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Motivations

Motivations

Several applications involve PDEs which admit nontrivial stationary solutions, like
convection-diffusion equations

∂tU = ∇x · (A(U) +∇xN(U)),

hyperbolic balance laws

∂tU +∇x · F (U) = R(U),

or kinetic equations

∂tf + v · ∇xf = Q(f).

I In many situations, such systems of equations stabilize onto a large-time
behavior which is characterized by an accurate balancing between the
different terms appearing in the PDE.
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Motivations

Some examples

Shallow water equations

Porous media

Hydrodynamic models for semiconductors

Traffic flow models
...

Kinetic equations (Fokker-Planck, Boltzmann-like)

Convection-diffusion equations (biology, economy, sociology, . . .)
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Motivations

Steady state preserving methods

The construction of numerical schemes which preserves such stationary
solutions is challenging and depends strongly on the particular problem
studied.

For kinetic equations, one often is interested in schemes which preserve the
steady state solution of the collision operator (Gaussian profiles, power laws,
etc...). This is related to the velocity discretization and typically is tackled
with the aim of conservative and entropic approximation 1.

For balance laws, there is a large literature on the so called well-balanced
schemes 2, namely schemes which capture the balance between the transport
terms and the other ones. This, in general, is related to the construction of
suitable numerical fluxes in space.

1P.Degond, L.Pareschi, G.Russo, Mod. Sim. Sci. Eng. Tech., Birkhüser ’04
G.Dimarco, L.Pareschi, Acta Numerica, ’14
2F.Bouchut, Frontiers in Mathematics, Birhüser ’04
L.Gosse, SEMA SIMAI Springer Series ’13
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Fokker-Planck equations

Fokker-Planck equations

As a prototype example we consider the one-dimensional Fokker-Planck equation

Fokker-Planck equation

∂f

∂t
= L(f), L(f) =

∂

∂v

[
vf + T

∂f

∂v

]
, v ∈ R.

Equilibrium solution are characterized by Gaussian distributions

M =
ρ√
2πT

exp

(−v2
2T

)
,

where ρ =
∫
R f dv.

The construction of schemes which preserves the equilibrium states is non
trivial, the most famous example is given by the Chang-Cooper method 3

Extensions of the Chang-Cooper idea to high order and to more general
nonlinear Fokker-Planck equations are very difficult 4

3J.S. Chang, G. Cooper, JCP ’70
4C.Buet, S.Cordier, P.Degond, S.Dellacherie, M.Lemou, L.Mieussens, K-C.Le

Thanh (’98-’07)
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Fokker-Planck equations

Micro-macro decomposition

Let us consider a change of variables thanks to the micro-macro decomposition

g = f −M,

with M the Maxwellian equilibrium and g such that
∫
R3 g φ dv = 0, φ = 1, v, |v|2.

Since L(M) = 0 we have

L(f) = L(g) + L(M) = L(g),

and therefore, being M time independent, we obtain the equivalent formulation

∂g

∂t
= L(g).

Now the only admissible equilibrium state is g ≡ 0.

I The construction of numerical approximations of L, say Lh for a
discretization parameter h, such that Lh(0) = 0 is straightforward even with
high order of accuracy.

I Discretizing L(f) and L(g) at the numerical level is not equivalent.
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Fokker-Planck equations

A semi-discrete scheme

Let us now consider a semi-discrete scheme applied to the original Fokker-Planck
problem

∂fh
∂t

= Lh(fh).

In general, this scheme does not preserve the steady state since Lh(Mh) 6= 0,
where Mh is our target discrete equilibrium state.
We can rewrite

Lh(fh) = Lh(gh)︸ ︷︷ ︸
equilibrium preserving

+ Lh(Mh)︸ ︷︷ ︸
residual equilibrium

.

Therefore, in the original variables, the equilibrium preserving semi-discrete
scheme can be re-written as

∂fh
∂t

= Lh(fh)− Lh(Mh) =: L̃h(fh),

which clearly preserves fh = Mh as equilibrium state.
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Fokker-Planck equations

Example of second order schemes

0 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

time

R
e
la

ti
v
e
 L

1
 e

rr
o
r 

w
it
h
 r

e
s
p
e
c
t 

to
 M

 

 

EPS method

CC method

Standard

Plot of ‖f −M‖1/‖M‖1 for standard central difference (blue), Chang-Cooper (red) and

residual equilibrium (green) with N = 50 grid points in [−5, 5]
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General formulation

General formulation

Suppose we have a differential problem of the form

u′ = G(u),

where G(u) = 0 implies u(t) = ueq(t), with ueq(t) is a given equilibrium state.
Let Gh be an order q approximation of G(u), hereafter called the underlying
method, which originates the approximated problem

u′h = Gh(uh).

Given the discrete equilibrium state ueqh (t) we define the residual equilibrium as

rh(t) = Gh(ueqh (t)),

note that rh(t) = O(hq) and define the new order q approximation

G̃h(u) := Gh(u)− rh(t).

The residual equilibrium approximation is then given by5

u′h = G̃h(uh).

5L.Pareschi, T.Rey, preprint ’15
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Nonlinear parabolic problems

Nonlinear parabolic problems

Let us now consider a general problem of the form

Nonlinear parabolic equation

∂u

∂t
= ∇x · (A(x, u) +∇xN(u)) , x ∈ Ω ⊆ Rd.

Coefficients: A(x, u) = xu(1± u), N(u) = u.
Equilibrium solution: (Fermi-Dirac):

ueq(x) =
1

βex2/2σ ± 1
.

Coefficients: A(x, u) = xu N(u) = |u|m.
Equilibrium solution: (Barrenblatt-Pattle)

ueq(x) =

(
C − m− 1

2m
|x|2
)1/(m−1)

+

.
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Nonlinear parabolic problems

2D porous media

We apply the residual equilibrium method using as underlying scheme the
finite volume upwind approach by Chainais and Peng 6.

We choose d = 2, m = 5, Ω = [−10, 10]× [−10, 10].

Initial condition. Sum of Gaussians:

u(x) =

 e
−1

6−|x−c0| |x− c0| < 6,

e
−1

6−|x−c1| |x− c1| < 6

with c0 = (2,−2) and c1 = (−2, 2).

Related approaches: Bessemoulin-Chatard, M., and Filbet, F. SISC ’12, Carrillo,

J. a., Chertock, A., and Huang, Y. preprint ’14, Cancés, C., and Guichard, C. Math.

Comp. ’15.

6C.Chainais, Y. Peng, M3AS ’04
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Nonlinear parabolic problems

Test case
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Nonlinear parabolic problems

Standard vs Residual Equilibrium
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Nonlinear Boltzmann equations

The Boltzmann case

The residual equilibrium method applies also to Boltzmann equations

Homogeneous Boltzmann equation

∂f

∂t
= Q(f, f).

The operator Q(f, f) characterizes the particles interactions and reads

Q(f, f) =

∫
R3×S2

B(|v − v∗|, n)[f(v′)f(v′∗)− f(v)f(v∗)] dv∗ dn

where

v′ = v +
1

2
(v − v∗) +

1

2
|v − v∗|n, v′∗ = v +

1

2
(v − v∗)−

1

2
|v − v∗|n,

and B(|v − v∗|, n) is a nonnegative collision kernel.

I The equilibrium states are again described by Gaussian distributions M .
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Nonlinear Boltzmann equations

Residual equilibrium and micro-macro

Given a discretized operator Qh we get the residual equilibrium approximation

∂fh
∂t

= Q̃h(fh, fh),

with
Q̃h(fh, fh) = Qh(fh, fh)− rh

and rh = Qh(Mh,Mh).
Even in this case the approach can be related to the micro-macro decomposition
g = f −M , which at the semi-discrete level gives

∂gh
∂t

= Lh(Mh, gh) +Qh(gh, gh),

where Lh(Mh, gh) = Qh(gh,Mh) +Qh(Mh, gh) and which has gh ≡ 0 as
equilibrium state.
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Nonlinear Boltzmann equations

Residual equilibrium spectral methods

Using Fourier-Galerkin spectral method 7 as underlying method we derive

Residual equilibrium spectral method

∂gN
∂t

= LN (MN , gN ) +QN (gN , gN ),

fN = MN + gN ,

where

MN := PNM, gN := PNg, LN (MN , gN ) := PNL(MN , gN ),

and PN is the orthogonal projection in the inner L2-product on the space of
trigonometric polynomials of degree N .

I It is immediate to see that gN ≡ 0 is an admissible local equilibrium of the
spectral scheme and therefore fN = MN is a local equilibrium state.

7L. Pareschi, G. Russo, SINUM ’00 - C. Mouhot, L. Pareschi, Math. Comp. ’05
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Nonlinear Boltzmann equations

Spectral accuracy

It can be proved that QN (MN ,MN ) is spectrally close to 0 since we have 8

Lemma

||QN (MN ,MN )||2 ≤
C

Nr−2

(
||M ||Hr

p
+ ||Q(MN ,MN )||Hr

p

)
, ∀ r ≥ 2.

From this we obtain consistency and spectral accuracy

Theorem

Let f ∈ Hr
p([−π, π]3), r ≥ 0 then

||Q(f, f)− LN (MN , gN )−QN (gN , gN )||2 ≤ C

Nr

(
||f ||Hr

p
+ ||Q(fN , fN )||Hr

p

+||M ||Hr
p

+ ||Q(MN ,MN )||Hr
p

)
.

8F.Filbet, T.Rey, L.P. CRAS ’14
Lorenzo Pareschi (University of Ferrara) Residual equilibrium schemes for PDEs Cortona, June 14-20, 2015 18 / 31



Preliminaries Residual equilibrium schemes Local residual equilibrium schemes Final considerations

Nonlinear Boltzmann equations

A numerical example: BKW solution
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Long time behavior of the L1-error for the BKW solution 9 (Maxwell molecules in

dimension d = 2) with Nv = 64 and v ∈ [−8, 8].
9A.V.Bobylev, Dokl. Akad. Nauk. SSSR ’75
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Shallow water equations

Shallow water

The residual equilibrium approach can be applied also to some systems of balance
laws like the one-dimensional shallow water equations

Shallow water 
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 +

1

2
gh2
)

= −gh ∂xB,

where g > 0 is the gravitational constant and B ≥ 0 is the bottom profile.
The steady state solutions are characterized by the equations

hu = C1,
1

2
u2 + g(h+B) = C2,

where C1 and C2 are constants determined by the boundary conditions.
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Shallow water equations

A numerical example

We used Lax-Friedrichs with Van Leer’s flux limiters as underlying method and
consider a perturbation of the steady state as test case10.

Ω = [0, 1], no flux at the boundaries

Bottom topography:

B(x) =

{
0.25 (cos(π(x− 0.5)/0.1 + 1) , |x− 0.5| < 0.1

0 otherwise

Initial condition:
(h(x), u(x)) = (1 + ε(x)−B(x), 0) ,

with ε(x) = 0.1 if 0.1 < x < 0.2 and 0 elsewhere.

Equilibrium : (heq(x), ueq(x)) = (1, 0).

10R.J. LeVeque, JCP ’98
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Shallow water equations
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Shallow water equations
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Shallow water equations
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Residual equilibrium schemes with limiters

Local residual equilibrium schemes

Let us consider a semi-discrete scheme of the general form

∂ui
∂t

+
Fi+1/2 − Fi−1/2

∆x
= 0

where Fi±1/2 are the edge fluxes for the i-th cell and

ui =
1

∆x

∫ xi+1/2

xi−1/2

u(x, t) dx,

is the cell average of the solution.
Let us denote with F stdi±1/2 the standard fluxes. If we denote by ueqi the cell
average of the equilibrium state we can define the equilibrium preserving fluxes as
Fwbi±1/2 as

Fwbi±1/2 = F stdi±1/2 − F eqi±1/2,
where F eqi±1/2 is defined as F stdi±1/2 by replacing ui with ueqi .

I This flux is equilibrium preserving, however it may loose some good
properties of the original flux. These properties, of course, are recovered
asymptotically since the flux preserves the exact steady state solution.
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Residual equilibrium schemes with limiters

A flux-limiter approach

The idea is to switch between the two fluxes using a flux-limiter based on an
equilibrium indicator. We use the standard flux where the solution is far from
equilibrium and the well-balanced flux where the solution is close to equilibrium.
The resulting flux can be written as

Fi±1/2 = F stdi±1/2 − φi±1/2(F stdi±1/2 − Fwbi±1/2) = F stdi±1/2 − φi±1/2F eqi±1/2,

where φi±1/2 = φ(ri±1/2) ≥ 0 is the flux limiter and

ri±1/2 =
ui±1/2 − ueqi±1/2

ueqi±1/2
with ui±1/2 =

ui±1 + ui
2

, ueqi±1/2 =
ueqi±1 + ueqi

2

is the equilibrium indicator.

Therefore, when the limiter is close to zero (far from equilibrium), the flux is
represented by the standard scheme. Similarly, when the limiter is close to 1
(equilibrium solution), it is represented by the well balanced scheme.

Lorenzo Pareschi (University of Ferrara) Residual equilibrium schemes for PDEs Cortona, June 14-20, 2015 26 / 31
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Shallow water equations

Transcritical flow with shock

We consider again the high-resolution Lax-Friedrichs methods as underlying
method and test the residual equilibrium method with limiter for a transcritical
flow.

Ω = [0, 25], inflow hu = 0.18 on x = 0, outflow h = 0.33 on x = 25

Bottom topography:

B(x) =

{ (
0.20.05(x10)2

)
, |x− 10| < 2

0 otherwise

Initial condition:
(h(x), u(x)) = (0.33−B(x), 0) .

Equilibrium : (heq(x), ueq(x)) solution of a nonlinear equation.

Lorenzo Pareschi (University of Ferrara) Residual equilibrium schemes for PDEs Cortona, June 14-20, 2015 27 / 31
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Shallow water equations
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Shallow water equations
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Shallow water equations
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Final considerations

The residual equilibrium method represent a powerful tool for the construction of
steady state preserving schemes.

It applies to most PDEs where an explicit steady state can be computed
either analytically or numerically.

The order of accuracy depends on the underlying method.

It is easy to embed the method in an existing scheme.

The use of suitable flux-limiters permits to recover the properties of the
underlying scheme (if needed).

Research directions :

Stability for nonlinear problems, better characterization of the flux-limiter, . . .

Applications of the residual equilibrium schemes to other degenerate diffusion
equations (capturing power laws seems challenging) and to other fields where
well-balancing is relevant, like semiconductors, chemotaxis, etc.
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