On hydrostatic reconstruction schemes for the shallow water equations

Sebastian Noelle, RWTH Aachen Guoxian Chen, Wuhan University

NumHyp 2015

Sebastian Noelle

Hydrostatic Reconstruction

NumHyp 2015 1 / 35

Outline

Shallow water equations

2 Semi-discrete finite volume schemes

- Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle
 - Derivation based on subcell reconstructions
- Stability Properties
- 6 Numerical experiments

Shallow water equations

2 Semi-discrete finite volume schemes

- 3 Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle
- 4 Derivation based on subcell reconstructions
- 5 Stability Properties
- 6 Numerical experiments

Shallow water equations

$$\partial_t U + \partial_x F(U) = S(U,z)$$

with unknown vector U, flux-vector F(U) and source term S(U, z)

$$U = \begin{pmatrix} h \\ hu \end{pmatrix}, \quad F(U) = \begin{pmatrix} hu \\ hu^2 + gh^2/2 \end{pmatrix}, \quad S(U,z) = \begin{pmatrix} 0 \\ s \end{pmatrix}.$$

with

Ζ	bottom topography
h	water height
w = z + h	water level
$s = -gh z_x$	gravitational acceleration
и	horizontal velocity

Properties of hyperbolic balance laws

- conservative aspects:
 - wavespeeds $u \pm \sqrt{gh}$
 - shocks, weak solutions
- non-conservative aspects:
 - Leroux, Gosse, Seguin: Riemann-problem non-unique
 - Dal Maso, Murat, LeFloch: Path-conservative solutions
 - Pares, Castro, ...: Path-conservative schemes
 - Near singularity x*,

$$\int h(x) \partial_x z(x) \, dx = \bar{h}(x_*) [z]$$

Modeling Assumption determines

average $\bar{h}(x_*)$ and jump [z]

This is at the heart of the talk!

2 Semi-discrete finite volume schemes

- 3 Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle
- 4 Derivation based on subcell reconstructions
- 5 Stability Properties
- 6 Numerical experiments

Semidiscrete finite volume scheme

Compute evolution of averages

$$U_i(t) \approx \frac{1}{\Delta x} \int_{C_i} U(x,t) \, dx$$

on cells $C_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ by method of lines

$$\begin{aligned} \frac{d}{dt}U_{i}(t) &= R_{i}(t) \\ &\coloneqq -\frac{F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}}}{\Delta x} + \left(S_{i-\frac{1}{2}+} + S_{i+\frac{1}{2}-}\right) \end{aligned}$$

with residuum R_i and

$$\begin{split} F_{i+\frac{1}{2}} &\approx F(U(x_{i+\frac{1}{2}},t))\\ S_{i-\frac{1}{2}+} &\approx S(U(x_{i-\frac{1}{2}+},t),z(x_{i-\frac{1}{2}+}))\\ S_{i+\frac{1}{2}-} &\approx S(U(x_{i+\frac{1}{2}-},t),z(x_{i+\frac{1}{2}-})). \end{split}$$

Semi-discrete finite volume schemes

- Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle
- 4 Derivation based on subcell reconstructions
- 5 Stability Properties
- 6 Numerical experiments

Reconstruction at interfaces

Conservative Step: Given reconstructions $h_{i+\frac{1}{2}\pm}$ and a Riemann solver \mathcal{F} , let

$$U_{i-\frac{1}{2}+} = \begin{pmatrix} h_{i-\frac{1}{2}+} \\ h_{i-\frac{1}{2}+} u_i \end{pmatrix}, \quad U_{i+\frac{1}{2}-} = \begin{pmatrix} h_{i+\frac{1}{2}-} \\ h_{i+\frac{1}{2}-} u_i \end{pmatrix}$$

and
$$F_{i+\frac{1}{2}} = \mathcal{F}(U_{i+\frac{1}{2}-}, U_{i+\frac{1}{2}+})$$

Non-Conservative Step: Given reconstruction $z_{i+\frac{1}{2}}$, define $s_{i+\frac{1}{2}}^{\pm}$.

Shallow water equations

Semi-discrete finite volume schemes

- Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle

4 Derivation based on subcell reconstructions

- 5 Stability Properties
- 6 Numerical experiments

Audusse et al. 2004

Intermediate bottom

$$z_{i+\frac{1}{2}} = z_{i+\frac{1}{2}}^{\max} := \max(z_i, z_{i+1}).$$

One-sided water heights:

$$h_{i+\frac{1}{2}-} = \max(w_i - z_{i+\frac{1}{2}}, 0), \quad h_{i+\frac{1}{2}+} = \max(w_{i+1} - z_{i+\frac{1}{2}}, 0)$$

Source terms:

$$\begin{split} &\Delta x \, s_{i-\frac{1}{2}+} = -\frac{g}{2} \Big(\big(h_{i-\frac{1}{2}+} \big)^2 - \big(h_i \big)^2 \big), \\ &\Delta x \, s_{i+\frac{1}{2}-} = -\frac{g}{2} \Big(\big(h_i \big)^2 - \big(h_{i+\frac{1}{2}-} \big)^2 \big). \end{split}$$

Morales et. al. 2013

As in Audusse et al., unless water climbs up the hill:

If $w_i < z_{i-1}$, $u_i < 0$, and

$$\frac{(u_i)^2}{2} + g(w_i - z_{i-1}) > \frac{3}{2}\sqrt{g(h_i u_i)^3},$$

then

$$\Delta x \, s_{i-\frac{1}{2}+} = -\frac{g}{2} \big(h_i + h_{i-\frac{1}{2}+} \big) \big(z_i - z_{i-\frac{1}{2}} \big).$$

Chen and Noelle

New bottom:

$$z_{i+\frac{1}{2}} = \min(z_{i+\frac{1}{2}}^{\max}, w_{i+\frac{1}{2}}^{\min})$$

with $w_{i+\frac{1}{2}}^{\min} = \min(w_i, w_{i+1})$.

New water heights

$$h_{i+\frac{1}{2}-} = \min(w_i - z_{i+\frac{1}{2}}, h_i), \quad h_{i+\frac{1}{2}+} = \min(w_{i+1} - z_{i+\frac{1}{2}}, h_{i+1}).$$

Source term in natural form:

$$\begin{split} &\Delta x \, s_{i-\frac{1}{2}+} = -\frac{g}{2} \Big(h_i + h_{i-\frac{1}{2}+} \Big) \Big(z_i - z_{i-\frac{1}{2}} \Big), \\ &\Delta x \, s_{i+\frac{1}{2}-} = -\frac{g}{2} \Big(h_i + h_{i+\frac{1}{2}-} \Big) \Big(z_{i+\frac{1}{2}} - z_i \Big). \end{split}$$

Shallow water equations

Semi-discrete finite volume schemes

- 3 Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle

Derivation based on subcell reconstructions

- 5 Stability Properties
- 6 Numerical experiments

Preview of subcell reconstruction

- Infinitesimal subcells near $x_{i+\frac{1}{2}}$
- topography and water surface

The subcells

Wlog
$$x_{i+\frac{1}{2}} = 0$$
, so
 $C_i \cup C_{i+1} = [-\Delta x, 0] \cup [0, \Delta x].$

Definition (infinitesimal boundary subcells) For $\varepsilon \ll \Delta x$ let

$$\begin{bmatrix} -\varepsilon, \varepsilon \end{bmatrix} = \begin{bmatrix} -\varepsilon, -\varepsilon/2 \end{bmatrix} \cup \begin{bmatrix} -\varepsilon/2, 0 \end{bmatrix} \cup \begin{bmatrix} 0, \varepsilon/2 \end{bmatrix} \cup \begin{bmatrix} \varepsilon/2, \varepsilon \end{bmatrix}$$
$$=: \widehat{C}_{i+\frac{1}{2}-} \cup \widetilde{C}_{i+\frac{1}{2}-} \cup \widetilde{C}_{i+\frac{1}{2}+} \cup \widetilde{C}_{i+\frac{1}{2}+}$$

singular subcells
$$\widehat{C}_{i+\frac{1}{2}-}$$
 and $\widehat{C}_{i+\frac{1}{2}+}$
conservative subcells $\widetilde{C}_{i+\frac{1}{2}-}$ and $\widetilde{C}_{i+\frac{1}{2}+}$

Piecewise linear subcell reconstruction

Hydrostatic reconstruction /surface gradient method

- Step 1: bottom $z_{\varepsilon}(x)$
- Step 2: watersurface $w_{\varepsilon}(x)$

Step 3: waterheight

$$h_{\varepsilon}(x) \coloneqq w_{\varepsilon}(x) - z_{\varepsilon}(x)$$

Fully wet case (same for all schemes)

- Infinitesimal subcells near $x_{i+\frac{1}{2}}$
- topography and water surface
- singularities separated

HR scheme based on subcell reconstructions

Definition

The semidiscrete HR method based on subcell reconstructions is given by

$$\Delta x \frac{d}{dt} U_i(t) = \Delta x R_i(t)$$
$$= \left(F_{i-\frac{1}{2}} - F_{i+\frac{1}{2}}\right) - g\left(\overline{h} [z]\right)_{i-\frac{1}{2}+} - g\left(\overline{h} [z]\right)_{i+\frac{1}{2}-}$$

with

$$\overline{h}_{i-\frac{1}{2}+} := \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon/2} \int_{\widehat{C}_{i-\frac{1}{2}+}} h_{\varepsilon}(x) \, dx \right), \quad [z]_{i-\frac{1}{2}+} := z_i - z_{i-\frac{1}{2}} \\
\overline{h}_{i-\frac{1}{2}+} := \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon/2} \int_{\widehat{C}_{i+\frac{1}{2}-}} h_{\varepsilon}(x) \, dx \right), \quad [z]_{i+\frac{1}{2}-} := z_{i+\frac{1}{2}} - z_i$$

This answers a key question of the talk

Sebastian Noelle

Main Theorem

Theorem (Chen, Noelle 2015)

All three original HR schemes coincide with the corresponding new HR schemes based on suitable subcell reconstructions given below.

Key difficulties:

• the almost dry case

$$z_i > w_{i+1} > z_{i+1}$$

• the wet-dry front

$$z_i > w_{i+1} > z_{i+1}$$
 and $h_i = 0$

Almost dry interface: Audusse et al.

 $z_{i+\frac{1}{2}} = z_i, \text{ and }$

$$\begin{aligned} \Delta x \left(R_i^{(2)} + R_{i+1}^{(2)} \right)^{\text{Aud}} \\ &= - \left(F_{i+1}^{(2)} - F_i^{(2)} \right) - \frac{g h_{i+1}}{2} \left(z_{i+1} - z_i \right) \end{aligned}$$

Almost dry interface: Chen/Noelle

 $z_{i+\frac{1}{2}} = w_{i+1}$, and

$$\Delta x \left(R_i^{(2)} + R_{i+1}^{(2)} \right)^{\text{CN}}$$

= $- \left(F_{i+1}^{(2)} - F_i^{(2)} \right) - gh_i \left(w_{i+1} - z_i \right) + \frac{g h_{i+1}}{2} h_{i+1}$

Wet-dry front: Audusse

$$\Delta x \left(R_i^{(2)} + R_{i+1}^{(2)} \right)^{\text{Aud}} = - \left(h u^2 \right)_{i+1} - \frac{g h_{i+1}}{2} \left(w_{i+1} - w_i \right)$$

additional downhill acceleration

Wet-dry front: Chen/Noelle

$$\Delta x \left(R_i^{(2)} + R_{i+1}^{(2)} \right)^{\mathsf{CN}} = -\left(hu^2 + \frac{g}{2} h^2 \right)_{i+1} - \frac{g h_{i+1}}{2} \left(z_{i+1} - w_{i+1} \right)$$
$$= -\left(hu^2 \right)_{i+1}$$

Acceleration only by outflow!

Comments on the wet-dry front

still water:

$$u = 0$$
 and $\partial_x w = 0$

lake at rest:

$$u = 0$$
 and $h \partial_x w = 0$

Typical example: wet-dry interface

$$u = 0 \quad \text{in} \quad C_i \cup C_{i+1}$$
$$h = 0 \quad \text{in} \quad C_i$$
$$\partial_x w = 0 \quad \text{in} \quad C_{i+1}$$

Shallow water equations

Semi-discrete finite volume schemes

- 3 Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle

4 Derivation based on subcell reconstructions

Stability Properties

6 Numerical experiments

Well-balancing

Theorem (Audusse et al. 2004) The HR^{Aud} scheme guarantees

- positivity
- still water equilibrium
- a semi-discrete entropy inequality

Theorem (Chen/Noelle 2015)

The HR^{Aud} scheme guarantees

- positivity
- lake at rest equilibrium

Conjecture

The HR^{CN} scheme satisfies a semi-discrete entropy inequality

Shallow water equations

Semi-discrete finite volume schemes

- 3 Original hydrostatic reconstruction
 - HR method of Audusse et al.
 - HR method of Morales et. al.
 - HR method of Chen/Noelle
- 4 Derivation based on subcell reconstructions
- 5 Stability Properties

6 Numerical experiments

Lakes at rest in the mountains

Left: surface w; Right: error of water hight h. (50 cells).

Sequence of linear downhill flows

Linear downhill flows (16, 17, 18, 19, 20, 21%). 50 cells

Sebastian Noelle

Sequence of dambreaks over various step

Downhill step sizes 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 (100 cells)

Sebastian Noelle

Sequence of flows up a step

Uphill step sizes 0.4, 0.3, 0.15, 0.05 (100 cells)

Sebastian Noelle

Dam-break problem over discontinuous dry bottom

Front position and velocity, and final solution

Sebastian Noelle

Malpasset dam-break event

Mesh: 2600 elements and 13541 points;

C -	 NI II -
se	i Noelle
_	

Malpasset dam-break event

Flood arrival times at three electric transformers.

trans for-	x	у	Meas	HR	Modified	New
mers					HR	HR
A	5550	4400	100	124	128	125
В	11900	3250	1240	1317	1310	1313
C	13000	2700	1420	1431	1423	1425