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Entropy-satisfying well-balanced schemes
for balance laws with singular source terms

Balance law with a stationary solution, solved by a splitting method

Oyu + amf — —ud,a  and a(x) = max(—1, min(1, slope x x))
2 up(x) +a(z) =2

Li-error w.r.t. the space step and the slope

Log(L1-Error)
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Entropy-satisfying well-balanced schemes
for balance laws with singular source terms

Hyperbolic scalar or systems of balance laws
e Space dependent flux and source term

Infinite stiffness with respect to =
e Resonance: nonlinear interaction between the flux and the source term

e Entropy inequality

Well-balanced schemes
o First-order explicit finite volume schemes
e Discrete preservation of some stationary solutions

e Discrete entropy inequality = Stability
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Entropy-satisfying well-balanced schemes
for balance laws with singular source terms

Pb 1. Burgers equation with a pointwise friction
e Scalar equation with a pointwise singular source term
e Definition of stationary solutions
e Construction of well-balanced schemes for any monotone numerical flux

Analysis: definition of solutions, uniqueness and convergence
with B. Andreianov (and also N. Aguillon and F. Lagoutiére)

Pb 2. Euler equations in a discontinuous nozzle
e 2 X 2 system, discontinuous cross-section (or porosity)

e Approximate Riemann solver, relaxation scheme

Singular dissipation at the discontinuity to control the CFL

Positivity and discrete entropy inequalities
with F. Coquel, J.-M. Hérard and K. Saleh
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Burgers equation with a pointwise friction

One-dimensional flow in a pipe with a porous grid in x = 0:
e Burgers equation for the flow
e Friction term for modeling the grid
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Burgers equation with a pointwise friction

One-dimensional flow in a pipe with a porous grid in x = 0:
e Burgers equation for the flow
e Friction term for modeling the grid

Cauchy problem

w2
Opu + ﬁw? = —\ u dp(x)
u(0, ) = up(x)

with ug € L*°(R) and A > 0 friction coefficient
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Burgers equation with a pointwise friction

One-dimensional flow in a pipe with a porous grid in x = 0:
e Burgers equation for the flow
e Friction term for modeling the grid

Cauchy problem

w2
Opu + ﬁw? = —\ u dp(x)
u(0, ) = up(x)

with ug € L*°(R) and A > 0 friction coefficient

Quasilinear form, using Heaviside function w(0, ) = H(z):

U U Au U
()= (6 %) () -0
o if u # 0, then hyperbolicity

e if u =0, then trivial system (easier than [Isaacson, Temple '95])
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The singular source term as a coupling problem

The Burgers equation with the singular source term

2
Ovu + &U% = —Xwu dp(x)

can be seen as a coupling problem between two Burgers equations:
z <0 x>0

2 2
6tu+am%:o atu+a%%:o

+ Coupling conditions between w(¢,07) and u(t,07")
which have to describe the effects of the singular source term
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The singular source term as a coupling problem

The coupling problem:

2
Oyu + 3,,;% = 0 far from the interface {x = 0}

Coupling conditions between u(¢,07) and u(t,0™)

But:

e the source term contains a product of distributions: u x dq!
e the sign of the velocity u can change (no strict hyperbolicity)

—— Resonance: nonlinear interaction between the interface and the nonlinear
waves of the Burgers equation

— The theory of nonconservative products cannot be applied
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The singular source term as a coupling problem

The coupling problem:

2
Oyu + 3,,;% = 0 far from the interface {x = 0}

Coupling conditions between u(¢,07) and u(t,0™)

But:
e the source term contains a product of distributions: u x dq!

e the sign of the velocity u can change (no strict hyperbolicity)
— Resonance: nonlinear interaction between the interface and the nonlinear
waves of the Burgers equation
— The theory of nonconservative products cannot be applied
Idea:
e Regularize the problem to define the coupling between u(¢,07) and u(¢,0™)
e Study the dependence of the coupling conditions w.r.t. the regularization
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Coupling conditions and stationary solutions

Assume that the coupling conditions are defined:

1. Let G C R? be the set of all admissible couples of traces,
then the coupling problem writes

2
Opu + 33,% =0 far from the interface {z = 0}

(u(t,07),u(t,07)) € G forae t>0

2. Consider any (x~, 1) € R? and define the piecewise constant function

(%) K(l){ﬁ; if x <0

K if x>0

Proposition

The function k(xz) defined by (%) is a stationary solution of the coupling problem
if and only if (v ,xT) € G
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Construction of stationary solutions

Stationary solutions of the Burgers equation with a regularized source term

H is replaced by H. € €' (R), nondecreasing function such that

Viz| > e H.(x) = H(x)

A couple (k7,xT) belongs to G[H.]| if and only if it exists u.(x) satisfying

d u.(z)? d

o tAuc(@) - He(2) =0, z€(-¢¢)
(Se) ue(—e) = kK~

ue(e) = KF

in the entropy weak sense
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Construction of stationary solutions

A couple (k7,xT) belongs to G[H.]| if and only if it exists u.(z) satisfying

d uc(r)? d

— + A\ uc(x)—H(z) =0,
(5:) AT

ue(e) = KT

in the entropy weak sense

This problem can be solved by hand!

e smooth parts: (S:) in the classical sense
Either u.(x) =0
Or 4 (us(z) + AHe(z)) =0
e Shock waves at xg € (—¢,¢):
(ue(zy) +ue(zd))/2 =0 and uc(zg) > ue(zg)
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Construction of stationary solutions

A couple (k7,xT) belongs to G[H.]| if and only if it exists u.(z) satisfying

LU N @) S H@) =0, e (-=e)
(5.) ue(—e) = 5~
UE(E) = K"

in the entropy weak sense

This problem can be solved by hand! "~ .
e smooth parts: (S:) in the classical sense /
Either u.(z) =0 RN 7
Or 4 (us(z) + AHe(z)) =0 i i
e Shock waves at xg € (—¢,¢):
(ue(wy) +ue(zd))/2 =0 and uc(zy) > ue(zg)

Q
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Construction of stationary solutions

The set G[H_.] can be decomposed in 3 parts:
e Gl ={kt =k =)} ©.0) /
e G2 =1[0,)\] x [-),0] o .
e GP=(RT xR)\GHN{-A<K +rT <A} q
NB. The entropy can be dissipated for G2 U G?

Q

Fundamental remark

The set G[H,] actually is independent of the regularized function H._!
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Construction of stationary solutions

The set G[H_.] can be decomposed in 3 parts:
° gl = {/iJr =K — )\} (0,0) /
° g2 — [O,)\} X [—)\,O] R .
- fesd

e GP=(RT xR\ GHN{-A<Kr™ +rT <A}
NB. The entropy can be dissipated for G2 U G?

Fundamental remark
The set G[H,] actually is independent of the regularized function H._!

Definition
A function u € L>°(R™ x R) is a solution of the Burgers equation with a
pointwise friction if (in the entropy weak sense)

2
Opu + 836% =0 far from the interface {x = 0}

(u(t,07),u(t,07)) €G forae t>0
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Finite volume schemes

Discretization
o 1" =nAt

e Interfaces 1/, = iAx and cells C; = (2,12, %i11/2)
— The source term is superposed on the interface /5, =0

First-order explicit monotone schemes:
e Two-point numerical flux g:
e locally Lipschitz
e Consistency: g(u,u) = %
e Monotonicity: g(, 7, \,)

e In the cells far from the interface x; /5:

n+l _ niﬁ

iA0, 1w = = = (gl u) = g(uiy )
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Partially well-balanced schemes

Well-balanced schemes for stationary solutions of G' = {kT = k= — A}:
e Two fluxes at interface 1 /5: g, ,, and g;r/z
e Cell formulas near the interface x5
+1_ At (,— .
{u:; = uff — &L(g, ) (up, ut) — g(u 1, up))

up™ =y — RE(g(ul, ug) — g 5 (ug, ul))
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Partially well-balanced schemes

Well-balanced schemes for stationary solutions of G! = {kT = k= — \}:
e Two fluxes at interface 1 /5: g, ,, and g;r/Q
e Cell formulas near the interface x5

ug ™ = uf — RE(g7 )5 (ug, ut) — glul g, ug))
up™ =t — £L(g(ut, ug) — g o (ug, ut))

e Well-balanced property. For all (k=,x%) € G!

{uﬁl =ul =K~ . {gl_/Q(/@_,fﬁ) =gk, k")
g

uf = uf = r* 917 EH) =
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Partially well-balanced schemes

Well-balanced schemes for stationary solutions of G! = {kT = k= — \}:
e Two fluxes at interface 1 /5: g, ,, and g;r/Q
e Cell formulas near the interface x5

ug ™ = uf — RE(g7 )5 (ug, ut) — glul g, ug))
up™ =t — £L(g(ut, ug) — g o (ug, ut))

e Well-balanced property. For all (k=,x%) € G!

{uﬁl =ul =K~ . {gl_/Q(/@_,fﬁ) =gk, k")
g

uf = uf = r* 917 EH) =

e Use of reconstructed states:

{91/2(u, v) = g(u,v+ A)
g;r/g(ua 'U) = g(u - /\,U)
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Partially well-balanced schemes

The numerical scheme

- n e A 7
Vi 7é 07 1 u, = uiL Ax (g(u u2+1) g(uz 1, Uy L))
- n n A n n
i=0  uy™ =g - Ar (g(ug, uf +X) = g(u”y,ug))
. n n A n n n
i=1 up ™ =l — F(g(ul,uz) glug — A ui))

is well-balanced for stationary solutions of G',
but is a priori not well-balanced for stationary solutions of G2 U G3. ..
Reconstructed states are defined since G! is the graph of a one-to-one function

Nicolas Seguin (UMPC & Inria) Entropy-satisfying well-balanced schemes 14 / 34



Partially well-balanced schemes

The numerical scheme

At

Vi#0,1  uptt =l - Ar (g(uf, uyy) — gluf_y,uf'))
_ 0 n+l _  n ﬁ n n )\ o n n
L= uO - uO ACB (9(“0 y U + ) g(u—lv UO))
, At , , ,
=1 u?+1 = uil/ - E (g(’u’TlLa Ug) - g(u(’)I - )\/{Lil’))

is well-balanced for stationary solutions of G',
but is a priori not well-balanced for stationary solutions of G2 U G3. ..
Reconstructed states are defined since G! is the graph of a one-to-one function
What about the convergence of this numerical scheme?

e Definition of solutions of the Burgers equation with pointwise friction

e Uniqueness of the solution

e A priori estimates

Discrete entropy inequalities
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Definition of solutions

Coupling problem for the Burgers equation with pointwise friction:

2
(P) O + 8,,,% =0 far from the interface {z = 0}

(u(t,07),u(t,07)) € G forae t>0

Definition ([Andreianov, Karlsen, Risebro '11], [Andreianov, S. '12])

A function v € L (R x R) is an entropy solution of (P) if, for all (v~ ,x") € G,
it satisfies, for all (k= ,xT) € G,

Otlu — k(2)| + 05 P(u, k(x)) <0

where k(z) = (1 — H(z))x~ + H(z)k™.

e L!-stability w.r.t. and of stationary solutions x(z) of G' UG? U G?

e Direct extension of Kruzhkov's definition
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Uniqueness proof

Theorem

There exists one and only one entropy solution of (P). Let ug and vy two initial
data and u and v the corresponding solutions, then

/B(O,R) |u(t, z) — v(t, z)|dx < / |uo(z) — vo(z)|dz.

B(0,R+Lt)

e Doubling variable technique far from the interface
e Interfacial terms canceled using the dissipativity of G:

O (u(t,0m),v(t,07)) — ®(u(t,07),v(¢,07)) <0
which leads to

Orlu — v+ 9, P(u,v) <0

e Conclude by using the classical appropriate test function
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Study of the numerical scheme

Under a small (technical?) restriction on the numerical flux, we have
e Monotonicity of the scheme (Crandall-Tartar lemma does not apply here!)
e A priori bounds in L N BV are available

e Discrete entropy inequalities. Let k; = k(z;).
If (v,kx") € G, numerical entropy fluxes ( i'11/2) exist such that

juy*!

— K| — |uf — K n G?+1/2 B G?71/2 <0
At Az =

If (x=,xT) € G>UG?, error terms persist. . .

By a careful study of these error terms, convergence can be deduced
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Study of the numerical scheme

Under a small (technical?) restriction on the numerical flux, we have
e Monotonicity of the scheme (Crandall-Tartar lemma does not apply here!)
e A priori bounds in L N BV are available

e Discrete entropy inequalities. Let k; = k(z;).
If (v,kx") € G, numerical entropy fluxes ( i'11/2) exist such that

1 , n el
lug ™t — k| = |uf — ki n Giiy = Giayo -

At Az S0

If (x=,xT) € G>UG?, error terms persist. . .

By a careful study of these error terms, convergence can be deduced

Corollary (Numerical stability of discrete stationary solutions)

This numerical scheme is stable in ¢* with respect to stationary solutions of G

Same result for stationary solutions of G2 U G* with more elaborated schemes
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Numerical simulations: numerical boundary layers
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FIGURE 2. Initial datum with (c_,c;) € 92 for several meshes.
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FIGURE 3. Comparison between well-balanced schemes with the
Godunov flux (left) and with the Rusanov flux (right).
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Conclusion and perspectives

[Andreianov, S. '12] (following [Andreianov, Karlsen, Risebro '11])
Well-posed balance law with a singular source term

e Construction of the set of admissible traces

e Convergence of partially well-balanced schemes

Adapted entropy inequalities: stability with respect to stationary solutions

e Numerical stability according to exactly preserved stationary solutions

[Aguillon, Lagoutiere, S. '15]

e well-balanced scheme for more steady states

e Extension to a moving singular source term (Burgers + pointwise particle)
Rq. Most of the previous results fail for

’LL2
dvu + 6,,,;5 =+ u d
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Entropy-satisfying well-balanced schemes
for balance laws with singular source terms

Pb 1. Burgers equation with a pointwise friction
e Scalar equation with a pointwise singular source term
e Definition of stationary solutions
e Construction of well-balanced schemes for any monotone numerical flux

Analysis: definition of solutions, uniqueness and convergence
with B. Andreianov (and also N. Aguillon and F. Lagoutiére)

Pb 2. Euler equations in a discontinuous nozzle
e 2 X 2 system, discontinuous cross-section (or porosity)

e Approximate Riemann solver, relaxation scheme

Singular dissipation at the discontinuity to control the CFL

Positivity and discrete entropy inequalities
with F. Coquel, J.-M. Hérard and K. Saleh
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Euler equations with porosity

Gas dynamics in a porous medium, with a discontinuous porosity «

A (ap) + 0z (apu) =0
I (apu) + 0z (apu® + ap(p)) = p(p)dzcx

where a(x) = aq(1 — H(z)) + o H(z) with ag, ;- > 0

Orp + 0y (pu) + pudza =0

Setting a = log o
: : {5t(pU) + 0z(pu® + p(p)) + pu?dya =0

Om + Op(mu) =0

Setting m = ap: {axmu) + 00 (mu? + ap(m/a)) — p(m/a)dsa = 0
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General setting

System of balance laws with singular source term
U + 0, f(U,a) + s(U, a) 0, = 0
O =0 with a(z) = (1 — H(z)) + o, H(x)

Quasilinear form:

8 (Z) N (va(()U, a) Vaf(U, a())+ s(U,a)> " <g) o

Non-strict hyperbolicity: Vi f(U,a) =0 % Vo f(U,a) + s(U,a) =0
(Euler equations with porosity, shallow-water equations with bathymetry. . .)
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General setting

System of balance laws with singular source term
U + 0, f(U,a) + s(U, a) 0, = 0
O =0 with a(x) = aq(1 — H(x)) + o H(x)

Quasilinear form:

" (Z) . (vU F(U0) Vaf(U.0) + s(U,a)> " <g> Y

Non-strict hyperbolicity: Vi f(U,a) =0# Vo f(U,a) + s(U,a) =0
(Euler equations with porosity, shallow-water equations with bathymetry. . .)

Entropy inequality
It exists (n, F') = (1, F')(U, ) with 7 strictly convex w.r.t. U and

(Vun-Vuf, Vo (Vaf +5)) =VuaF '

onU,a) + 0, F(U,a) [= or <] 0
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Coupling problem

Here again, such singular system can be seen as a coupling problem

U + 0, f(U,aq) =0 foraz <0
U+ 0, f(U,,) =0 forz >0
Coupling conditions between U(¢,07) and U(£,07)

But, here again:

e the source term contains a product of distributions: ¢(U, «)d,a!
e the sign of the eigenvalues can change (no strict hyperbolicity)

— Resonance: nonlinear interaction between the interface and the nonlinear
waves of the left and right systems

—— The theory of nonconservative products cannot be applied
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Coupling problem

Here again, such singular system can be seen as a coupling problem

U + 0, f(U,aq) =0 foraz <0
U+ 0, f(U,,) =0 forz >0
Coupling conditions between U(¢,07) and U(£,07)

But, here again:

e the source term contains a product of distributions: ¢(U, «)d,a!
e the sign of the eigenvalues can change (no strict hyperbolicity)
— Resonance: nonlinear interaction between the interface and the nonlinear
waves of the left and right systems
—— The theory of nonconservative products cannot be applied

Same idea as before:

e Regularize the problem to define the coupling between U(¢,07) and U(#,07)
e Study the dependence of the coupling conditions w.r.t. the regularization
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Coupling conditions and stationary solutions

Assume that the coupling conditions are defined:

1. Let G C Q2 be the set of all admissible couples of traces,
then the coupling problem writes

U+ 0, f(U, ) =0 forz <0
U + 0, f(U,a,) =0 forxz >0
(U(t,07),U(t,07)) € G forae. t>0

2. Consider any (k~, k") € Q2 and define the piecewise constant function

(%) K(w)_{fi; if x <0

K if x>0

Proposition

The function k(x) defined by (x) is a stationary solution of the coupling problem
if and only if (v ,x") € G
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Construction of stationary solutions

1. Replace a(z) by a.(z) = (1 — He(2)) + o Ho(x) with J

—¢ €

2. Solve the boundary value problem to define G|a.]
A couple (k7,5T) belongs to Gla.] if and only if it exists U.(x) satisfying

%f(U67aE) + S(Us,as)%ae(z) =0, z¢€ (7535)
(S) Ue(—€) = K~
Uc(e) = wt

in the entropy weak sense

3. Piecewise smooth solutions:

e Smooth parts: (S:) in the classical sense (Riemann invariants)
e Shock waves at xg € (—¢,¢):
Uz a)(@d) = F(Us ac)(wg) and F(U., a.)(w) < F(Us,a2)(w5)
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Case of Euler equations with porosity

e Riemann invariants

L(U,a) = apu (mass conservation)
I(U,a) = au(pE +p) (energy/entropy conservation)

do not provide neither an injective nor an surjective relation

e Shock waves inside [—¢, ] lead to a strict decay of the entropy

F(Uaaa)(ffé) < F(Ue,ac)(zq)
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Case of Euler equations with porosity

e Riemann invariants

L(U,a) = apu (mass conservation)
I(U,a) = au(pE +p) (energy/entropy conservation)

do not provide neither an injective nor an surjective relation

e Shock waves inside [—¢, ] lead to a strict decay of the entropy

F(U&(LS)(CC(JD < F(Ue,ac)(zq)

Theorem (See for instance [Goatin, LeFloch '04])

e The set Gla.| can be constructed by hand and is independent of a.

e The Riemann problem for the Euler equations with a discontinuous porosity
(seen as a coupling problem) admits between one and three solutions
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Finite volume schemes

Discretization
o t" =nAt
e Interfaces x;, /9 = iAz and cells C; = (2;_1 /2, ;11 /2)
— The source term is superposed on the interface /5, = 0
First-order explicit entropy-satisfying schemes:
e Two-point numerical flux g

e Consistency: g(U,U,«) = f(U, )
e Entropy stability: see [Tadmor '03] or [Bouchut '04] for details

e In the cells far from the interface x; /5:

. n n At n n n
Z#Oal U+1 U _AL( (Uz z+1) g( i— 1’U ))
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Partially well-balanced schemes

Well-balanced schemes for stationary solutions corresponding to some G° C G:

o Two fluxes at interface 1 5: g, , and g;r/Q

e Cell formulas near the interface 1 /7

{U"“ Uy — t(g;/gwaz up) -

Uttt =Up — &L (g(U, UY) —
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Partially well-balanced schemes

Well-balanced schemes for stationary solutions corresponding to some G° C G:
o Two fluxes at interface 1 5: g, , and g;r/Q

e Cell formulas near the interface 1 /7

Ug*' =Ug t(g;p(Uasz)—g(Uﬁl,Ual))
Ut = Up — RL(g(UT, US) — g7, (Ug, UT))

e Well-balanced property. For all (v~,x%) € G°

{U’n =Up=r" _ {g;/Q(m-,f#) -

Up = Uy = i+ 615, F) =

Nicolas Seguin (UMPC & Inria) Entropy-satisfying well-balanced schemes 28 /34



Partially well-balanced schemes

Well-balanced schemes for stationary solutions corresponding to some G° C G:
o Two fluxes at interface 1 5: g, , and g;r/Q

e Cell formulas near the interface 1 /7

Ug*' =Ug t(g;/2<U€,Uf>—g(Uﬁl,U$>>
Ut = Up — RL(g(UT, US) — g7, (Ug, UT))

e Well-balanced property. For all (v~,x%) € G°

Uﬁl :U(T)L:FC_ — 91_/2(/‘6_,&+):g(l€_,/€_)
Upr =0y =rx" gIL/2<I€_, kt)=g(kt, k")

e But, for using reconstructed states, GY should be the graph of a monotone
function, difficult in general. ..
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Approximate Riemann solvers

In order to construct the fluxes gf/Q, we use approximate Riemann solvers
[Harten, Lax, van Leer '83]

U + 0, f(U, ) =0 for z < xy/9
81‘,U + 8:1:.f(U7 Q"r) =0 for z > 131/2
Approximate coupling conditions

for (U(t, 27 ,,), U(t, xfm))

Approximate coupling conditions for (U (t, 27 ), U(t,xfp)) such that
e Preservation of stationary solutions associated with G°
e Dissipation of the entropy through the interface

But in practice, problems with non-ordered waves, resonance. ..
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Approximate Riemann solvers

In order to construct the fluxes gf/Q, we use approximate Riemann solvers
[Harten, Lax, van Leer '83]

U + 0, f(U, ) =0 for z < xy/9
atU + 8:1:.f(U7 (XT‘) =0 for z > 131/2
Approximate coupling conditions

for (U(t, 27 ,,), U(t, l‘;r/2))

Approximate coupling conditions for (U (t, 27 ), U(t,xfp)) such that
e Preservation of stationary solutions associated with G°
e Dissipation of the entropy through the interface

But in practice, problems with non-ordered waves, resonance. ..

Following [Coquel et al. '99] (linearly degenerate extension of [Jin, Xin '95]),
we propose a relaxation approximation of the coupling problem
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Relaxation models for approximate Riemann solvers

Relaxation approximation

V. + Bmf(Vs, ay) = Relax. forx <y
o Ve + aggf(VE, a,) = Relax. for x>z /9
Approximate coupling conditions
for (Vo(t, 27 )y), Velt i )y))
In general, the relaxation approximation is based on LD systems of the form

Ve 4+ 00 f (Ve ) 4 3(Vz, a) 0y = Relax.
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Relaxation models for approximate Riemann solvers

Relaxation approximation

Ve + Omf(VE, ay) = Relax. forx <y
O Ve + 0, f(V, o) = Relax. for 2 > ),
Approximate coupling conditions

for (Vo(t, 27 )y), Velt i )y))
In general, the relaxation approximation is based on LD systems of the form

0 Ve + aT,f(Vg, a) + 5(Ve, a)0r« = Relax.

Euler equations with porosity [Coquel, Saleh, S. '14]

e Classical entropy decay (sub-characteristic condition) and robustness
e Preservation of stationary solutions associated with G° = {u = 0, p(p) = Cst}
* Dissipation of the entropy through the interface

= Full control of the CFL condition
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Comparison with Rusanov scheme + splitting

ap =1, a, =100

Rusanov scheme Relaxation scheme
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Relative entropy for stationary solutions

Continuous entropy inequality

U + 0, f(U, ) + s(U,2)0pcax = 0
on(U,a) + 0, F(U,a) <0

Relative entropy to compare U and V for the same o (H (U, V,«a) ~ |U — V|?)
° H(Ua VYa Oé) = 77(U7 O[) - 77(V a) - VUW(M O[) : (U - V)
— H(-,V,«) nonnegative strictly convex function, H(U,V,«a) =0iff U =V
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Relative entropy for stationary solutions

Continuous entropy inequality

U + 0, f(U, ) + s(U,2)0pcax = 0
atn(Ua Oé) + 81F(Ua Oé) < 0

Relative entropy to compare U and V for the same o (H (U, V,«a) ~ |U — V|?)
° H(Ua Vva Oé) = 77(U7 Oé) - 77(‘/7 Ct) - VUW(M a) : (U - V)
— H(-,V,a) nonnegative strictly convex function, H(U,V,a) =0iff U =V

Compare an entropy weak solution U and a stationary solution V:
OH = 0m(U,a) — Vyn(V,a) - 0,U
< =0, F(U,0) = Vun(V,a) - (8, f(U, @) + s(U, 2)d,x)
< =0, [F(U,a) + Vun(V,a) - 9, f (U, )]
+ (0 Vun(V,a)) - f(U, o) = Vun(V,a) - s(U, @) dycx
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Relative entropy for stationary solutions

Proposition

Let U be an entropy weak solution and V' a stationary solution. If
o (3:Vun(V;a)) - f(U,0) =0
o Vun(V,a) - s(U,a) =0
then
%/H(U,V,a) dr <0

In other words, V' is a stable stationary state.

e Shallow-water equations with topography:
n(U,a) = hu?/2 + gh?/2 + gha,
Von(U, o) = (—u?/2+ g(h + a),u)"
e Euler equations with porosity:
(U, @) = apu? /2 + ape(p),
Vun(U, @) = (—au?/2 + ae(p) + ap(p)/p, au)
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Relative entropy for stationary solutions

Proposition

Let U be an entropy weak solution and V' a stationary solution. If
o (3:Vun(V;a)) - f(U,0) =0
o Vun(V,a) - s(U,a) =0
then
%/H(U,V,a) dr <0

In other words, V' is a stable stationary state.

These two conditions are (only) satisfied for
e Shallow-water equations with topography: “lake at rest” states

e Euler equations with porosity: null-velocity states

NB. Asymptotic stability cannot be generally expected (periodic solutions exist)
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Relative entropy for well-balanced schemes

Proposition

Assume the two previous assumptions. Consider an entropy-satisfying scheme
which exactly preserves a stationary state (V;);. Then,

Az HUM,Vi,a5) < Az Y HUP, Vi, )

In other words, the numerical scheme is stable in /> with respect to the stationary
discrete state (V;);.

e No smoothness assumption on « and V, valid in multi-D

e Asymptotic stability could be obtained due to numerical diffusion. ..
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Relative entropy for well-balanced schemes

Proposition

Assume the two previous assumptions. Consider an entropy-satisfying scheme
which exactly preserves a stationary state (V;);. Then,

Az HUM,Vi,a5) < Az Y HUP, Vi, )

In other words, the numerical scheme is stable in /> with respect to the stationary
discrete state (V;);.

e No smoothness assumption on « and V, valid in multi-D

e Asymptotic stability could be obtained due to numerical diffusion. ..

What about other stationary states?

What about entropy-conservative schemes (for periodic solutions)?
What about ill-balanced schemes?
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