Measure valued and statistical solutions of systems of balance laws.

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), ETH Zürich, Switzerland (and) Center of Mathematics for Applications (CMA), University of Oslo, Norway. Nonlinear systems of PDEs of form:

$$\mathbf{U}_t + \operatorname{div}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(x, t, \mathbf{U}).$$

Examples:

- Shallow water equations with bottom topography (Geophysics, Oceanography)
- Euler equations with gravitation (Climate Science).
- Stratified MHD equations (Astrophysics).
- Special case: Conservation laws (Source $\mathbf{B} \equiv 0$).

Solution framework: Entropy solutions

- Hyperbolicity: Finite speed of propagation.
- ► Nonlinearity⇒ Shock formation.

- Weak solutions (in the sense of distributions).
- Weak solutions are not necessarily unique.
- Additional admissibility criteria: Entropy conditions.

Standard numerical Methods

Finite volume schemes: Discrete balance.

- Numerical flux:
 - Exact (approximate) Riemann solver: Godunov, Roe, HLL.
- Non-oscillatory piecewise polynomial reconstruction:
 - TVD, ENO, WENO, DG.
- **SSP Runge-Kutta** time stepping.

- Need to preserve steady states (Hydrostatic equilibrium):
- Ensure Discrete version of

$$\operatorname{div}(\mathbf{F}(\mathbf{U})) \approx \mathbf{B}(x, t, \mathbf{U}).$$

► Hydrostatic reconstruction ⇒ Well-balanced schemes

► Above framework is Highly successful in practice.

Ex 1: Simulating waves in the Solar atmosphere

• Stratified MHD equations (Simulations of Fuchs, McMurry, SM, Waagan, 2010, 2011)

• • • •

Alfven Waves in a synthetic solar atmosphere

イロン イヨン イヨン イヨン

æ

Chromospheric waves from SOHO data

Ex 2: Simulating Supernova Core Collapse

• Stratified MHD with Neutrino transport and Self gravity (Käppeli, SM, 2014,2015)

▲ ▶ ▲ ●

Well balanced vs. Naive Schemes

< 4 → < 2

< 三→

æ

Ex 3: Simulation of Exoplanet atmospheres

• Stratified Euler on a sphere (By Grosheintz, Käppeli, SM, Heng, Forthcoming)

- Convergence: Fundamental question in Numerical analysis
- Does $\mathbf{U}^{\Delta x} \to \mathbf{U}$ as $\Delta x \to 0$?
- Rate of convergence ?
- Question of Convergence of numerical methods is open.
- Particularly for Multi-D systems.
- Empirical demonstration of convergence ?

Rayleigh-Taylor problem: Euler equations with gravity

• Second-order well-balanced simulation of Käppeli, SM.

3

Numerical convergence: 2-D Rayleigh-Taylor problem 200×50 grid (T = 10)

< 🗇 > < 🖃 >

Numerical convergence: 2-D Rayleigh-Taylor problem 400×100 grid (T = 10)

< **₩** ► < **⇒** ►

< ≣⇒

Numerical convergence: 2-D Rayleigh-Taylor problem 800×200 grid (T = 10)

< **₩** ► < **⇒** ►

-

Numerical convergence: 2-D Rayleigh-Taylor problem 1600×400 grid (T = 10)

・ 同・ ・ ヨ・

Numerical convergence: 2-D Rayleigh-Taylor problem 3200×800 grid (T = 10)

A (1) > A (1) > A

-

L^1 Error vs mesh resolution: 2-D Rayleigh-Taylor problem T = 10

Problem 1: Lack of convergence for Conservation (Balance) laws

- Suggests Lack of convergence to any function.
- ► Refining resolution reveals more small scale phenomena.
- Many Other examples like
 - Kelvin-Helmholtz problem.
 - Richtmeyer-Meshkov problem.
- Generic to Unstable and Turbulent flows.
- Similar behavior for all numerical schemes.

- Earthquake induced rockslide tsunami.
- Highest recorded wave run-up: 524 m !!!
- Simulation of Asuncion, Castro, SM, Sukys, Sanchez, 2014:
 - Two-layer shallow water model.
 - Robust finite volume scheme for Non-conservative hyperbolic system
 - Optimized GPU implementation.

Run-up at T = 39s

(日) (回) (E) (E) (E)

Three Crucial Model parameters

- Ratio of inter-layer densities.
- Coloumb friction.
- Inter-layer friction.
- Measurement of parameters is highly uncertain.
- No reliability of the simulation.

Model inputs: are obtained by Measurements:

- Initial conditions.
- Boundary data.
- Coefficients.
- Parameters.
- Measurements are Uncertain.
- ► Uncertain Inputs ⇒ Uncertain Solutions (Outputs).
- Modeling and computation of this uncertainty is Uncertainty Quantification (UQ)

- Lack of Convergent methods.
- Linked to the lack of global well-posedness results for entropy (admissible) solutions.
- ► UQ
- A promising solution that kills two birds with one stone
- Measure valued solutions
- Statistical solutions
- Follow up to the lecture of Tadmor
- Trailer for the lecture of Fjordholm

Entropy measure valued solutions

- Pioneered by DiPerna (early to mid 80's).
- Contributions from Majda, Murat, Tartar.
- More recent advocacy by Glimm.
- Solutions are Young measures i.e, space-time parametrized probability measures ν_{x,t}.
- With action:

$$\langle g,
u_{\mathsf{x},t}
angle \coloneqq \int_P g(\lambda) d
u_{\mathsf{x},t}(\lambda)$$

- Characterizes weak limits of sequences of bounded functions.
- MVS assigns a probability distribution (likely value) for a.e point in space-time (one-point statistics)

Weak solutions (time snapshot)

Measure valued solutions (time snapshot)

Generalized Cauchy problem for $\mathbf{U}_t + \operatorname{div}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(x, t, \mathbf{U})$

$$\langle \nu_{x,t}, ID \rangle_t + \operatorname{div}(\langle \nu_{x,t}, \mathbf{F} \rangle) = \langle \nu_{x,t}, \mathbf{B}(x, t, \cdot) \rangle$$
 in $\mathcal{D}'(D)$
 $\nu_{x,0} = \sigma_x$, a.e $x \in \mathbb{R}$.

EMVS satisfies:

- Weak solution.
- Entropy condition: $\langle \nu, S \rangle_t + \operatorname{div}(\langle \nu, \mathbf{Q} \rangle) \leq 0$
- Initial data (DiPerna)

$$\lim_{t\to 0+} \int_{\mathbb{R}} \varphi(x) \langle \nu_{x,t}, ID \rangle dx = \int_{\mathbb{R}} \varphi(x) \langle \sigma_x, ID \rangle dx$$

Initial data attained in the sense of mean.

Efficient Construction of EMVS: Algorithm designed by Fjordholm, Käppeli, SM, Tadmor (FKMT), 2014.

- Let $\{\Omega, \Sigma, \mathcal{P}\}$ be a complete probability space.
- Find random field $U_0 : \Omega \mapsto L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$, such that:
- σ_x be the LAW of the random field U₀ i.e, for all Borel subsets D̄ ⊂ ℝ^m:

$$\sigma_{x}(\overline{D}) := \mathcal{P}\left(\{ \omega \in \Omega : \mathbf{U}_{0}(\omega, x) \in \overline{D} \right),$$

Step 2: Numerical approximations

Standard semi-discrete finite volume scheme:

$$\begin{split} \frac{d}{dt} \mathbf{U}_{j}^{\Delta x}(t) + \frac{1}{\Delta x} (\mathbf{F}_{j+1/2} - \mathbf{F}_{j-1/2}) &= \mathbf{B}_{j} \\ \mathbf{U}_{j}^{\Delta x}(0,\omega) &= \mathbf{U}_{0}(x_{j},\omega) \\ \mathbf{U}^{\Delta x}|_{[x_{j-1/2},x_{j+1/2})} &= \mathbf{U}_{j}^{\Delta x}. \end{split}$$

On the grid:

Step 3: Abstract Convergence criteria, Fjordholm, Käppeli, SM, Tadmor 2014

Let ν^{Δx}_{x,t} be the law of the random field U^{Δx}
 Thrm: ν^{Δx}_{x,t} is a young measure on phase space.

Step 3: Abstract Convergence criteria, (Contd..)

▶ L[∞] bounds:

.

$$\|\mathbf{U}^{\Delta x}\|_{L^{\infty}} \leq C, \quad \text{a.e } \omega$$

Discrete entropy inequality:

$$rac{d}{dt}S({f U}_j(t))+rac{1}{\Delta x}(Q_{j+1/2}-Q_{j-1/2})\leq 0$$

• Weak *BV* bounds (for a.e. ω):

$$\int_0^T \sum_j |\mathbf{U}_{j+1} - \mathbf{U}_j|^{p+1} dt \leq C.$$

• Thrm: Then, $\nu^{\Delta x} \rightharpoonup \nu$ (EMVS of the system).

- Schemes satisfy Discrete entropy inequality + Weak BV bound:
 - ► TeCNO schemes (Fjordholm, SM, Tadmor 2012).
 - Space-time DG schemes (Hiltebrand, SM, 2013).
- Assumption of L^{∞} bound.
- Relaxed in (Fjordholm,SM,Tadmor Forthcoming) with Generalized young measures.
- ► Numerical schemes satisfy L² bounds (Entropy estimate).

• Weak-* convergence \Rightarrow as $\Delta x \rightarrow 0$, convergence of

$$\int_{D_t} \psi(x,t) \langle g, \nu_{x,t}^{\Delta x} \rangle dx dt \rightarrow \int_{D_t} \psi(x,t) \langle g, \nu_{x,t} \rangle dx dt$$

- Sense of convergence: Statistics of functionals of interest
- Precisely the outputs of measurement
- Typical observables:
 - $g(\lambda) = \lambda$ (Mean).
 - $g(\lambda) = \lambda \otimes \lambda$ (Variance).
- Almost any quantity of interest can be written as an admissible observable

(ロ) (同) (E) (E) (E)
We need to compute:

$$\begin{split} \langle g, \nu_{x,t}^{\Delta x} \rangle &= \int_{P} g(\lambda) d\nu_{x,t}^{\Delta x}(\lambda) \\ &= \int_{\Omega} g(\mathbf{U}^{\Delta x}(x,t,\omega)) d\mathcal{P}(\omega) \quad \text{(Definition of law)} \\ &\approx \frac{1}{M} \sum_{1 \leq i \leq M} g(\mathbf{U}_{i}^{\Delta x}(x,t)) \quad \text{(MC approximation)}. \end{split}$$

- $\mathbf{U}_i^{\Delta x}$ are *M* i.i.d samples
- ► Convergence proof as M → ∞ (Fjordholm, Käppeli, SM, Tadmor,,2014).

KH (Sample): Density at different resolutions

Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

KH mean on different meshes (200 samples)

- < ≣ →

æ

Mean: Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

æ

KH variance on different meshes (200 samples)

< ≣⇒

Э

Variance: Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

Wasserstein distances $W_1(\nu^{\Delta x}, \nu^{\Delta x/2})$ for different resolutions

A ₽

Siddhartha Mishra MVS for balance laws

Convergence of PDFs

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ

Atomic initial measure \Rightarrow Non-atomic young measure

▲ 御 ▶ → モ ● ▶

- < ≣ →

Э

Atomic initial measure \Rightarrow Non-atomic young measure

< ≣ >

Э

Richtmeyer Meshkov (Sample): Density

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

RM mean on different meshes (200 samples)

< ≣ >

</i>
< □ > < □ >

æ

Mean: Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

Siddhartha Mishra

MVS for balance laws

RM variance on different meshes (200 samples)

lensity unbiased variance, 1 + 4

▲□→ < □→</p>

- < ≣ >

æ

Variance: Cauchy rates $\|\mathbf{U}^{\Delta x} - \mathbf{U}^{\Delta x/2}\|_{L^1}$

- A generic admissible (entropy) MVS is Not unique.
- Similar construction a la DeLellis, Szekelyhidi.
- However, computed MVS seems to very stable wrt
 - Different numerical schemes.
 - Different types of initial perturbations.

Stability vis a vis different numerical schemes

Siddhartha Mishra

MVS for balance laws

Stability vis a vis different types of perturbations: Mean

Stability vis a vis different types of perturbations: Variance

(k) Uniform Siddhartha Mishra

0.6 0.7 0.8 0.9

> (\mathbf{l}) MVS for balance laws

Normal

- Numerical experiments suggest that computed solution is stable !!
- Additional selection criteria for the computed solution ?

- ∢ ⊒ →

MVS as a UQ framework

- MVS is an UQ framework for Uncertain initial data + coefficients.
- MV Cauchy problem:

$$\langle \nu, ID \rangle_t + \operatorname{div} \langle \nu, \mathbf{F} \rangle = \langle \nu, \mathbf{B} \rangle, \quad \text{in} \quad \mathcal{D}'(D)$$

 $\nu_{x,0} = \sigma_x, \quad \text{a.e } x \in \mathbb{R}.$

- Initial Young measure σ_x represents 1-pt statistics.
- 1-pt statistics evolved by MVS $\nu_{x,t}$.
- DOESNOT account for Spatial correlations in initial data or solutions !!!
- ► Spatially independent initial data ⇒ Spatially correlated solutions !!!

伺 ト イミト イミト

Measure valued solutions (time snapshot)

Two-point correlations (time snapshot)

Multi-point correlations (time snapshot)

Statistical Solutions

Statistical solutions

- Developed by Fjordholm, Lanthaler, SM, forthcoming.
- Statistical solution µ ∈ Prob(L^p(D)) i.e, probability measure on a function space.
- THM: Completely characterized by all k-point correlation measures.

$$\mu_t \iff \begin{cases} \nu_{x,t}^1 \\ \nu_{x_1,x_2,t}^2 \\ \dots \\ \nu_{x_1,x_2,\dots,x_k,t}^k \\ \dots \end{cases}$$

Identification through Cylindrical test functions.

Statistical solutions (Contd)

Infinite dimensional Liouville equation characterized by,

$$\partial_t \langle \nu_{x_1, x_2, \dots, x_k, t}^k, \xi_1 \xi_2 \dots \xi_k \rangle \\ + \sum_{i=1}^k \partial_{x_i} \langle \nu_{x_1, x_2, \dots, x_k, t}^k, \xi_1 \xi_2 \dots \mathbf{F}(\xi_i) \dots \xi_k \rangle = 0, \quad \forall k \in \mathbb{N}$$

- + Suitable Entropy conditions.
- Fjordholm, SM, 2015 shows:
 - Existence of statistical solutions.
 - Approximation of statistical solutions using the FKMT algorithm !!!
- Promising description of Turbulent flows.
- ► UQ framework that accounts for correlations.
- Uniqueness of statistical solutions is very much open.
- Details in talk by Ulrik S. Fjordholm.

Phase space integrals by Monte Carlo (MC) sampling:

$$\langle g, \nu_{x,t}^{\Delta x} \rangle \approx \frac{1}{M} \sum_{1 \leq i \leq M} g(\mathbf{U}_i^{\Delta x}(x,t)).$$

- MC converges at rate $\mathcal{O}\left(\frac{1}{\sqrt{M}}\right)$
- ► Slow convergence ⇒ Extreme computational cost.
- Possible solution: Multi-level Monte Carlo (MLMC) methods.

MLMC-FKMT algorithm: Lye, SM, forthcoming

- Different nested levels of resolution: 1.
- ▶ Draw M_i i.i.d samples for the initial random field: $\{\mathbf{U}_{l,0}^i\}_{1 \le i \le M_l}$.
- For each draw: Solve conservation law by numerical scheme to obtain Uⁱ_{τ,l}.
- Sample statistics: with $u_{\tau,-1} = 0$,

$$\langle g, \nu_{x,t}^{\tau} \rangle = \sum_{l=0}^{L} \sum_{i=1}^{M_l} \frac{1}{M_l} \left(g(\mathbf{U}_i^{\tau,l}(x,t)) - g(\mathbf{U}_i^{\tau,l-1}(x,t)) \right)$$

- Convergence of ν^{τ} to EMVS.
- Considerably Reduced Computational Cost.
- Numerical experiments in progress.

Run-up at T = 39s

(日) (回) (E) (E) (E)

Run-up Mean at T = 39s

・ロン ・回 と ・ ヨン ・ モン

3

Run-up Variance at T = 39s

・ロン ・回 と ・ ヨン ・ モン

3
Summary

- Problems with State of the art schemes:
 - Lack of Convergence on mesh refinement.
 - Generic to unstable and Turbulent flows.
 - Linked with lack of Wellposedness.
 - Uncertainty quantification
- A Statistical solution framework:
 - Measure Valued solutions.
 - Statisical solutions.
 - Approximation by convergent algorithms.
 - Promising description of multi-dimensional complex flows.
- Open questions:
 - Uniqueness of admissible statistical solutions.
 - Rigorous description of Turbulent flows.
 - Optimally complex numerical algorithms.
 - Non-conservative problems.
 - HPC implementation.

- ∢ ≣ ▶

Atomic initial measure \Rightarrow Non-atomic young measure

▲ 御 ▶ ▲ 臣 ▶

- < ≣ →

Э