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Nonconservative systems: weak solutions

In Ernest, LeFloch, Mishra SINUM (2015) the authors have introduced a class
of schemes, the schemes with well-controled dissipation (WCD), which allow
one to compute, with robustness and accuracy, small-scale dependent shock
wave solutions to nonlinear hyperbolic systems of conservation laws.
The goal of this work is to extend these schemes to 1d nonlinear hyperbolic
models in nonconservative form:

Ut + A(U)Ux = 0, U = U(t, x) ∈ RN .

The definition and the numerical approximation of weak solutions of these
systems is particularly challenging. Following the theory developed by Dal
Maso, LeFloch, Murat (1995), given a family of paths φ, a piecewise smooth
function is a weak solution is:

It is a classical solution where it is regular.

Across a discontinuity the following jump condition is satisfied:∫ 1

0
A(φ(s; W−,W+))

∂φ

∂s
(s; W−,W+) ds = σ(W+ −W−),

where σ is the speed of propagation and W± the limits to the left and to the right of
the discontinuity.
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Nonconservative systems: weak solutions

How to choose the ’good’ family of paths?

When the hyperbolic system is the vanishing diffusion and dispersion limit of a
family of problems

Ut + A(U)Ux = εBUxx + δε2CUxxx. (1)

the adequate family of paths should be consistent with the traveling waves of
the regularized system (LeFloch (1989)).

A traveling wave

Uε(x, t) = V
( x− σt

ε

)
, (2)

is a solution of (1) satisfying

lim
ξ→−∞

V(ξ) = U−, lim
ξ→+∞

V(ξ) = U+, lim
ξ→±∞

V ′(ξ) = 0, lim
ξ→±∞

V ′′(ξ) = 0.

If there exists a traveling wave of speed σ linking the states U−, U+, the limit
when ε tends to 0 of Uε is:

U(x, t) =

{
U− if x < σt;
U+ if x > σt;

should be an admissible shock.
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Nonconservative systems: weak solutions

An easy computation shows that V has to solve the equation

− σV ′ + A(V) V ′ = BV ′′ + δCV ′′′. (3)

By integrating (3) from −∞ to∞ and taking into account the boundary
conditions, we obtain the jump condition∫ ∞

−∞
A(V(ξ)) V ′(ξ) dξ = σ(U+ − U−).

If this jump condition is compared with the generalized Rankine-Hugoniot
condition: ∫ 1

0
A(φ(s; U−,U+))

∂φ

∂s
(s; U−,U+) ds = σ(U+ − U−),

it is clear that the good choice for the path connecting the states U− and U+

would be, after a reparameterization, the viscous profile.
The computation of viscous profiles may be a very difficult task and, even it
they can be computed, a numerical method which is formally consistent with
the corresponding definition of weak solution may not converge to the right
solutions due to the effects of the numerical viscosity (Castro, LeFloch, Muñoz,
CP; JCP (2008).
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WCD Methods: semi-discrete formulation

We consider the semi-discrete finite difference scheme:

dUi

dt
+

1
∆x

A(Ui)

(
p∑

j=−p

αjUi+j

)
=

c
∆x

B

(
p∑

j=−p

βjUi+j

)
+
δc2

∆x
C

(
p∑

j=−p

γjUi+j

)
.

(4)

Ui(t) = U(xi, t) represents the nodal value and c = c(t) ≥ 0 is a
time-dependent parameter to be determined.

In order to have a 2p-th order consistent scheme, the coefficients αi, βi, γi have
to satisfy the following order conditions:

j=p∑
j=−p

jαj = 1;

j=p∑
j=−p

jsαj = 0, s 6= 1 and 0 ≤ s ≤ 2p,

j=p∑
j=−p

j2βj = 2;

j=p∑
j=−p

jsβj = 0, s 6= 2 and 0 ≤ s ≤ 2p,

j=p∑
j=−p

j3γj = 6;

j=p∑
j=−p

jsγj = 0, s 6= 3 and 0 ≤ s ≤ 2p.
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WCD Methods: equivalent equation

A formal Taylor expansion in (4) allows us to derive the equivalent equation:

dU
dt

+ A(U)Ux = c∆xBUxx + δc2∆x2CUxxx

− A(U)

 ∞∑
k=2p+1

∆xk−1

k!
Ap

kU(k)


+ cB

 ∞∑
k=2p+1

∆xk−1

k!
Bp

kU(k)


+ δc2C

 ∞∑
k=2p+1

∆xk−1

k!
Cp

k U(k)

 , (5)

what shows that (4) is a first order method for the hyperoblic system and a
2p-order method for the regularized one, where:

Ap
k =

j=p∑
j=−p

αjjk, Bp
k =

j=p∑
j=−p

βjjk, Cp
k =

j=p∑
j=−p

γjjk.
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WCD Methods: choice of c

At a discontinuity the weak solution formally satisfies:

U(k) = O
(

[U]

∆xk

)
.

Substituting U(k) by [U]/∆xk in (5) we obtain:

dU
dt

+ A(U−,U+)
[U]

∆x
= cB

[U]

∆x
+ δc2C

[U]

∆x

−SA
p A(U−,U+)

[U]

∆x
+ cSB

p B
[U]

∆x
+ δc2SC

p C
[U]

∆x
, (6)

where A(U−,U+) represents some intermediate matrix and

SA
p =

∞∑
k=2p+1

Ap
k

k!
, SB

p =
∞∑

k=2p+1

Bp
k

k!
, SC

p =
∞∑

k=2p+1

Cp
k

k!
.
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WCD Methods: choice of c

If A(U−,U+) satisfies the Roe property

A(U−,U+)[U] =

∫ 1

0
A(Φ(s; U−,U+))∂sΦ(s; U−,U+) ds,

then (6) can be written as follows:

dU
dt

+ σ
[U]

∆x
= cB

[U]

∆x
+ δc2C

[U]

∆x

− SA
p A(U−,U+)

[U]

∆x
+ cSB

p B
[U]

∆x
+ δc2SC

p C
[U]

∆x
. (7)

Ideally the high order terms

h.o.t. = SA
p A(U−,U+)

[U]

∆x
− cSB

p B
[U]

∆x
− δc2SC

p C
[U]

∆x
,

should be dominated in amplitude by the leading order terms

l.o.t. = A(U−,U+)
[U]

∆x
− cB

[U]

∆x
− δc2C

[U]

∆x
.

In order to achieve this correct balance, a tolerance parameter τ << 1 is fixed
and c is chosen so that

|h.o.t.|
|l.o.t.| < τ.
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WCD Methods: implementation

Stability condition: if p is hight enough and A(U), B, C commute, the von
Neumann analysis leads to the condition:

∆t
∆x
≤ 2cµB

k

c2π2(µB
k )2 + (µA

k + δc2π2µC
k )

2

where µA
k , µB

k , µC
k are the eigenvalues of A, B, and C respectively.

Time stepping: 3d order TVD RK method Shu, Osher (1988)).
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Coupled Burgers equation

We consider the following model problem for nonconservative hyperbolic
systems:

∂tu + u ∂x(u + v) = 0,

∂tv + v ∂x(u + v) = 0.

In order to set unambiguously the jump conditions across a shock, the small
scale effects have to be taken into account. Following Berthon CRAS (2002) we
consider the vanishing diffusion term given by:

∂tu + u ∂x(u + v) = ε1∂
2
xx(u + v),

∂tv + v ∂x(u + v) = ε2∂
2
xx(u + v).

In Berthon CRAS (2002) the exact viscous profiles of the regularized system
have been computed, what allows one to compute the solution of Riemann
problems.
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Coupled Burgers equation

We consider first the Riemann problem with initial data

Ul =

[
1

0.25

]
, Ur =

[
2
−1

]
(8)

and apply the WCD problem with constant c = 0.1 and different values of ∆x,
p.

Figure : Numerical results of the WCD method with c = 0.1, p = 8 for the coupled Burgers
system with initial condition (8): (up for the variable u and down for the variable v ).
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Nonconservative hyperbolic systems: weak solutions WCD Methods Numerical tests

Coupled Burgers equation

We consider first the Riemann problem with initial data

Ul =

[
1

0.25

]
, Ur =

[
2
−1

]
(8)

and apply the WCD problem with constant c = 0.1 and different values of ∆x,
p.

Figure : Errors corresponding to the intermediate state of the Riemann problem corresponding to
(8) in logarithmic scale. Horizontal axis: log(p∆x). Vertical axis: log(error) .
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We consider first the Riemann problem with initial data

Ul =

[
1

0.25

]
, Ur =

[
2
−1

]
(8)

and apply the WCD problem with constant c = 0.1 and different values of ∆x,
p.

Figure : Errors corresponding to the intermediate state of the Riemann problem corresponding to
(8) in logarithmic scale with different values of p and p∆x = 2.5 · 10−3 . Horizontal axis: p.
Vertical axis: log(error) .
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Coupled Burgers equation

We consider now the Riemann problem with initial data

Ul =

[
1

0.25

]
, Ur =

[
−2
−1

]
(9)

and apply the WCD problem with constant c = 1, and p∆x = cte.

Figure : Numerical results of the WCD method at t = 0.1 for the coupled Burgers system with
initial condition (9) with different values of p and p∆x = 0.004(up for the variable u and down
for the variable v ).
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Coupled Burgers equation

Approximation of the Rankine-Hugoniot curve of a given left state.

Figure : Approximation of the Hugoniot curve of the right state (2,−1) and the approximation
obtained with c = 0.75, p = 4, and ∆x = 0.08 ).
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Coupled cubic equation

We consider next the system

∂tu + 2(u + v)2 ux + (u + v)2 vx = 0,

∂tv + (u + v)2 ux + 2(u + v)2 vx = 0.
(10)

If the component equations of this system are added, then a scalar conservation
law for w := u + v with cubic flux is obtained:

∂tw + ∂xw3 = 0.

In order to set unambiguously the jump conditions, we consider the following
regularized system:

∂tu + 2(u + v)2 ux + (u + v)2 vx = ε1(u + v)xx + δ1ε
2
1(u + v)xxx,

∂tv + (u + v)2 ux + 2(u + v)2 vx = ε2(u + v)xx + δ2ε
2
1(u + v)xxx,

(11)

where δi, i = 1, 2.
If these two constants are such that:

γ := δ1r2
1 + δ2r2

2 =
δ1r2

1 − δ2r2
2

r1 − r2
, (12)

where
ri =

εi

ε1 + ε2
, i = 1, 2,

then the traveling waves of the regularized system can be explicitly computed.
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Coupled cubic equation

The Rankine-Hugoniot curve of a given left state Ul = [ul, vl]
T with

wl = ul + vl > 0 has a singularity at w = 0.

Figure : Rankine-Hugoniot curve of the state UL = [1, 1] (left); u and v components of the right
states as a function of wr (right).
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Coupled cubic equation

The Riemann problem with initial conditions

Ul =

[
1.5
0.5

]
, Ur =

[
0.75
0.25

]
(13)

is first considered. The solution consists of a contact discontinuity traveling at
speed 4 and a shock whose speed is 7. The numerical method WCD is used with
dx = 1/2500, τ = 1e− 1, p = 4.

Figure : Numerical results of the WCD method with dx = 1/2500, τ = 1e− 1, p = 4 for the
non-convex coupled cubic system with initial conditions (13) : up u, down v.
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Coupled cubic equation

Approximation of the Rankine-Hugoniot curve of a given left state.

Figure : Approximation of the Hugoniot curve of the right state (.5, .5) for the cubic coupled
system and the approximation obtained with τ = 0.1, p = 4, and ∆x = 1/1500 ).
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Coupled cubic equation

In order to test the ability of the numerical methods to correctly capture
non-classical shocks we consider the following Riemann problem for the cubic
flux conservation law:

wt + (w3)x = 0,

w(x, 0) =

{
wl = 3 if x < 0,
wr = −3 +

√
2/
√

3δ otherwise

The solution of this Riemann problem consistent with the considered
regularization consists of a non-classical shock linking wl to wr: see LeFloch
(2002).

If we consider now the coupled cubic system the Riemann problem with left and
right states equal to:

UL =

[
wl/2
wl/2

]
, UR =

[
wr/2
wr/2

]
,

the solution will not be a single shock, as Hugoniot curves cannot pass through
w = 0.
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Coupled cubic equation

Nevertheless, the sum of the two equations of the numerical method provides a
WCD method in nononservative form for the cubic flow scalar law.

Figure : Numerical results of the WCD method for the nonclassical shcok of the cubic flux
conservation law.
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Coupled cubic equation

If instead we apply to the coupled cubic some other numerical method, as the
path-conservative Lax-Friedrichs scheme, the sum is again a WCD in
nonconservative form for the cubic flux scalar law. The numerical solution
converges to the classical solution of the Riemann problem consisting of a
classical shock and plus a rarefaction wave.

Figure : Numerical results of the WCD method for the nonclassical shcok of the cubic flux
conservation law.
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The modified shallow water system

In Castro, LeFloch, Muñoz, CP; JCP (2008) the following system was
considered

ht + qx = 0,

∂qt +

(
q2

h

)
x

+ qhhx = 0.

The system can be written as follows:

ht + qx = 0,(
q +

h3

6

)
t

+

(
q2

h
+ q

h2

2

)
x

= 0.

what allows one to derive the correct Rankine-Hugoniot conditions.
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The modified shallow water system

We consider Riemann problem with initial condition:

h(0, x) =

{
3 x ≤ 0
.5 otherwise,

and u(0, x) = 1. We consider ∆x = 1/500, τ = 0.01, and p = 12.

Figure : Solution with at time 0.1. Left column: h. Right column: u. Black lines: solutions
using the WCD scheme for the nonconservative system. Red lines: solutions using the WCD
scheme for conservative systems.
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The modified shallow water system

Hugoniot curve for a given left state. The numerical curves are obtained by
using the WCD scheme for nonconservative systems using p = 4, p = 12,
p = 20 and p = 50 with ∆x = 1/500.

Figure : 1-shock curves corresponding to the left state (h−, u−) = (1, 1).
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