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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL WITH FRICTION AND VISCOSITY:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame 00], we get

0th + V~(hu) 0
Kp+Krl
0t (hu) + V~(hu®u+§h21d) = —hV(gB+§)— bTRr p>0

Wu+4yV-(hVU)
1+Th

h+B<R, (h+B-R)p=0.
R
ls n
u
h —
h
/_\—B

h(t,x)eR; water depth B(x)=R(x)€R bottom level and roof level

2

u(t,x)eRY averaged horizontal velocity (xp,x,) € (Rs+)> Frictions at bottom and at roof

p(t,x) €Ry pressure at surface n=h+zp, neRy Viscosity of fluid
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Introduction Motivation

Many flows are partially in charge:
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL (SWR):

Neglecting the dissipative terms, we write

ath  + V-(hu) =0
d¢ (hu) + V~(hu®u+%h21d) = —hV(gB+§) (SWR)
h+B<R, (h+B-R)p=0.
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL (SWR):

Neglecting the dissipative terms, we write
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¢ (hu) + V-(hu®u+§h2ld) = —hv (gB ) (SWR)
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/\: Coupling approach
» In the part with free surface = Shallow water equations. hyperbolic
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL (SWR):

Neglecting the dissipative terms, we write

V-((R-B)u) =0
atu+(u~V)u+V(gR+§):0 (sWFk)
(h+B-R)p=0.
R
le "
u
h _—
h
g/_\_ B
/\: Coupling approach

» In the part with free surface = Shallow water equations. hyperbolic
» In the part in charge = Lake equations not hyperbolic
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL (SWR):

Neglecting the dissipative terms, we write

ath  + V-(hu) =0
d¢ (hu) + V-(hu®u+§h2ld) = —hv gB+§) (SWR)
h+B<R, (h+B-R)p=0.
R
ls "

A

/\: Coupling approach
» In the part with free surface = Shallow water equations. hyperbolic
» In the part in charge = Lake equations not hyperbolic

» What boundary condition at the interface ? Dynamic of the interface ?
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Introduction Regularized model

REGULARIZED PARTIALLY FREE SURFACE MODEL (SW‘&R)

Let us consider the hyperbolic model for any parameter € > 0:

0
—hgv(gB+ &)

Othe + V- (heue)
0t (heug) + V-(hgug®ug+§hgld)

- (Y (SWER)
og(h:+B-R),
Pe :572
R
= 2
g =2 2= =
= =2 = n
! g1
he —— he

THEOREM: Energy balance

The mechanic energy E =& + % is decreasing, i.e. 6tfd Edx=<0
R
1
with the kinetic energy H = Ehg |ug|2,

g
2

In addition, the equality case holds for smooth solutions.

and the potential energy & = hg +gBh, + (%h? +g(B-R) hg) The+B=R-
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Introduction Regularized model

TueoreM: Convergence (SWER) — (SWR)
—_— e

Following the argument in [Klainerman, Majda 82] and s =2+ [% ,

in the part of the domain in charge, i.e. he + B= R, we get the error order

llhe = h, pe—p, us_u”l-oo(O:T;Hs(ﬂthrBzR)) = lhe=h, p:—p, ug_u”Loo(ovT3Hs(ﬂh£+BsR))
+O(£2)

/\: Hyperbolic equation with stiff conservative source term
On a cartesian grid, the explicit Godunov-type solver

» is stable under restrictive CFL condition (ug+ (1+ E%)ghE)At <C

&

» diverge when the regularization parameter € vanishes, i.e. Err= O( dX)

Q1. How produce numerical scheme accurate when £ <17
THEOREM: Low-Mach number flow [Dellacherie 10]
At the asymptotic regime € =0, the acoustic operator have to be discretized with
a centered scheme.

Q2. How produce numerical scheme stable when ¢ «< 17
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Centered-Potential Regularization All-parameter scheme

[MP, Vila 15] Centered-Potential Regularization of Advection Upstream Splitting Method.
SIAM Journal on Numerical Analysis

Q1. How produce numerical scheme accurate when € <17
Rla. We use a AUSM based scheme

hy 1 Fh 0

5 Kok _

0t( )Jr Axj pa | NEHE=
hycuy Xk feFy | Ff 2

with g}f:ffhgugda, g;’u=ffheug®uedo'v 2 :_ﬁkaghfvd)fdx
and the potential ¢ (x, he) = he + B+ (hﬁf%z)*-

R1b. with a centered discretization of the potential for any £ >0

2 ~h Y beNFIFI=hy Y prIf|

feFy feFy
_ (Xt i) + @ (i by ) & [k hiee) — & Gt i) P
with ¢f = 5 and 0¢f = 5 Ng.

@ Leads to a consistent numerical scheme when & goes to 0 [Dellacherie 10].
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Centered-Potential Regularization All-parameter scheme

Q2a. How to control the space discretization error?

R2a. We use an up-wind scheme in velocity

at(hkuk)+ r:)l(k fez‘r‘ (uk (9? ~N;()+ — Uk, (,9";_) . N;()_)/J/; =2
k

@ Ensure the dissipation of the discrete kinetic energy
We introduce a regularization using the potential jump (7: time scale; y: regu. param.)

he  hy . hie
Axg B Axy Aka

h T .
=h -y— h 2

e f (Uf YAXf 5¢f) wit
hk + hkf

hkuk +hkf“kf
=

and thf = >

@ Ensure : » the dissipation of the discrete potential energy
> the steady state at rest
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Centered-Potential Regularization All-parameter scheme

Q2b. How to control the time discretization error?

R2b. Using an IMEX scheme: implicit for the water level h / explicit for the velocity u
@ water level: implicit scheme of type non-linear advection-diffusion

+1 At +1 +1 k, Kk _
hy h”rk hg ( uEY n+15¢n )'Nf”f—o
fE[Fk f

@ velocity: explicit upwind scheme with source term.

n+1
* - k
A T W U I C R B I e W
k k

THEROREM: Entropy dissipation
Let y=1 and assume the following CFL-type condition is satisfies

. - min hn+l hn;rl)
/ / n+ ;
( uf Nf| 6<pf )At< Wmm(Axk,Axkf)
f

then @ the solution is positive, i.e. hZ>0
@ the discrete mechanic energy is decreasing
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Centered-Potential Regularization All-parameter scheme

NON-LINEAR FIXED POINT :

— @
(]

n0 _ ,n
— We set hk _hk

we compute ¢7f = ¢ (xk, h:’q)
we compute At™9 = f(d)Z’q, uZ)

. hn,q’hn,q
( ug - Nf/f‘ + @ ‘&pg’q )Ats W min(Axk,Axkf)
f

we compute implicitly the scheme for h" g+l

hzrq+1 s A%tk z h? ,q+1 ule-y i’?q v §¢n ,q+1 ,N)’;u’; -0
we compute explicitly the scheme for unlf’+1
we estimate the variation of entropy E" W+l f(h:‘qﬂ,u:‘qﬂ)
we test (E : W+l o E; - At ﬂux) a posteriori stop test
> if not new iteration

> if yes, we set (hz+1,uz+1) = (h:’q+1,u2’q+1) next time step

Converge with few iterations when the potential is regular enough.
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Centered-Potential Regularization All-parameter scheme

1.6
Analytical solution
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Centered-Potential Regularization All-parameter scheme

- Waves equations —— Uncoupled Roe Coupled Rusanov CPR At=10"* —— CPR At=10 —=—
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Centered-Potential Regularization All-parameter scheme
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ntered-Potential Regularization All-parameter scheme
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Conclusion and perspectives

CENTERED-POTENTIAL REGULARIZATION SCHEME:

@ The CPR scheme is very robust: b
>
>

@ The CPR scheme is very stable:  »

» wet/dry transition

PARTIALLY FREE SURFACE FLOWS:

non-conservative product
stiff conservative source term (low-Mach)
easily adaptable to several physics

well-balanced for steady state at rest
not restrictive CFL condition
weak numerical dissipation

Prospects:  » asymptotic scheme for e=0

» non-conservative forces for stability of steady state

@ Derivation of a shallow water type model for partially free surface flows
@ Analysis and numerical resolution for regular solution

Prospects:  » Propagation of discontinuities

Thank you for your attention

Martin PARISOT
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Introduction Regularized model

FORMAL PROOF: Convergence (SWF) —6(SWR)
e

dthe  + V-(heue) =0
0t (hete) + V- (heue o ue + £ h214) = —th(gB+ &) R
2°°¢ (SWet)
Qg(h6+B_R)+
Pe ==
&

@ In the part in charge, i.e. (h:+B-R)=0:
» The main term of the momentum balance leads to the constrain
(he+B-R), = 0[¢2).
»  Since the solution is regular, the main term of the mass conservation leads to the
divergence free constrain V- (hzug) = 0(52).
» Considering the second term of the momentum balance,
we conclude that the main term of (hg,ug) satisfy the lake equation.
@ In the part with free surface, i.e. (he+B—R), =0 the pressure vanishes and we recover
the shallow water equations.
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