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Systems of Balance Laws in 1d

O+ 0y f (u) = k(x)g(u), reR,t>0.

Different large-time behavior according to £ > 0 in unbounded domain R:

m k = Cst, source active (or dissipative) everywhere — traveling waves

m k € LP(R), scattering state with a stationary soln close to zero.
Aim:

m Accuracy of ”Well-Balanced” approximations, that preserve
stationary solutions (prototype: 1D shallow water with topography)

m Theoretical method to prove rigorous L! error estimates.

m Dependence in time of the error: avoid the use of Gronwall Lemma
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L New error estimates by Lyapunov functional
LOutIIne of the computation

Outline of the approach

m From Jyu+ 0, f(u) = k(x)g(u) to a smooth augmented system,
Ou+ Oy f(u) — g(u)0za = 0 Oa = 0. (%)
Non-resonance (A(u) or f/(u) #0) = strict hyperbolicity of (x).

m Numerical scheme for (x): (u®%, a%), a®® piecewise constant, so

0,a’% = Ax Y k(x;)0(x — x;), countable “local scattering centers”
(¥)  for wt*(t=0,-) = P*uy, a"*(t,-) = P*a.
Stationary waves at each discontinuity point of ¢ — Dirac mass.

m Estimate ||(u, a) — (™%, a®%)|| 11 via L' stability theory for (x) with
u,a — exact, but u®*, a®% — approx. [M. Laforest, SIAM Math. Anal. 2004]
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L New error estimates by Lyapunov functional

LOutIIne of the computation

Qutline of the approach: A Lyapunov-type functional

Let U = (u,a) and V = (v,b) be 2 WFT approximate solutions of (*),
Key tool:

Functional t — ®(U, V)(t) equivalent to L' norm and decreasing in time:

O (lult) = v@®)llz2 +lla = bll2) < (U, V)(E) < U, V)(t = 0)
< O(1) (Ju(0) — v(O)llz2 + la —bllz)

Here O(1) are indep. on t. For certain systems they can be made explicit.
VYet, as a special case, fix v(t = 0,-) = P2%u, piecewise cst:

|w(0) — u?%(0)|| L < AzTV{ug}.
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LOutIIne of the computation

Qutline of the approach: A Lyapunov-type functional

Source term contribution reduced to,

la — a?® || < AzTV{a} = Az |||

lu(t) — ()]s

IN

O(1) (lu(0) = u*(0)|zx + [la — a®*[| 1)
O(Az)(TV{uo} + [[k|21)

N

m Depends on ||k|/z: and not on O(¢)TV{k}— Poincaré ineq. in BV

m For scalar eqns, f’ > 0 + possibly accretive source: Godunov proj'ns,

at t™ = nAt, yield an additional term growing linearly in time
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LScaIar equation: Lyapunov vs. Kuznetsov

Scalar 1D error estimate (cf. [AG, JDE (2013)])

Let f'>0and N =sup, , k(z)g'(u) >0, Vt >0 and z; < 3,

Z2
/ WA (¢, 2) — u(t, 2)|dz < min {E), By}

Ei(Az,t) = C1Ax+ Cot — specific WB,

Ey(Az,t) = VAzA(t)+ Az B(t).

For small t:  A(t) ~+t,  B(t) ~ const. > 0;
For large ¢:  A(t), B(t) ~ exp(Nt) — standard time-split algos.

The estimate E»(t) results of Kuznetsov's method + Gronwall lemma:
it's convenient for very small values of tAx. The estimate E(t) is good
for large ones (Co comes from time-steps averaging, Y. P2%5(t — t")).
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L New error estimates by Lyapunov functional

LScaIar equation: Lyapunov vs. Kuznetsov

Exponentially amplified soln: 0;u + ud,u = 0.2u

D. Amadori, L. Gosse / ]. Differential Equations 255 (2013)469-502 493
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Fig. 3. Time evolution of the measured L' error for (5) with Ax =27", n =0, 1,2, 3, 4. The WB scheme (left) shows a weaker
dependence on the grid compared to the TS one (right) which displays a neat exponential growth.

Decoupling effect between Ax and t.
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LScaIar equation: Lyapunov vs. Kuznetsov

Amplified N-wave: Oyu + ud,u = u*/4,

[Kim, JCP]

O O O nitial
— e

erteur TS
ereur WB

ult, ) = sgn(z)(3[z|) s x(|z| < exp(3t/4)/2).
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La

2-velocity relaxation kinetic model

A semilinear 2 x 2 system with space-dependent source

OrJ + Oup = k(2)(Alp) — J)

m ke L'NBV(R), k(z)>0 — dissipative relaxation structure
m Ac CYR), A(0)=0, Lip(A) <1 sub-characteristic cond’n.

m Diagonal variables f* defined by p=ft+f~,J=ft—f",
a(z): o (x) = k(z). Apply [BLY] to “semilinear homog.” system,

6tf__awf__G(f_af+)awa =0

OftT+ 0 fT+G(f, fM)0pa =0
8ta =0
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La

2-velocity relaxation kinetic model

“New" error estimate via L' stability (cf. [ANIHP 2015])

For z1 < @9 and 2t < x5 — x1, set the local L' global error
xo—t n
10 = [ 15 ) - 1) lde.
x1+t

|
Theorem: For small 4C||k||z1 < 1, and possibly “big BV data” fif,

I(t) < K- 1(0) + Az - ||kl p1 - &1 (Co, K, ||k 21, TV{fED)

where C; ~ 1 and

1
K=——  >1 Co = max |G
1—4C |kl = 0 = max|G]

Here ||kl 1 = 1Kl 110, 2y TV} = TVISS: (1, 22) )
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Laso

velocity relaxation kinetic model

Standard error estimate: via Kuznetsov method

Complementary estimate via Kuznetsov method, for kK € L' N BV, with
no restriction on || k||1. (able to cover hydro limit — d;p+ 0, A(p) = 0).

|
Theorem: If k € L' N BV, WB algorithm obeys another error estimate,

I(t) < I(0) + VAz - t-2&

(like more standard time-split algos), where

E(t,x1,22) = V/CollkllLr A(t) + VA Co [k 1 [kl Lo,

A(t) éTV{foi} +TV{k} — dominates for large ¢.

Here, || - || p1. || - [loo, TV{-} are referred to (x1,x2): it is linear in ¢ and half-order in Ax.
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Chemotaxis dynamics — hydrodynamic limits

ofEto, 55 =+ ([; o9 [ - ¢(3w5)]f+> . zeR,

initial /decay conditions f*(t = 0,-) = f, lim, 4o f5(t,2) =0,
—0225 + S =p, S(t,z) = %exp(—|x|) xp(t,) =0, |z|— oo.
Macro. var., p= f* + f~,J = f+ — f, weakly nonlinear relaxation,
Op+ 0, J =0, Oy J + Opp = §(2¢(8w5)p—J).

Sub-characteristic condition allows passing to limit ¢ — 0 with a = 2¢,

[a(0zS(t, x))[lec <1 Op + 02(a(0:S)p) = 0.
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Local scatt. centers — WB scheme with scatt. matrix

Independently of numerical handling of Vol Pert product a(9,.5) - p,

+ N . )
N A R N R
fj—l,n+1 Az fj—l,n Axr 172 fj,n
2CL 1+ cr +cr,
l—cr+c 1—cp+ec
Stationary eqns. — S}' ;5 = RTCL R+ cCL ,
! l—cr—cg —2cp

l—cpr+cy, 1—cp+cy
with the signed coefficients (a”

and a” may be equal) :
j—%.L j—4,r MY qual)
a” a”
j—1.R j—3.L
CR

= <0, cg
1- exp(a;?_%yRAm/E)

If |a” | <1, 8™ , is a left-stochastic matrix (positivity + mass).
J—ij/R J—3
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Delicate handling of Vol'Pert product

Numerical handling of Vol'Pert product a(9,S) - p — Heaviside x Dirac!

— other computations in Monika's Ph.D. Thesis (isothermal Euler).
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Two different schemes — Gosse-Vauchelet [SISC'15]

m Full WB approach “a;‘_l L F a;? " — Poisson coupling included
3

1R
PR
in the scattering matrix S}l—1/2- Upwind emerging in the limit e — 0

n n n 3 n 3
Jil 1o — max (0,aj7%’L) Py, +min (O,QF%’R) Pi_iR

instead of Lx-F (cf. [Ja-Va]) in pf ™t = pi — 2L(J7 ) = T, )
= Hybridization TS-WB, where S7', , contains just “a’’ " (easier):
2

o 2L —gp e 0L
& EWRB £ EWB ETSs

fi At/ /i
i1 = O°fFTe it ) TS pre-processing step,
fj I3 fj

_ —At _ At

OAt _ 1 1+aj_%+(1 aj_%)c (1+aj_%)(1 e )

i3 2 (1—a, 1)(1—e A l—a, 1 +0+a, 1)e Bt ]"
I1=3 I3 I1=3

)

L(x: 1% Laf® 11
TS
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Continuous velocities v € (—1, 1)

Continuous velocities — “Caseology” elementary solns

0,8
Oy f+vo, f = f Ao 6 Jdv (f h(v?BSS dv’/ f(t,x,v")d' —f)

Asymptotically, as e — 0, p(¢, ) f f(v)dv satisfies continuity eqn.

f_ll v.h(vd,S)dv

O+ ela(0.S)p) =0, a@:8) = T e

Hybrid num. method based on [Paveri-Fontana et al., J. Stat. Phys. 1989] — S” 1

l () ] - v|>[ (v (v
£ 1) Ar U (=l IHEND

Positivity + mass — S" , diagonally similar to a left-stochastic matrix.
2

+—| (S

2
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Continuous velocities v € (—1, 1)

Asympt.-Pres. time-split: James-Vauchelet [SINUM'15]

oo

flux
.

+

10 08 0.6 0.4 02 0o 0z 04 0.6 0.8 10 ) -1.0 -08 -0.6 -04 -02 0.0 02 04 08 08 10
position (x)

1 1
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Continuous velocities v € (—1, 1)

Asympt.-Pres. hybrid WB-TS: Gosse-Vauchelet

a0 . sus07 .
a0 au007
] .
ol seaor
2e-007 | *
a0 .
1e007-|
50| d
cescuo-teesssesrserbrratttot?? .
ol
o7
]
a7 .
27 -3e-007 - I
o] ey
¥ U ¥ U ‘\‘ y t ¥ Y 1 ~5e.007 T T T T - T T T T 1
Yo g8 o5 a4 o2 oo o2 o4 o5 o s B S T
® & & Liscioscopic density * @ @ uacmsopic fux

p(Tw):/_lf(T,-,v)du J(T,") = _1v.f(T,-,v)dv.
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Continuous velocities v € 1,1)

Asympt.-Pres. time-split: James-Vauchelet [SINUM'15

Kinetic density

102
0785 35
0588 |
26
0.341
0.114-]
i 18
0114
-0.341
| 8.8
-0.588 -
0785 1.9e-008
1022 . . . . - . .
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L Kinetic models of (1 - 1)-dim. chemotaxis dynamics

Continuous velocities v € 1,1)

Asympt.-Pres. hybrid WB-TS: Gosse-Vauchelet

Kinetic density

1.02
0785 a7
0588
43

0.341]
0,114

1 28
0,114
-0.341]

i 14
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0705 2.Z2e-014
-1.02 T T T T T
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LA “baby model" of relativistic self-gravitating fluids

Application to “R=T" 141 GR model (cf. [SIAP 2015])

General relativity is a geometric theory of gravity which stipulates that
it's not a force but the deformations of space-time itself (photons with

zero mass deviate close to massive stars): G =T, G the Einstein tensor.

J. Wheeler: “Matter tells space-time how to curve, and curvature tells
matter how to move”. Nonlinearly coupled matter-field eqns. in low dim.
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LA “baby model” of relativistic self-gravitating fluids

L The (Nordstrom) gravitational field equations

Analogue of (1 + 3)-dim. GR in 1 space dimension
P. Collas [1977] — GR is trivial in 1 space dim. (0 = 0). So R. Mann and

colleagues developed a scalar “baby model” in the 90's based on “dilaton

gravity”, called “R=T". The scalar field eqn. relates spacetime curvature
(expressed by a metric) to the mass-energy density at each point ¢, .

[ E O
Vo o)
Gaussian curvature in these ortho. coordinates reads: (R — Ricci scalar)
1 8<8tG>+8<6$E>
=7 % | 7= g
2V/|EG] VIEG]| VI|EG]

Mass-energy tensor in 1+1 dim. with c =1 — a 2 X 2 matrix,

R

2

T = (p+puu’ —p g®®,  uua = (9°° ug)ua = —1



New error estimates for balance laws with position-dependent sources and applications
LA “baby model” of relativistic self-gravitating fluids
L The (Nordstrom) gravitational field equations

2 main expressions of field equation

Any 2-D surface is locally “conformally flat”, so the metric can be

1

g = exp(2¢) ( 0 ) ) :=exp(2¢)n, n the Minkowski metric,

@(t,x) the conformal factor. Gravitational field eqn. reads accordingly,

P(26) az(%)) .

R =2K = —exp(—2¢) < Bre 92

being T the trace of T8 — Liouville wave eqn. In Schwarzschild coord.,

- 0% (1 0?

The field eqn. develops shocks in finite time (Nishida), “gauge shocks".

RI= O
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LA “baby model” of relativistic self-gravitating fluids

LCoup\ed field-matter hydrodynamics

Inclusion of matter and resulting dynamics

Define a (local) Lorentz factor v and a scalar 1D velocity v:
1

Fy_ /7171)2’

= (1,v) exp(—¢)7.

/—det g ak
Covariant divergence: T%° 5 = VT8 = Bk(_d—degT) +Ie T =0
T = exp29)T" = (p+p)’ -,
S = exp(2p)T™ = (p+p)r’o,
N(r,8) = exp2H)T™ = (p+p)(w)*+

Within those notations, field-matter eqns: (71— X = p — p)

W7+ 0,5 +25 00+ (T1+X) 0o = 0,

P(20)  0°(20)
ot? 0x?

+ (7 — X)exp(2¢) = 0.
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LA “baby model” of relativistic self-gravitating fluids
LCoup\ed field-matter hydrodynamics

Specificities of these conformal coordinates

In Schwarzschild coords. (more massive obj.), more pathological system,

O (aT") + 0y (aT'™) =V - 0y (log Vav), 1
O(T* [ar) + 0.(T*" Ja) = V - Oy log(1/v/@), O (a> Oz =T
V=(p+p)*1+v*), T=p—p,

with the tensor components,

™ = (ptpulu'+pgt = (p+p)% -2,
T = (p+pulu®+pg™ = (p+p) 72,
T = (p+puu®+p g™ = alp+p)(y)®+pa,

The Lorentz factor allows to induces a slightly different scalar velocity v,

v=ﬁ, uz:v(\/lam/&})-
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LLocaIIy inertial “WB" numerical discretization

Locally inertial numerical approximation

Work on uniform Cartesian grid with control cells centered around t", z;.
Computational cells are such that ¢ = ¢ >~ ¢(t", x;), i.e. ¢ is a constant
in each cell, meaning that it is a local inertial reference frame (the metric
is flat inside each cell): conformal factor jumps only at each interface.

Time-splitting + WB strategy, alternating between a first “WB" system,

T+ 0,8 +2S0,¢0 = 0,
HS+ 0,54+ (1+X)0¢0 = 0,
8t¢ = 07

and the second one, just for the time-derivatives of the conformal factor,
O0i7(t) = —(7 + X)0ip ~ —(1 + X") 0 9, 0¢S(t) +250,¢ = 0,

where X" stands for a “frozen” value of X(t) at the time t" = nAt.
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LA “baby model" of relativistic self-gravitating fluids

Locally inertial “WB" numerical discretization

Corresponding Godunov (subsonic!) scheme for system 1 reads,

numer. intrinsic space—derivative
ST - ST
Sl o Ay Jtz, = Ti—g.t
J J A.’I}
n _3n
1 S 1
grtl — gn _ Ay J+3,— J—3,t+
J J Az
numer. intrinsic space—derivative

where now S ¥
J+5.F Tt T

which are separated by the static discontinuity induced by the jump

are the left/right states in the Riemann fan

41 — @} of the metric’s conformal factor located at the interface z;, 1.
Left/right states are values p1, vy appearing in the Riemann problem:

Sexp(2¢), C

Wi ,p=C — W_,p=C —
PL +_¢> p =l P+ _d; P

VL, v_ vy v_

where quantities constant across each simple wave are over each arrow.
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L Locally inertial “WB" numerical discretization

Self-gravitating relativistic isothermal gas cloud

scalar 10 velocity v
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LA “baby model” of relativistic self-gravitating fluids

L Locally inertial “WB" numerical discretization

Random perturbation of a 1 + 1 polytrope
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