
Well-Balanced Positivity Preserving

Central-Upwind Scheme for the Shallow

Water System with Friction Term

Alexander Kurganov

Tulane University
Mathematics Department

www.math.tulane.edu/∼kurganov

Alina Chertock, North Carolina State University, USA

Shumo Cui, Temple University, USA

Tong Wu, Tulane University, USA

Supported by NSF and ONR

w=Z+h

Z(x)

z

h(x,t)

2

1-D Saint-Venant System





ht + qx = 0

qt +
(
hu2 + g

2h
2
)
x

= −ghZx

This is a system of hyperbolic balance laws

Ut + F (U , Z)x = S(U , Z), U := (h, q)

h: depth

u: velocity

q := hu: discharge

Z: bottom topography

g: gravitational constant
3

Saint-Venant System — Numerical Challenges




ht + qx = 0

qt +
(
hu2 + g

2h
2
)
x

= −ghZx

• Steady-state solutions:

q = Const,
u2

2
+ g(h+ Z) = Const

• “Lake at rest” steady-state solutions:

u = 0, h+ Z = Const

• Dry (h = 0) or near dry (h ∼ 0) states

4

Finite-Volume Methods

1-D System: Ut + F (U)x = 0

U j(t) ≈
1

∆x

∫

Cj

U(x, t) dx : cell averages over Cj := (x
j−1

2
, x
j+1

2
)

This solution is approximated by a piecewise polynomial (conservative,

high-order accurate, non-oscillatory) reconstruction:

Ũ(x) = Pj(x) for x ∈ Cj

Second-order schemes employ piecewise linear reconstructions:

Ũ(x) =U j + (Ux)j(x− xj) for x ∈ Cj
5

For example,

(Ux)j = minmod


θ

U j −U j−1

∆x
,
U j+1 −U j−1

2∆x
, θ

U j+1 −U j

∆x


 θ ∈ [1,2]

where the minmod function is defined as:

minmod(z1, z2, ...) :=





minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise.

The reconstructed point values at cell interfaces are:

U−
j+1

2
:= Pj(xj+1

2
) =U j +

∆x

2
(Ux)j

U+
j+1

2
:= Pj+1(x

j+1
2
) =U j+1 −

∆x

2
(Ux)j+1

6

xjxj−1 xj+1 xj+2

The discontinuities appearing at the reconstruction step at the interface

points {x
j+1

2
} propagate at finite speeds estimated by:

a+
j+1

2
:= max

{
λN

(
A(U−

j+1
2
)
)
, λN

(
A(U+

j+1
2
)
)
,0
}

a−
j+1

2
:= min

{
λ1

(
A(U−

j+1
2
)
)
, λ1

(
A(U+

j+1
2
)
)
,0
}

λ1 < λ2 < . . . < λN : N eigenvalues of the Jacobian A(U) :=
∂F

∂U

Central-Upwind Schemes

Godunov-type central schemes with a built-in upwind nature

[Kurganov, Tadmor; 2000]

[Kurganov, Petrova; 2000, 2001]

[Kurganov, Noelle, Petrova; 2001]

[Kurganov, Lin; 2007]

8

1-D Semi-Discrete Central-Upwind Scheme

d

dt
U j(t) = −

H
j+1

2
(t)−H

j−1
2
(t)

∆x

The central-upwind numerical flux is:

H
j+1

2
=
a+
j+1

2
F (U−

j+1
2
)− a−

j+1
2
F (U+

j+1
2
)

a+
j+1

2
− a−

j+1
2

+ a+
j+1

2
a−
j+1

2



U+
j+1

2
−U−

j+1
2

a+
j+1

2
− a−

j+1
2

− d
j+1

2




The built-in “anti-diffusion” term is:

d
j+1

2
= minmod



U+
j+1

2
−U∗

j+1
2

a+
j+1

2
− a−

j+1
2

,

U∗
j+1

2
−U−

j+1
2

a+
j+1

2
− a−

j+1
2




The intermediate values U∗
j+1

2
are:

U∗
j+1

2
=
a+
j+1

2
U+
j+1

2
− a−

j+1
2
U−
j+1

2
−
{
F (U+

j+1
2
)− F (U−

j+1
2
)
}

a+
j+1

2
− a−

j+1
2

9

Remarks

1. d
j+1

2
≡ 0 corresponds to the original central-upwind scheme from

[Kurganov, Noelle, Petrova; 2001]

d
j+1

2
≡ 0 and a+

j+1
2
≡ −a−

j+1
2

correspond to the scheme from

[Kurganov, Tadmor; 2000]

2. For the system of balance laws

Ut + F (U)x = S

the central-upwind scheme is:

d

dt
U j(t) = −

H
j+1

2
(t)−H

j−1
2
(t)

∆x
+ Sj(t)

where

Sj(t) ≈
1

∆x

x
j+1

2∫

x
j−1

2

S(x, t) dx

10

2-D Semi-Discrete Central-Upwind Scheme

Rectangular Grid

[Kurganov, Petrova; 2001]

[Kurganov, Noelle, Petrova; 2001]

[Kurganov, Tadmor; 2002]

[Kurganov, Lin; 2007]

Triangular Grid

[Kurganov, Petrova; 2005]

11

Well-Balanced Positivity Preserving
Central-Upwind Scheme

[Kurganov, Petrova; 2007]

• w = h+ Z: water surface=⇒“Lake at rest” states: q ≡ 0, w ≡ Const

=⇒ Reconstruct the equilibrium variables w and q rather than h and q

• Use the well-balanced quadrature

x
j+1

2∫

x
j−1

2

hZx dx =


wj −

Z(x
j+1

2
) + Z(x

j−1
2
)

2


 ·

(
Z(x

j+1
2
)− Z(x

j−1
2
)
)

12

• Make positivity preserving correction of the reconstruction of w

h±
j+1

2
= w±

j+1
2
− Z

j+1
2

j+1/2xj−1/2x jx

Zj−1/2

Zj+1/2

wj

Zj

w w
j−1/2
+

j+1/2
−

13

j+1/2xj−1/2x jx

Zj−1/2

Zj+1/2

wj

Zj

w w
j−1/2
+

j+1/2
−

j+1/2xj−1/2x jx

Zj+1/2

wj

Zj
w

j+1/2
−

j−1/2
+wZj−1/2 =

14

• Desingularize the computation of u =
q

h
for small h < ε

– Simplest:

u =





q

h
, if h ≥ ε

0, if h < ε

– More sophisticated (smoother transition for small h):

u =
2h q

h2 + max(h2, ε2)
or u =

√
2h q√

h4 + max(h4, ε4)

Remark: For consistency, one has to recompute the discharge:

q = h · u

15

Central-Upwind Schemes for the
2-D Saint-Venant System

Cartesian Grid: [Kurganov, Levy, 2002], [Kurganov, Petrova; 2007]

Triangular Grid: [Bryson, Epshteyn, Kurganov, Petrova; 2011]

Polygonal Cell-Vertex Mesh:
[Beljadid, Mohammadian, Kurganov; preprint]

16

Shallow Water System with Friction Terms

[Chertock, Cui, Kurganov, Wu; 2015]




ht + qx = 0

qt +
(
hu2 + g

2h
2
)

x
= −ghZx − g n2

h1/3|u|u

n: Manning coefficient

Special Steady-State Solutions

q ≡ Const, h ≡ Const, Zx ≡ Const

correspond to the situation when the water flows over a slanted infinitely

long surface with a constant slope.

A straightforward midpoint discretization of the friction term leads

to the well-balanced positivity preserving semi-discrete central-upwind

scheme

17

The bottom setting in numerical examples:

Left: 1-D steady state

Right: a case of urban draining with obstacles like houses

B(x)

h(x)

x

18

Modified Positivity Correction

Instead of

j+1/2xj−1/2x jx

Zj−1/2

Zj+1/2

wj

Zj

w w
j−1/2
+

j+1/2
−

j+1/2xj−1/2x jx

Zj+1/2

wj

Zj
w

j+1/2
−

j−1/2
+wZj−1/2 =

19

we do

j+1/2xj−1/2x jx

Zj−1/2

Zj+1/2

wj

Zj

w w
j−1/2
+

j+1/2
−

j+1/2xj−1/2x jx

Zj+1/2

wj

Zj

j−1/2
+w

w
j+1/2
−

20

Example — Small Perturbation of a Steady Flow Over a Slanted
Surface (R ≡ 0)

h(x,0) = hn +

{
0.2hn, 1 ≤ x ≤ 1.25,

0, otherwise,
q(x,0) ≡ q0

0 0.5 1 1.5 2 2.5

0.05

0.1

0.15

t=0

x

w
B

0 0.5 1 1.5 2 2.5

0.05

0.1

0.15

t=1

x

w
B

0 0.5 1 1.5 2 2.5

0.05

0.1

0.15

t=100

x

w
B

Supercritical case

0 0.5 1 1.5 2 2.5

0.01

0.02

0.03

0.04

0.05

0.06

t=0

x

w

B

0 0.5 1 1.5 2 2.5

0.01

0.02

0.03

0.04

0.05

0.06

t=0.5

x

w

B

0 0.5 1 1.5 2 2.5

0.01

0.02

0.03

0.04

0.05

0.06

t=100

x

w

B

Subcritical case
21

Two-Dimensional Examples

Example — Rainfall-Runoff Over An Urban Area

We consider a rainfall-runoff situation, which occurs over a 2-D surface

containing houses as outlined in

22

The setting corresponds to the laboratory experiment reported in

[Cea, Garrido, Puertas; 2010].

The surface structure is shown in

−1 0 1
0

0.5

1

1.5

2

2.5

0

0.01

0.02

0.03

0.04

0.05

0.06

The precise data was provided by Dr. Luis Cea
23

The experiment was built to mimic an urban area within the laboratory

simulator of size 2m × 2.5m. To model urban buildings, several blocks

were placed onto the surface according to three different geometries:

−1 0 1
0

0.5

1

1.5

2

2.5

X20

24

−1 0 1
0

0.5

1

1.5

2

2.5

Y20

25

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

S20

Notice that across the walls of the houses the bottom topography
is discontinuous and thus the bilinear interpolant Z̃ has very sharp
gradients there

26

We set the almost dry initial conditions:

h(x, y,0) ≡ 10−8, u(x, y,0) ≡ v(x, y,0) ≡ 0

The rain of a constant intensity starts falling at time t = 0 and stops

at t = Ts:

R(x, y, t) =





1

12000
, 0 ≤ t ≤ Ts

0, otherwise

We take Ts = 20, 40 or 60

At the lower part of boundary, the total outlet discharge is recorded

in the laboratory experiments at different time moments and then it is

compared with the computed values of
Nx∑

j=1

(
H
y
j,1/2

)(1)

27

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 60

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 60

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 60

28

Example — Rainfall Runoff Over An Urban Area (REVISED)

First, we remove the houses from the computational domain which

becomes a punctured rectangle. Each of the holes is depicted in

Ghost
Cells

Houses
Edge

Ghost
Cells

Houses
Edge

The house walls become the internal boundary, which is numerically

treated using a solid wall ghost cell technique.
29

Second, we need to redistribute the rain water falling onto the roof

so that it is placed inside the modified computational domain. In the

laboratory experiment, the water falling on the house blocks streams

down from the long (lower) edges and finally joins the surface water

flow:

Ghost
Cells

Houses
Edge

30

In reality, the gutter system is commonly used and the rain water streams

down from the rain pipes typically located at the house corners:

Ghost
Cells

Houses
Edge

In both cases, the building-roof rainfall is uniformly distributed on the

shaded cells near and outside the building edges.
31

The modified rain source can then be written as follows:

R̂(x, y, t) =





1

12000

(
1 +

Ah
As

)
, in the shaded cells

1

12000
, otherwise

which is as before switched on only for t ∈ [0, Ts]

Ah: the area of the house

As: the area of the shaded region near that house

32

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 20

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 40

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 X20, Ts = 60

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 Y20, Ts = 60

0 25 50 75 100 125 150

1

2

3

4

5
x 10

−4 S20, Ts = 60

33

Water height snapshots for Ts = 40

34

35

36

Steady State and Sign Preserving Semi-Implicit

Runge-Kutta Methods for ODEs with Stiff Damping Term

[Chertock, Cui, Kurganov, Wu; 2015]

Consider
u′ = f(u, t) +G(u, t)u

u(t) ∈ RN : unknown vector function

f : RN → RN : given vector field

G : RN×N → RN×N : diagonal non-positive definite matrix representing

a (stiff) damping term

Steady States: u(t) ≡ û s.t. f(û, t) ≡ −G(û, t)û

Sign Preservation provided {u(0) ≥ 0, f ≥ 0} or {u(0) ≤ 0, f ≤ 0}

Explicit vs. Implicit vs. Semi-Implicit Methods

For simplicity, consider a scalar ODE

u′ = f(u, t) + g(u, t)u, g(u, t) ≤ 0

Example: First-Order Explicit (Forward Euler) Method

un+1 = un + ∆t
[
f(un, tn) + g(un, tn)un

]

Example: First-Order Implicit (Backward Euler) Method

un+1 = un + ∆t
[
f(un+1, tn+1) + g(un+1, tn+1)un+1

]

Example: First-Order Semi-Implicit Method

un+1 = un + ∆t
[
f(un, tn) + g(un, tn)un+1

]

38

Explicit m-stage SSP (TVD) RK Methods

[Shu; 1988] [Shu, Osher; 1988] [Gottlieb, Shu, Tadmor; 2001]

For simplicity, consider a scalar ODE

u′ = f(u, t) + g(u, t)u, g(u, t) ≤ 0

f(u, t): nonstiff term, g(u, t)u: stiff damping term

A general explicit m-stage RK method is

u(0) = un

u(i) =
i−1∑

k=0

αi,k
[
u(k) + βi,k∆t(f(k) + g(k)u(k))

]
, i = 1, . . . ,m

un+1 = u(m)

where f(k) := f(u(k), t(k)), g(k) := g(u(k), t(k)), t(k) := tn +Dk∆t,

tn+1 := tn + ∆t and Dk are given by

D0 = 0, Di =
i−1∑

k=0

αi,k(Dk + βi,k)

39

The RK method is fully determined by its coefficients {αi,k, βi,k}

Consistency requirements:
i−1∑

k=0

αi,k = 1, i = 1, . . . ,m, Dm = 1

The RK method is a linear combination of the first-order FE steps:

u(i) =
i−1∑

k=0

αi,ku
FE
i,k

where

uFE
i,k := u(k) + βi,k∆t(f(k) + g(k)u(k))

According to [Gottlieb, Shu, Tadmor; 2001], the RK method is SSP

provided

αi,k ≥ 0 for all i, k

and an appropriate time step restriction is imposed.

Negative time increments are avoided if βi,k ≥ 0 for all i, k
40

New Semi-Implicit Methods

We first replace the FE evolution steps by the semi-implicit (SI) ones:

uSI
i,k := u(k) + βi,k∆t(f(k) + g(k)uSI

i,k) ⇐⇒ uSI
i,k =

u(k) + βi,k∆tf(k)

1− βi,k∆tg(k)

This leads to the following SI scheme:

u(0) = un

u(i) =
i−1∑

k=0

αi,k


u

(k) + βi,k∆tf(k)

1− βi,k∆tg(k)


 , i = 1, . . . ,m

un+1 = u(m)

Unfortunately, this scheme is at most first-order accurate

We, therefore, propose an order correction step:

un+1 =
u(m) − Cm(∆t)2f(m)g(m)

1 + Cm(∆tg(m))2

where

C0 = 0, Ci =
i−1∑

k=0

αi,k(Ck + β2
i,k), i = 1, . . . ,m

41

New class of second-order semi-implicit Runge-Kutta (SI-RK) methods:

u(0) = un

u(i) =
i−1∑

k=0

αi,k


u

(k) + βi,k∆tf(k)

1− βi,k∆tg(k)


 , i = 1, . . . ,m

un+1 =
u(m) − Cm(∆t)2f(m)g(m)

1 + Cm(∆tg(m))2

The set of coefficients {αi,k, βi,k} is taken directly from the explicit SSP-

RK method of an appropriate order.

Remark. Note that in the degenerate case of g ≡ 0, the SI-RK methods

are identical to the corresponding explicit RK methods

42

Theorem (Second-Order Accuracy) If the SSP-RK method is at least

second-order accurate, then the corresponding SI-RK method with the

same set of coefficients αi,k, βi,k ≥ 0 is second-order.

Theorem (A(α)-Stability and Stiff Decay) Let us assume that the SI-

RK methods are applied to the test equation u′ = λu, where λ ∈ C is

a constant with Reλ < 0. Then, the resulting methods, which can be

written as

un+1 = R(z)un, z = λ∆t

satisfy the following two requirements:

|R(z)| ≤ 1, ∀z ∈ C s.t. Re z ≤ −| Im z|
(
A(α)-stability with α =

π

4

)

and

R(z)→ 0 as Re z → −∞

provided αi,k ≥ 0 and βi,k ≥ 0 for all i, k.

43

Theorem (Steady State Preserving Property) Let βi,k ≥ 0 ∀i, k. Then,

if the computed solution is at a steady state at time tn, i.e., un = û

such that

f(û, t) ≡ −g(û, t)û

it will remain at the same steady state, namely,

un+1 = û

Theorem (Sign Preserving Property) Let the initial condition u0 and

function f satisfy

{u0 ≥ 0, f ≥ 0} or {u0 ≤ 0, f ≤ 0}

Then,

sgn(un) ≡ sgn(u0)

for all n provided αi,k ≥ 0 and βi,k ≥ 0 for all i, k.

44

Absolute Stability of Two SSP-Based SI-RK Methods

The first SI-RK2 method is based on the 2-order SSP-RK solver:

u(1) =
un + ∆tfn

1−∆tgn

u(2) =
1

2
un +

1

2
·
u(1) + ∆tf(1)

1−∆tg(1)

un+1 =
u(2) − (∆t)2f(2)g(2)

1 + (∆tg(2))2

The second SI-RK3 method is based on the 3-order SSP-RK solver:

u(1) =
un + ∆tfn

1−∆tgn

u(2) =
3

4
un +

1

4
·
u(1) + ∆tf(1)

1−∆tg(1)

u(3) =
1

3
un +

2

3
·
u(2) + ∆tf(2)

1−∆tg(2)

un+1 =
u(3) − (∆t)2f(3)g(3)

1 + (∆tg(3))2
45

To analyze the absolute stability, we consider the following test problem:

u′ = λ1u+ λ2u, λ1 ∈ C, Re(λ1) ≤ 0, λ2 ∈ R, λ2 ≤ 0

λ1u: nonstiff part, λ2u: stiff part

We denote z1 := λ1∆t and z2 := λ2∆t.

We denote the stability regions of the second- and third-order SSP-RK

methods by DSSP2 and DSSP3, respectively.

We denote the corresponding time step restrictions by ∆t ≤∆tSSP2 and

∆t ≤∆tSSP3.

46

Theorem (Absolute Stability of the SI-RK2 Method) The region of

absolute stability of the SI-RK2 method contains DSSP2, i.e., for any

z2 ≤ 0, the solution of

u(1) =
1 + z1

1− z2
un

u(2) =
1

2
un +

1

2
·

1 + z1

1− z2
u(1)

un+1 =
1− z1z2

1 + z2
2
u(2)

satisfies |un+1| ≤ |un| provided ∆t ≤∆tSSP2.

47

Conjecture (Absolute Stability of the SI-RK3 Method) The region of

absolute stability of the SI-RK3 method contains DSSP3, i.e., for any

z2 ≤ 0, the solution of

u(1) =
1 + z1

1− z2
un

u(2) =
3

4
un +

1

4
·

1 + z1

1− z2
u(1)

u(3) =
1

3
un +

2

3
·

1 + z1

1− z2
u(2)

un+1 =
1− z1z2

1 + z2
2
u(3)

satisfies |un+1| ≤ |un| provided ∆t ≤∆tSSP3.

48

Numerical Examples

We test the second-order SI-RK3 method and compare the results with

the ones obtained using the second-order IMEX-SSP3(3,3,2) method

of Pareschi and Russo.

The obtained results clearly demonstrate that the new SI-RK3 method

outperforms the IMEX-SSP3(3,3,2) when a large time step and/or

coarse grid are used.

Example — Scalar ODE

u′ = 1− k|u|u, k > 0

It has one equilibrium point u∗ = 1/
√
k

49

Accuracy Test

0 1 2 3 4
−16

−14

−12

−10

−8

−6

−4

−2

0

log10N

lo
g 1

0
|û
(T

)
−

u
e
x
(T

)|

(a) SI−RK3

k = 102

k = 106

k = 1010

k = 1014

0 1 2 3 4
−16

−14

−12

−10

−8

−6

−4

−2

0

log10N

lo
g 1

0
|û
(T

)
−

u
e
x
(T

)|

(b) IMEX−SSP3(3,3,2)

k = 102

k = 106

k = 1010

k = 1014

50

Steady State Preserving Test

We take k = 10000 with the corresponding equilibrium point u∗ = 0.01.

We consider three different initial values:

(a) u(0) = 0.9u∗, (b) u(0) = u∗, (c) u(0) = 1.1u∗

51

0 0.01 0.02 0.03 0.04 0.05
8.8

9

9.2

9.4

9.6

9.8

10

10.2
x 10

−3 (a) SI−RK3

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.01 0.02 0.03 0.04 0.05
8.8

9

9.2

9.4

9.6

9.8

10

10.2
x 10

−3 (a) IMEX−SSP3(3,3,2)

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.01 0.02 0.03 0.04 0.05
0.0096

0.0098

0.01

0.0102

0.0104
(b) SI−RK3

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.01 0.02 0.03 0.04 0.05
0.0096

0.0098

0.01

0.0102

0.0104
(b) IMEX−SSP3(3,3,2)

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.01 0.02 0.03 0.04 0.05

0.01

0.0105

0.011

(c) SI−RK3

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.01 0.02 0.03 0.04 0.05

0.01

0.0105

0.011

(c) IMEX−SSP3(3,3,2)

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

52

Sign Preserving Test

We take k = 10000 with the corresponding equilibrium point u∗ = 0.01.

We consider large initial value:

u(0) = 1

0 0.005 0.01 0.015

0

0.2

0.4

0.6

0.8

1

SI−RK3

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

0 0.005 0.01 0.015

0

0.2

0.4

0.6

0.8

1

IMEX−SSP3(3,3,2)

∆ t=1/200

∆ t=1/400

∆ t=1/800

Equilibrium

53

Example — Shallow Water System with Friction

We take Zx ≡ −0.2, n = 0.09 and the following initial conditions:

h(x,0) =

{
0.02, x < 50

0.01, x > 50
q(x,0) =

{
0, x < 50

0.04, x > 50

We restrict the computational domain to [0,100], which is divided into

N uniform cells, and impose the periodic boundary conditions

54

Time Steps Restricted by the CFL Condition (the CFL number is 0.3)

0 20 40 60 80 100
0.012

0.014

0.016

x

h
(x
,1
00

0
)

(a)

N = 100
N = 1000

0 20 40 60 80 100
0.1

0.2

0.3

0.4

x

v
(x
,1
00
0)

(b)

N = 100
N = 1000

0 200 400 600 800 1000
−0.2

0

0.2

0.4

t

v
(5
0,
t)

(c)

N = 100
N = 1000

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

t

∆
t(
t)

(d)

N = 100

0 20 40 60 80 100
0.012

0.014

0.016

x

h
(x
,1
0
00

)

(a)

N = 100
N = 1000

0 20 40 60 80 100
0.1

0.2

0.3

0.4

x

v
(x
,1
00
0)

(b)

N = 100
N = 1000

0 200 400 600 800 1000
−0.2

0

0.2

0.4

t

v
(5
0,
t)

(c)

N = 100
N = 1000

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

t

∆
t(
t)

(d)

N = 100

Fixed Time Step Restriction (∆t = min{∆tCFL,∆tmax})

0 20 40 60 80 100
0.012

0.014

0.016

x

h
(x
,
1
00

0
)

(a)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

x

v
(x
,
10

00
)

(b)

∆tmax = 0.01, N = 100
∆tmax = 0.15, N = 100
∆tmax = 0.3, N = 100
N = 1000

0 200 400 600 800 1000
−0.2

0

0.2

0.4

t

v
(5
0,
t)

(c)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

t

∆
t
(t
)

(d)

0 20 40 60 80 100
0.012

0.014

0.016

x

h
(x
,
1
00

0)
(a)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

x

v
(x
,
10

00
)

(b)

∆tmax = 0.01, N = 100
∆tmax = 0.15, N = 100
∆tmax = 0.3, N = 100
N = 1000

0 200 400 600 800 1000
−0.2

0

0.2

0.4

t

v
(5
0,
t)

(c)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

t

∆
t
(t
)

(d)

