > 0.5. The computational domain is [0, 1], with free-flow boundary
conditions. The left (L) and right (R) states are given by:

0.445 0.5
urp = 0.311 y UR = 0. s
8.928 1.4275

where u is the vector of conservative variables, namely: density, momentum and total energy per unit
volume. The computation is arrested at T = 0.16, and the mesh ratio is A = 0.2 for unstaggered schemes,
and A = 0.1 for the staggered schemes.

A detail of the density component of the solution can be seen in Fig. 3.1 for the case with N = 200 grid
points and in Fig. 3.2 for N = 400. Both figures show the profiles obtained with the staggered schemes on
the left, and the solution given by the unstaggered schemes on the right. In the case of staggered schemes,
FVS and FDS give very similar solutions, and the two profiles cannot be distinguished. On the contrary,
the FD unstaggered scheme FDU (dashed solution) seems more oscillatory than its FV analogue. This
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Figure 3.1: Lax’ Riemann problem A = 0.2. Solution for N = 200 for the staggered schemes (left) and the
unstaggered schemes(right). Solid line: FV schemes, Dashed line: FD schemes.

is particularly apparent in Fig. 3.1, and it indicates that the FDS scheme is less sensitive to spurious
oscillations than the corresponding FDU scheme, when componentwise reconstruction is used.

As the grid is refined, see Fig. 3.2, the amplitude of the spurious oscillations decreases fast for all
schemes considered.

Staggered schemes Unstaggered schemes
1.4 T 14 T
o~
w , \
12 — 12
1 I I I I 1 I I I I
0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95

Figure 3.2: Lax' Riemann problem A = 0.2. Solution for N = 400 for the staggered schemes (left) and the
unstaggered schemes(right). Solid line: FV schemes, Dashed line: FD schemes.
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