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Systems of balance laws

I Nonlinear systems of PDEs of form:

Ut + div(F(U)) = B(x , t,U).

I Examples:
I Shallow water equations with bottom topography (Geophysics,

Oceanography)
I Euler equations with gravitation (Climate Science).
I Stratified MHD equations (Astrophysics).

I Special case: Conservation laws (Source B ≡ 0).
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Solution framework: Entropy solutions

I Hyperbolicity: Finite speed of propagation.

I Nonlinearity⇒ Shock formation.
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I Weak solutions (in the sense of distributions).

I Weak solutions are not necessarily unique.

I Additional admissibility criteria: Entropy conditions.
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Standard numerical Methods

I Finite volume schemes: Discrete balance.

X j 1 X
j +1

t n

tn+1

U
n
j U

n
j+1U

n
j −1

U
n+1
j

Fj +1/2
F
j −1/2

− 2/ /2

I Numerical flux:
I Exact (approximate) Riemann solver: Godunov, Roe, HLL.

I Non-oscillatory piecewise polynomial reconstruction:
I TVD, ENO, WENO, DG.

I SSP Runge-Kutta time stepping.
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Discretization of Source terms

I Need to preserve steady states (Hydrostatic equilibrium):

I Ensure Discrete version of

div(F(U)) ≈ B(x , t,U).

I Hydrostatic reconstruction ⇒ Well-balanced schemes

I Above framework is Highly successful in practice.

Siddhartha Mishra MVS for balance laws



Ex 1: Simulating waves in the Solar atmosphere

• Stratified MHD equations (Simulations of
Fuchs,McMurry,SM,Waagan,2010,2011)
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Alfven Waves in a synthetic solar atmosphere
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Chromospheric waves from SOHO data
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Ex 2: Simulating Supernova Core Collapse

• Stratified MHD with Neutrino transport and Self gravity
(Käppeli, SM, 2014,2015)
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Well balanced vs. Naive Schemes
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Ex 3: Simulation of Exoplanet atmospheres

• Stratified Euler on a sphere (By Grosheintz, Käppeli, SM,
Heng,Forthcoming)
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Problem I: What is the numerical error?

I Convergence: Fundamental question in Numerical analysis

I Does U∆x → U as ∆x → 0 ?

I Rate of convergence ?

I Question of Convergence of numerical methods is open.

I Particularly for Multi-D systems.

I Empirical demonstration of convergence ?
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Rayleigh-Taylor problem: Euler equations with gravity

• Second-order well-balanced simulation of Käppeli, SM.
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Numerical convergence: 2-D Rayleigh-Taylor problem
200× 50 grid (T = 10)
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Numerical convergence: 2-D Rayleigh-Taylor problem
400× 100 grid (T = 10)
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Numerical convergence: 2-D Rayleigh-Taylor problem
800× 200 grid (T = 10)
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Numerical convergence: 2-D Rayleigh-Taylor problem
1600× 400 grid (T = 10)
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Numerical convergence: 2-D Rayleigh-Taylor problem
3200× 800 grid (T = 10)
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L1 Error vs mesh resolution: 2-D Rayleigh-Taylor problem
T = 10
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Problem 1: Lack of convergence for Conservation
(Balance) laws

I Suggests Lack of convergence to any function.

I Refining resolution reveals more small scale phenomena.
I Many Other examples like

I Kelvin-Helmholtz problem.
I Richtmeyer-Meshkov problem.

I Generic to Unstable and Turbulent flows.

I Similar behavior for all numerical schemes.
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Lituya Bay Mega Tsunami, Alaska, 1958

I Earthquake induced rockslide tsunami.

I Highest recorded wave run-up: 524 m !!!
I Simulation of Asuncion, Castro, SM, Sukys, Sanchez, 2014:

I Two-layer shallow water model.
I Robust finite volume scheme for Non-conservative hyperbolic

system
I Optimized GPU implementation.
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Run-up at T = 39s
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Criticism of the simulation

I Three Crucial Model parameters
I Ratio of inter-layer densities.
I Coloumb friction.
I Inter-layer friction.

I Measurement of parameters is highly uncertain.

I No reliability of the simulation.
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Problem 2: Uncertainty

I Model inputs: are obtained by Measurements:
I Initial conditions.
I Boundary data.
I Coefficients.
I Parameters.

I Measurements are Uncertain.

I Uncertain Inputs ⇒ Uncertain Solutions (Outputs).

I Modeling and computation of this uncertainty is Uncertainty
Quantification (UQ)
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Challenges

I Lack of Convergent methods.

I Linked to the lack of global well-posedness results for entropy
(admissible) solutions.

I UQ

I A promising solution that kills two birds with one stone

I Measure valued solutions

I Statistical solutions

I Follow up to the lecture of Tadmor

I Trailer for the lecture of Fjordholm

Siddhartha Mishra MVS for balance laws



Entropy measure valued solutions

I Pioneered by DiPerna (early to mid 80’s).

I Contributions from Majda, Murat, Tartar.

I More recent advocacy by Glimm.

I Solutions are Young measures i.e, space-time parametrized
probability measures νx ,t .

I With action:

〈g , νx ,t〉 :=

∫
P
g(λ)dνx ,t(λ)

I Characterizes weak limits of sequences of bounded functions.

I MVS assigns a probability distribution (likely value) for a.e
point in space-time (one-point statistics)
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Weak solutions (time snapshot)

SPACE
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Measure valued solutions (time snapshot)

SPACE
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Generalized Cauchy problem for
Ut + div(F(U)) = B(x , t,U)

〈νx ,t , ID〉t + div(〈νx ,t ,F〉) = 〈νx ,t ,B(x , t, ·)〉 in D′(D)

νx ,0 = σx , a.e x ∈ R.

I EMVS satisfies:
I Weak solution.
I Entropy condition: 〈ν, S〉t + div(〈ν,Q〉) ≤ 0
I Initial data (DiPerna)

lim
t→0+

∫
R
ϕ(x)〈νx,t , ID〉dx =

∫
R
ϕ(x)〈σx , ID〉dx

I Initial data attained in the sense of mean.

I Efficient Construction of EMVS: Algorithm designed by
Fjordholm, Käppeli, SM, Tadmor (FKMT), 2014.
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Step 1: Preparation of initial data

I Let {Ω,Σ,P} be a complete probability space.

I Find random field U0 : Ω 7→ L1(R) ∩ L∞(R), such that:

I σx be the LAW of the random field U0 i.e, for all Borel
subsets D ⊂ Rm:

σx(D) := P
(
{ω ∈ Ω : U0(ω, x) ∈ D

)
,
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Step 2: Numerical approximations

I Standard semi-discrete finite volume scheme:

d
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I On the grid:
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Step 3: Abstract Convergence criteria, Fjordholm, Käppeli,
SM, Tadmor 2014

I Let ν∆x
x ,t be the law of the random field U∆x

I Thrm: ν∆x
x ,t is a young measure on phase space.
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Step 3: Abstract Convergence criteria, (Contd..)

I L∞ bounds:
‖U∆x‖L∞ ≤ C , a.e ω

.

I Discrete entropy inequality:

d

dt
S(Uj(t)) +

1

∆x
(Qj+1/2 − Qj−1/2) ≤ 0

I Weak BV bounds (for a.e. ω):∫ T

0

∑
j

|Uj+1 −Uj |p+1dt ≤ C .

• Thrm: Then, ν∆x ⇀ ν (EMVS of the system).
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Convergent schemes

I Schemes satisfy Discrete entropy inequality + Weak BV
bound:

I TeCNO schemes (Fjordholm, SM, Tadmor 2012).
I Space-time DG schemes (Hiltebrand, SM, 2013).

I Assumption of L∞ bound.

I Relaxed in (Fjordholm,SM,Tadmor Forthcoming) with
Generalized young measures.

I Numerical schemes satisfy L2 bounds (Entropy estimate).
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Computing the EMVS

I Weak-∗ convergence ⇒ as ∆x → 0, convergence of∫
Dt

ψ(x , t)〈g , ν∆x
x ,t 〉dxdt →

∫
Dt

ψ(x , t)〈g , νx ,t〉dxdt

I Sense of convergence: Statistics of functionals of interest

I Precisely the outputs of measurement
I Typical observables:

I g(λ) = λ (Mean).
I g(λ) = λ⊗ λ (Variance).

I Almost any quantity of interest can be written as an
admissible observable
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Typical measurements: Weather
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Monte Carlo approximation

I We need to compute:

〈g , ν∆x
x ,t 〉 =

∫
P
g(λ)dν∆x

x ,t (λ)

=

∫
Ω

g(U∆x(x , t, ω))dP(ω) (Definition of law)

≈ 1

M

∑
1≤i≤M

g(U∆x
i (x , t)) (MC approximation).

I U∆x
i are M i.i.d samples

I Convergence proof as M →∞ (Fjordholm, Käppeli, SM,
Tadmor,,2014).
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KH (Sample): Density at different resolutions
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Cauchy rates ‖U∆x −U∆x/2‖L1
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KH mean on different meshes (200 samples)
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Mean: Cauchy rates ‖U∆x −U∆x/2‖L1
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KH variance on different meshes (200 samples)
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Variance: Cauchy rates ‖U∆x −U∆x/2‖L1
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Wasserstein distances W1(ν∆x , ν∆x/2) for different
resolutions
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Cauchy rates in L1(W1)
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Convergence of PDFs
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Atomic initial measure ⇒ Non-atomic young measure
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Atomic initial measure ⇒ Non-atomic young measure
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Richtmeyer Meshkov (Sample): Density
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Cauchy rates ‖U∆x −U∆x/2‖L1
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RM mean on different meshes (200 samples)
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Mean: Cauchy rates ‖U∆x −U∆x/2‖L1
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RM variance on different meshes (200 samples)
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Variance: Cauchy rates ‖U∆x −U∆x/2‖L1
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MVS Issues I: Uniqueness (stability) ?

I A generic admissible (entropy) MVS is Not unique.

I Similar construction a la DeLellis, Szekelyhidi.
I However, computed MVS seems to very stable wrt

I Different numerical schemes.
I Different types of initial perturbations.
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Stability vis a vis different numerical schemes
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Stability vis a vis different types of perturbations: Mean
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Stability vis a vis different types of perturbations: Variance
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Stability of MVS ?

I Numerical experiments suggest that computed solution is
stable !!

I Additional selection criteria for the computed solution ?
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MVS as a UQ framework

I MVS is an UQ framework for Uncertain initial data +
coefficients.

I MV Cauchy problem:

〈ν, ID〉t + div〈ν,F〉 = 〈ν,B〉, in D′(D)

νx ,0 = σx , a.e x ∈ R.

I Initial Young measure σx represents 1-pt statistics.
I 1-pt statistics evolved by MVS νx,t .
I DOESNOT account for Spatial correlations in initial data or

solutions !!!

I Spatially independent initial data ⇒ Spatially correlated
solutions !!!
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Measure valued solutions (time snapshot)

SPACE
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Two-point correlations (time snapshot)

SPACE
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Multi-point correlations (time snapshot)

SPACE
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Statistical Solutions

SPACE
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Statistical solutions

I Developed by Fjordholm, Lanthaler, SM, forthcoming.

I Statistical solution µ ∈ Prob(Lp(D)) i.e, probability measure
on a function space.

I THM: Completely characterized by all k-point correlation
measures.

µt ⇐⇒



ν1
x ,t

ν2
x1,x2,t

. . .

νkx1,x2,...,xk ,t

. . .

I Identification through Cylindrical test functions.
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Statistical solutions (Contd)

I Infinite dimensional Liouville equation characterized by,

∂t〈νkx1,x2,...,xk ,t
, ξ1ξ2 . . . ξk〉

+
k∑

i=1

∂xi 〈ν
k
x1,x2,...,xk ,t

, ξ1ξ2 . . .F(ξi ) . . . ξk〉 = 0, ∀k ∈ N

I + Suitable Entropy conditions.
I Fjordholm, SM, 2015 shows:

I Existence of statistical solutions.
I Approximation of statistical solutions using the FKMT

algorithm !!!

I Promising description of Turbulent flows.

I UQ framework that accounts for correlations.

I Uniqueness of statistical solutions is very much open.

I Details in talk by Ulrik S. Fjordholm.
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MVS Issue II: Computational cost

I Phase space integrals by Monte Carlo (MC) sampling:

〈g , ν∆x
x ,t 〉 ≈

1

M

∑
1≤i≤M

g(U∆x
i (x , t)).

I MC converges at rate O
(

1√
M

)
I Slow convergence ⇒ Extreme computational cost.

I Possible solution: Multi-level Monte Carlo (MLMC) methods.
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MLMC

MESH Resolution                                  Number of samples
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MLMC-FKMT algorithm: Lye, SM, forthcoming

I Different nested levels of resolution: l .

I Draw Ml i.i.d samples for the initial random field:
{Ui

l ,0}1≤i≤Ml
.

I For each draw: Solve conservation law by numerical scheme
to obtain Ui

τ,l .

I Sample statistics: with uτ,−1 = 0,

〈g , ντx ,t〉 =
L∑

l=0

Ml∑
i=1

1

Ml

(
g(Uτ,l

i (x , t))− g(Uτ,l−1
i (x , t))

)
I Convergence of ντ to EMVS.

I Considerably Reduced Computational Cost.

I Numerical experiments in progress.
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Run-up at T = 39s
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Run-up Mean at T = 39s
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Run-up Variance at T = 39s
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Summary

I Problems with State of the art schemes:
I Lack of Convergence on mesh refinement.

I Generic to unstable and Turbulent flows.
I Linked with lack of Wellposedness.

I Uncertainty quantification

I A Statistical solution framework:
I Measure Valued solutions.
I Statisical solutions.
I Approximation by convergent algorithms.
I Promising description of multi-dimensional complex flows.

I Open questions:
I Uniqueness of admissible statistical solutions.
I Rigorous description of Turbulent flows.
I Optimally complex numerical algorithms.
I Non-conservative problems.
I HPC implementation.
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Atomic initial measure ⇒ Non-atomic young measure
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