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New error estimates for balance laws with position-dependent sources and applications

Systems of Balance Laws in 1d

∂tu+ ∂xf(u) = k(x)g(u), x ∈ R, t > 0.

Different large-time behavior according to k ≥ 0 in unbounded domain R:

k ≡ Cst, source active (or dissipative) everywhere → traveling waves

k ∈ Lp(R), scattering state with a stationary soln close to zero.

Aim:

Accuracy of ”Well-Balanced” approximations, that preserve

stationary solutions (prototype: 1D shallow water with topography)

Theoretical method to prove rigorous L1 error estimates.

Dependence in time of the error: avoid the use of Gronwall Lemma
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New error estimates by Lyapunov functional

Outline of the computation

Outline of the approach

From ∂tu+ ∂xf(u) = k(x)g(u) to a smooth augmented system,

∂tu+ ∂xf(u)− g(u)∂xa = 0 ∂ta = 0 . (∗)

Non-resonance (λ(u) or f ′(u) 6= 0) ⇒ strict hyperbolicity of (∗).

Numerical scheme for (∗): (u∆x, a∆x), a∆x piecewise constant, so

∂xa
∆x = ∆x

∑
k(xj)δ(x− xj), countable “local scattering centers”

(∗) for u∆x(t = 0, ·) = P∆xu0, a∆x(t, ·) ≡ P∆xa .

Stationary waves at each discontinuity point of a∆x → Dirac mass.

Estimate ‖(u, a)− (u∆x, a∆x)‖L1 via L1 stability theory for (∗) with

u, a→ exact, but u∆x, a∆x → approx. [M. Laforest, SIAM Math. Anal. 2004]
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New error estimates by Lyapunov functional

Outline of the computation

Outline of the approach: A Lyapunov-type functional

Let U = (u, a) and V = (v, b) be 2 WFT approximate solutions of (*),

Key tool:

Functional t 7→ Φ(U, V )(t) equivalent to L1 norm and decreasing in time:

O(1)
(
‖u(t)− v(t)‖L1 + ‖a− b‖L1

)
≤ Φ(U, V )(t) ≤ Φ(U, V )(t = 0)

≤ O(1) (‖u(0)− v(0)‖L1 + ‖a− b‖L1)

Here O(1) are indep. on t. For certain systems they can be made explicit.

Yet, as a special case, fix v(t = 0, ·) = P∆xu0 piecewise cst:

‖u(0)− u∆x(0)‖L1 ≤ ∆xTV{u0}.
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New error estimates by Lyapunov functional

Outline of the computation

Outline of the approach: A Lyapunov-type functional

Source term contribution reduced to,

‖a− a∆x‖L1 ≤ ∆xTV{a} = ∆x ‖k‖L1

‖u(t)− u∆x(t)‖L1 ≤ O(1)
(
‖u(0)− u∆x(0)‖L1 + ‖a− a∆x‖L1

)
≤ O(∆x)(TV{u0}+ ‖k‖L1)

Remarks

Depends on ‖k‖L1 and not on O(t)TV{k}→ Poincaré ineq. in BV

For scalar eqns, f ′ > 0 + possibly accretive source: Godunov proj’ns,

at tn = n∆t, yield an additional term growing linearly in time
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New error estimates by Lyapunov functional

Scalar equation: Lyapunov vs. Kuznetsov

Scalar 1D error estimate (cf. [AG, JDE (2013)])

Let f ′ > 0 and N = supx,u k(x)g′(u) > 0, ∀t > 0 and x1 < x2,∫ x2

x1

|u∆t(t, x)− u(t, x)|dx ≤ min {E1, E2}

E1(∆x, t) = C1∆x+ C2t → specific WB ,

E2(∆x, t) =
√

∆xA(t) + ∆xB(t) .

For small t: A(t) ∼
√
t , B(t) ∼ const. > 0;

For large t: A(t), B(t) ∼ exp(Nt) → standard time-split algos.

The estimate E2(t) results of Kuznetsov’s method + Gronwall lemma:

it’s convenient for very small values of t∆x. The estimate E1(t) is good

for large ones (C2 comes from time-steps averaging,
∑
n P

∆xδ(t− tn)).
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New error estimates by Lyapunov functional

Scalar equation: Lyapunov vs. Kuznetsov

Exponentially amplified soln: ∂tu+ u∂xu = 0.2u

Decoupling effect between ∆x and t.
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New error estimates by Lyapunov functional

Scalar equation: Lyapunov vs. Kuznetsov

Amplified N-wave: ∂tu+ u∂xu = u4/4, → [Kim, JCP]

u(t, x) = sgn(x)(3|x|) 1
3χ(|x| < exp(3t/4)/2).
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New error estimates by Lyapunov functional

A 2-velocity relaxation kinetic model

A semilinear 2× 2 system with space-dependent source

∂tρ+ ∂xJ = 0

∂tJ + ∂xρ = k(x)(A(ρ)− J)

k ∈ L1 ∩BV (R) , k(x) ≥ 0 → dissipative relaxation structure

A ∈ C1(R) , A(0) = 0 , Lip(A) < 1 sub-characteristic cond’n.

Diagonal variables f± defined by ρ = f+ + f−, J = f+ − f−,

a(x): a′(x) = k(x). Apply [BLY] to “semilinear homog.” system,
∂tf
− − ∂xf− −G(f−, f+)∂xa = 0

∂tf
+ + ∂xf

+ +G(f−, f+)∂xa = 0

∂ta = 0
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New error estimates by Lyapunov functional

A 2-velocity relaxation kinetic model

“New” error estimate via L1 stability (cf. [ANIHP 2015])

For x1 < x2 and 2t ≤ x2 − x1, set the local L1 global error

I(t) =

∫ x2−t

x1+t

|f±∆x(t, x)− f±(t, x)|dx .

Theorem: For small 4C1‖k‖L1 < 1, and possibly “big BV data” f±0 ,

I(t) ≤ K · I(0) + ∆x · ‖k‖L1 · E1
(
C0,K, ‖k‖L1 ,TV{f±0 }

)
where C1 ' 1 and

K =
1

1− 4C1‖k‖L1

≥ 1 , C0 = max
D
|G|

Here ‖k‖L1 = ‖k‖L1(x1,x2), TV{f±0 } = TV{f±0 ; (x1, x2)}.
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New error estimates by Lyapunov functional

A 2-velocity relaxation kinetic model

Standard error estimate: via Kuznetsov method

Complementary estimate via Kuznetsov method, for k ∈ L1 ∩BV , with

no restriction on ‖k‖L1 . (able to cover hydro limit → ∂tρ+ ∂xA(ρ) = 0).

Theorem: If k ∈ L1 ∩BV , WB algorithm obeys another error estimate,

I(t) ≤ I(0) +
√

∆x · t · 2E2

(like more standard time-split algos), where

E2(t, x1, x2) =
√
C0 ‖k‖L1 A(t) +

√
∆xC0 ‖k‖L1‖k‖L∞ ,

A(t) ' 1

C0 t
TV{f±0 }+ TV{k} → dominates for large t.

Here, ‖ · ‖L1 , ‖ · ‖L∞ , TV{·} are referred to (x1, x2): it is linear in t and half-order in ∆x.
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Chemotaxis dynamics → hydrodynamic limits

∂tf
± ± ∂xf± = ±1

ε

(
[
1

2
+ φ(∂xS)]f− − [

1

2
− φ(∂xS)]f+

)
, x ∈ R,

initial/decay conditions f±(t = 0, ·) = f±0 , limx→±∞ f±(t, x) = 0,

−∂xxS + S = ρ, S(t, x) =
1

2
exp(−|x|) ∗ ρ(t, ·)→ 0, |x| → ∞.

Macro. var., ρ = f+ + f−, J = f+ − f−, weakly nonlinear relaxation,

∂tρ+ ∂xJ = 0, ∂tJ + ∂xρ =
1

ε

(
2φ(∂xS)ρ− J

)
.

Sub-characteristic condition allows passing to limit ε→ 0 with a = 2φ,

‖a(∂xS(t, x))‖∞ ≤ 1 ∂tρ+ ∂x(a(∂xS)ρ) = 0.
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Local scatt. centers → WB scheme with scatt. matrix

Independently of numerical handling of Vol’Pert product a(∂xS) · ρ,[
f+
j,n+1

f−j−1,n+1

]
= (1− ∆t

∆x
)

[
f+
j,n

f−j−1,n

]
+

∆t

∆x
Snj− 1

2

[
f+
j−1,n

f−j,n

]
.

Stationary eqns. → Snj−1/2 =


2cL

1− cR + cL

1 + cR + cL
1− cR + cL

1− cR − cL
1− cR + cL

−2cR
1− cR + cL

 ,

with the signed coefficients (an
j− 1

2 ,L
and an

j− 1
2 ,R

may be equal) :

cR =
an
j− 1

2 ,R

1− exp(an
j− 1

2 ,R
∆x/ε)

≤ 0, cL =
an
j− 1

2 ,L

1− exp(−an
j− 1

2 ,L
∆x/ε)

≥ 0.

If |an
j− 1

2 ,L/R
| ≤ 1, Sn

j− 1
2

is a left-stochastic matrix (positivity + mass).
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Delicate handling of Vol’Pert product

Numerical handling of Vol’Pert product a(∂xS) · ρ→ Heaviside × Dirac!

→ other computations in Monika’s Ph.D. Thesis (isothermal Euler).
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Hydrodynamic limit of 2-velocity model

Two different schemes → Gosse-Vauchelet [SISC’15]

Full WB approach “an
j− 1

2 ,L
6= an

j− 1
2 ,R

” → Poisson coupling included

in the scattering matrix Snj−1/2. Upwind emerging in the limit ε→ 0

Jnj−1/2 → max
(

0, anj− 1
2 ,L

)
ρnj− 1

2 ,L
+ min

(
0, anj− 1

2 ,R

)
ρnj− 1

2 ,R

instead of Lx-F (cf. [Ja-Va]) in ρn+1
j = ρnj − ∆t

∆x

(
Jnj+1/2 − J

n
j−1/2

)
Hybridization TS-WB, where Snj−1/2 contains just “an

j− 1
2

” (easier):

∂tf
± ∓ L(x; f±)

εTS
= ∓∂xf± ±

L(x; f±)

εWB
,

1

ε
=

1

εWB
+

1

εTS
,(

f̃+
j−1

f̃−j

)
= O

∆t/εTS
j− 1

2

(
f+
j−1

f−j

)
, TS pre-processing step,

O∆t
j− 1

2

= 1
2

(
1 + a

j− 1
2

+ (1 − a
j− 1

2
)e−∆t (1 + a

j− 1
2

)
(
1 − e−∆t)

(1 − a
j− 1

2
)
(
1 − e−∆t) 1 − a

j− 1
2

+ (1 + a
j− 1

2
)e−∆t

)
.
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Continuous velocities v ∈ (−1, 1)

Continuous velocities → “Caseology” elementary solns

∂tf+v∂xf =

∫ 1

−1
h(v′∂xS)dv′

ε

(
h(v∂xS)∫ 1

−1
h(v′∂xS)dv′

∫ 1

−1

f(t, x, v′)dv′ − f

)

Asymptotically, as ε→ 0, ρ(t, x) =
∫ 1

−1
f(v)dv satisfies continuity eqn.

∂tρ+ ∂x(a(∂xS)ρ) = 0, a(∂xS) =

∫ 1

−1
v.h(v∂xS)dv∫ 1

−1
h(v∂xS)dv

.

Hybrid num. method based on [Paveri-Fontana et al., J. Stat. Phys. 1989] → Sn
j− 1

2[
fn+1
j (|v|)

fn+1
j−1 (−|v|)

]
= (1−∆t

∆x
|v|)

[
fnj (|v|)

fnj−1(−|v|)

]
+

∆t

∆x
|v|Snj− 1

2

[
fnj−1(|v|)
fnj (−|v|)

]
,

Positivity + mass → Sn
j− 1

2

diagonally similar to a left-stochastic matrix.
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Continuous velocities v ∈ (−1, 1)

Asympt.-Pres. time-split: James-Vauchelet [SINUM’15]

ρ(T, ·) =

∫ 1

−1

f(T, ·, v)dv, J(T, ·) =

∫ 1

−1

v.f(T, ·, v)dv.
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics

Continuous velocities v ∈ (−1, 1)

Asympt.-Pres. hybrid WB-TS: Gosse-Vauchelet

ρ(T, ·) =

∫ 1

−1
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−1
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Kinetic models of (1 + 1)-dim. chemotaxis dynamics
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A “baby model” of relativistic self-gravitating fluids

Application to “R=T” 1+1 GR model (cf. [SIAP 2015])
General relativity is a geometric theory of gravity which stipulates that

it’s not a force but the deformations of space-time itself (photons with

zero mass deviate close to massive stars): G = T , G the Einstein tensor.

J. Wheeler: “Matter tells space-time how to curve, and curvature tells

matter how to move”. Nonlinearly coupled matter-field eqns. in low dim.
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A “baby model” of relativistic self-gravitating fluids

The (Nordstrom) gravitational field equations

Analogue of (1 + 3)-dim. GR in 1 space dimension
P. Collas [1977] → GR is trivial in 1 space dim. (0 = 0). So R. Mann and

colleagues developed a scalar “baby model” in the 90’s based on “dilaton

gravity”, called “R=T”. The scalar field eqn. relates spacetime curvature

(expressed by a metric) to the mass-energy density at each point t, x.

g =

(
E 0

0 G

)
.

Gaussian curvature in these ortho. coordinates reads: (R → Ricci scalar)

K = − 1

2
√
|EG|

[
∂t

(
∂tG√
|EG|

)
+ ∂x

(
∂xE√
|EG|

)]
=
R

2

Mass-energy tensor in 1+1 dim. with c = 1 → a 2× 2 matrix,

Tαβ = (ρ+ p)uαuβ − p gαβ , uαuα = (gαβ uβ)uα = −1
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A “baby model” of relativistic self-gravitating fluids

The (Nordstrom) gravitational field equations

2 main expressions of field equation

Any 2-D surface is locally “conformally flat”, so the metric can be

g = exp(2φ)

(
1 0

0 −1

)
:= exp(2φ)η, η the Minkowski metric,

φ(t, x) the conformal factor. Gravitational field eqn. reads accordingly,

R = 2K = − exp(−2φ)

(
∂2(2φ)

∂t2
− ∂2(2φ)

∂x2

)
= T,

being T the trace of Tαβ → Liouville wave eqn. In Schwarzschild coord.,

g =

(
−α 0

0 1
α

)
, R =

∂2

∂t2

(
1

α

)
− ∂2

∂x2
(α) = T.

The field eqn. develops shocks in finite time (Nishida), “gauge shocks”.
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A “baby model” of relativistic self-gravitating fluids

Coupled field-matter hydrodynamics

Inclusion of matter and resulting dynamics
Define a (local) Lorentz factor γ and a scalar 1D velocity v:

γ =
1√

1− v2
, u := (1, v) exp(−φ)γ.

Covariant divergence: Tαβ ;β = ∇βTαβ =
∂k(
√
− det g Tαk)√
− det g

+ ΓαlmT
lm = 0

τ = exp(2φ)T tt = (ρ+ p)γ2 − p,
S = exp(2φ)T tx = (ρ+ p)γ2v,

Σ(τ, S) = exp(2φ)T xx = (ρ+ p)(γv)2 + p.

Within those notations, field-matter eqns: (τ − Σ = ρ− p){
∂tτ + ∂xS + 2S ∂xφ+ (τ + Σ) ∂tφ = 0,

∂tS + ∂xΣ + (τ + Σ) ∂xφ+ 2S ∂tφ = 0,

∂2(2φ)

∂t2
− ∂2(2φ)

∂x2
+ (τ − Σ) exp(2φ) = 0.
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A “baby model” of relativistic self-gravitating fluids

Coupled field-matter hydrodynamics

Specificities of these conformal coordinates

In Schwarzschild coords. (more massive obj.), more pathological system,
∂t(αT

tt) + ∂x(αT tx) = V · ∂t(log
√
α),

∂t(T
tx/α) + ∂x(T xx/α) = V · ∂x log(1/

√
α),

V = (ρ+ p)γ2(1 + v2), T = p− ρ,
∂tt

(
1

α

)
−∂xxα = T

with the tensor components,
T tt = (ρ+ p)utut + p gtt = (ρ+ p)γ

2

α −
p
α ,

T tx = (ρ+ p)utux + p gtx = (ρ+ p) γ2v,

T xx = (ρ+ p)uxux + p gxx = α(ρ+ p)(γv)2 + pα,

The Lorentz factor allows to induces a slightly different scalar velocity v,

γ =
1√

1− v2
, u := γ

(
1√
α
,
√
αv

)
.
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A “baby model” of relativistic self-gravitating fluids

Locally inertial “WB” numerical discretization

Locally inertial numerical approximation

Work on uniform Cartesian grid with control cells centered around tn, xj .

Computational cells are such that φ ≡ φnj ' φ(tn, xj), i.e. φ is a constant

in each cell, meaning that it is a local inertial reference frame (the metric

is flat inside each cell): conformal factor jumps only at each interface.

Time-splitting + WB strategy, alternating between a first “WB” system,

∂tτ + ∂xS + 2S∂xφ = 0,

∂tS + ∂xΣ + (τ + Σ)∂xφ = 0,

∂tφ = 0,


and the second one, just for the time-derivatives of the conformal factor,

∂tτ(t) = −(τ + Σ)∂tφ ' −(τ + Σn)∂tφ, ∂tS(t) + 2S∂tφ = 0,

where Σn stands for a “frozen” value of Σ(t) at the time tn = n∆t.
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A “baby model” of relativistic self-gravitating fluids

Locally inertial “WB” numerical discretization

Corresponding Godunov (subsonic!) scheme for system 1 reads,

τn+1
j = τnj −∆t

numer. intrinsic space−derivative︷ ︸︸ ︷(
Sn
j+ 1

2 ,−
− Sn

j− 1
2 ,+

∆x

)

Sn+1
j = Snj −∆t

(
Σn
j+ 1

2 ,−
− Σn

j− 1
2 ,+

∆x

)
︸ ︷︷ ︸

numer. intrinsic space−derivative


where now Sn

j+ 1
2 ,∓

,Σn
j+ 1

2 ,∓
are the left/right states in the Riemann fan

which are separated by the static discontinuity induced by the jump

φnj+1 − φnj of the metric’s conformal factor located at the interface xj+ 1
2

.

Left/right states are values ρ±, v± appearing in the Riemann problem:(
ρL

vL

)
W+,φ≡C→

(
ρ−

v−

)
S exp(2φ),

Σ[...]
≡C

→

(
ρ+

v+

)
W−,φ≡C→

(
ρ−

v−

)
,

where quantities constant across each simple wave are over each arrow.
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A “baby model” of relativistic self-gravitating fluids

Locally inertial “WB” numerical discretization

Self-gravitating relativistic isothermal gas cloud
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A “baby model” of relativistic self-gravitating fluids

Locally inertial “WB” numerical discretization

Random perturbation of a 1 + 1 polytrope
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