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Introduction Partially free surface model

Partially free surface model with friction and viscosity:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame 00], we get


∂th + ∇·(hu) = 0

∂t (hu) + ∇·
(
hu⊗u+ g

2 h2Id

)
= −h∇

(
gB+ p

%

)
− κb +κr 1p>0
1+ κb+κr 1p>0

3µ h
u+4µ∇·(h∇u)

h+B ≤R , (h+B−R)p = 0.

g η

B

R

h
h

u

h(t ,x) ∈R+ water depth
u (t ,x) ∈Rd averaged horizontal velocity
p (t ,x) ∈R+ pressure at surface η= h+zb

B (x)≤R (x) ∈R bottom level and roof level
(κb ,κr ) ∈ (R+)2 Frictions at bottom and at roof

µ ∈R+ Viscosity of fluid
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Introduction Motivation

Many flows are partially in charge:
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Introduction Partially free surface model

Partially free surface model (SW R ):
Neglecting the dissipative terms, we write
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B: Coupling approach
In the part with free surface ⇒ Shallow water equations. hyperbolic

In the part in charge ⇒ Lake equations not hyperbolic
What boundary condition at the interface ? Dynamic of the interface ?
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Introduction Regularized model

Regularized partially free surface model (SW R
ε ):

Let us consider the hyperbolic model for any parameter ε> 0:


∂thε + ∇·(hεuε) = 0
∂t (hεuε) + ∇·

(
hεuε⊗uε+ g

2 h2ε Id

)
= −hε∇

(
gB+ pε

%

)
pε = %g (hε+B−R)+

ε2

(SW R
ε )

g η

B

R

hε hε
uε

Theorem: Energy balance
The mechanic energy E = E +K is decreasing, i.e. ∂t

∫
Rd

E dx ≤ 0

with the kinetic energy K = 1
2hε |uε|2 ,

and the potential energy E = g
2 h2ε +gBhε+

( g
2 h2ε +g (B−R)hε

)
1hε+B≥R .

In addition, the equality case holds for smooth solutions.
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Introduction Regularized model

Theorem: Convergence (SW R
ε ) −→

ε→0
(SW R ) formal proof

Following the argument in [Klainerman, Majda 82] and s ≥ 2+
[

d
2

]
,

in the part of the domain in charge, i.e. hε+B ≥R, we get the error order

‖hε−h, pε−p, uε−u‖L∞(0,T ;Hs(1hε+B≥R))
= ‖hε−h, pε−p, uε−u‖L∞(0,T ;Hs(1hε+B≤R))

+O
(
ε2

)

B: Hyperbolic equation with stiff conservative source term
On a cartesian grid, the explicit Godunov-type solver

is stable under restrictive CFL condition
(
uε+

√(
1+ 1

ε2

)
ghε

)
∆t ≤C

diverge when the regularization parameter ε vanishes, i.e. Err =O
(

dx
ε

)

Q1. How produce numerical scheme accurate when ε¿ 1?
Theorem: Low-Mach number flow [Dellacherie 10]

At the asymptotic regime ε= 0, the acoustic operator have to be discretized with
a centered scheme.

Q2. How produce numerical scheme stable when ε¿ 1?
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Centered-Potential Regularization All-parameter scheme

[MP, Vila 15] Centered-Potential Regularization of Advection Upstream Splitting Method.
SIAM Journal on Numerical Analysis

Q1. How produce numerical scheme accurate when ε¿ 1?
R1a. We use a AUSM based scheme

∂t

( hk

hk uk

)
+ 1
∆xk

∑
f ∈Fk

 Fh
f

Fhu
f

 ·Nk
f µ

k
f =

( 0

Qk

)

with Fh
f = ∫

f hεuεdσ, Fhu
f = ∫

f hεuε⊗uεdσ, Qk =− 1
|Vk |

∫
Vk ghε∇φεdx

and the potential φε (x ,hε)= hε+B+ (hε+B−Z)+
ε2

.

R1b. with a centered discretization of the potential for any ε> 0

Qk ≈ hk
∑

f ∈Fk
φf Nk

f |f | = hk
∑

f ∈Fk
δφf |f |

with φf =
φ(xk ,hk )+φ

(
xkf ,hkf

)
2 and δφf =

φ
(
xkf ,hkf

)
−φ(xk ,hk )

2 Nk
f .

Leads to a consistent numerical scheme when ε goes to 0 [Dellacherie 10].
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Centered-Potential Regularization All-parameter scheme

Q2a. How to control the space discretization error?
R2a. We use an up-wind scheme in velocity

∂t (hk uk )+
1
∆xk

∑
f ∈Fk

(
uk

(
F
ρ

f ·Nk
f

)
+−ukf

(
F
ρ

f ·Nk
f

)
−

)
µk

f =Qk

Ensure the dissipation of the discrete kinetic energy
We introduce a regularization using the potential jump (τ : time scale; γ : regu. param.)

Fh
f = hf

(
uf −γ τ

∆xf
δφf

)
with 2 hf

∆xf
= hk
∆xk

+
hkf
∆xkf

hf =
hk +hkf

2 and hf uf =
hk uk +hkf ukf

2

Ensure : the dissipation of the discrete potential energy
the steady state at rest
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Centered-Potential Regularization All-parameter scheme

Q2b. How to control the time discretization error?

R2b. Using an IMEX scheme: implicit for the water level h / explicit for the velocity u
water level: implicit scheme of type non-linear advection-diffusion

hn+1
k −hn

k + ∆t
∆xk

∑
f ∈Fk

hn+1
f

(
un

f −γ ∆t
∆xn+1

f
δφn+1

f

)
·Nk

f µ
k
f = 0

velocity: explicit upwind scheme with source term.

hn+1
k un+1

k −hn
k un

k + ∆t
∆xk

∑
f ∈Fk

(
un

k
(
Fn+1

f ·Nk
f

)+−un
kf

(
Fn+1

f ·Nk
f

)−)
µk

f =−
hn+1

k
∆xk

∑
f ∈Fk

δφn+1
f µk

f

Therorem: Entropy dissipation
Let γ≥ 1 and assume the following CFL-type condition is satisfies

(∣∣∣un
f ·Nk

f

∣∣∣+√
γ

2

√∣∣∣δφn+1
f

∣∣∣)∆t ≤
min

(
hn+1

k ,hn+1
kf

)
hn+1

k +hn+1
kf

min
(
∆xk ,∆xkf

)

then the solution is positive, i.e. hn
k > 0

the discrete mechanic energy is decreasing
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Centered-Potential Regularization All-parameter scheme

Non-linear fixed point :
We set hn,0

k = hn
k

we compute φn,q
i ,k =φi

(
xk ,hn,q

k

)
we compute ∆tn,q = f

(
φ

n,q
k ,un

k

)
(∣∣∣un

f ·Nk
f

∣∣∣+√
γ

2

√∣∣∣δφn,q
f

∣∣∣)∆t ≤
min

(
hn,q

k ,hn,q
kf

)
hn,q

k +hn,q
kf

min
(
∆xk ,∆xkf

)

we compute implicitly the scheme for hn,q+1
k

hn,q+1
k −hn

k + ∆t
∆xk

∑
f ∈Fk

hn,q+1
f un

i ,f −γ ∆t
∆xn,q

i ,f
hn,q

f δφ
n,q+1
i ,f

 ·Nk
f µ

k
f = 0

we compute explicitly the scheme for un,q+1
i ,k

we estimate the variation of entropy En,q+1
k = f

(
hn,q+1

k ,un,q+1
k

)
we test

(
En,q+1

k ≤En
k −∆t flux

)
a posteriori stop test

if not new iteration
if yes, we set

(
hn+1

k ,un+1
k

)
=

(
hn,q+1

k ,un,q+1
k

)
next time step

Converge with few iterations when the potential is regular enough.
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Centered-Potential Regularization All-parameter scheme
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Centered-Potential Regularization All-parameter scheme
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Centered-Potential Regularization All-parameter scheme
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Centered-Potential Regularization All-parameter scheme

Partially free surface
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Conclusion and perspectives

Centered-Potential regularization scheme:
The CPR scheme is very robust: non-conservative product

stiff conservative source term (low-Mach)
easily adaptable to several physics

The CPR scheme is very stable: well-balanced for steady state at rest
not restrictive CFL condition
weak numerical dissipation

Prospects: asymptotic scheme for ε= 0
wet/dry transition
non-conservative forces for stability of steady state

Partially free surface flows:
Derivation of a shallow water type model for partially free surface flows
Analysis and numerical resolution for regular solution

Prospects: Propagation of discontinuities

Thank you for your attention
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Introduction Regularized model

Formal proof: Convergence (SW R
ε ) −→

ε→0
(SW R )


∂thε + ∇·(hεuε) = 0
∂t (hεuε) + ∇·

(
hεuε⊗uε+ g

2 h2ε Id

)
= −hε∇

(
gB+ pε

%

)
pε = %g (hε+B−R)+

ε2

(SW R
ε )

In the part in charge, i.e. (hε+B−R)≥ 0:
The main term of the momentum balance leads to the constrain
(hε+B−R)+ =O

(
ε2

)
.

Since the solution is regular, the main term of the mass conservation leads to the
divergence free constrain ∇·(hεuε)=O

(
ε2

)
.

Considering the second term of the momentum balance,
we conclude that the main term of (hε,uε) satisfy the lake equation.

In the part with free surface, i.e. (hε+B−R)+ = 0 the pressure vanishes and we recover
the shallow water equations.

back
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