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Overview

Consider the scalar conservation law

Oru + Oxf(u) =0, xeR,t>0

u(x,0) = (x). @)

(1) is well-posed for & € L}(R):
e There exists an entropy solution.
e The entropy solution is unique.

e The entropy solution is stable w.r.t. &.
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Overview

Consider the scalar conservation law

Oru + Oxf(u) =0, xeR,t>0
u(x,0) = (x).

(1) is well-posed for & € L}(R):
e There exists an entropy solution.
e The entropy solution is unique.

e The entropy solution is stable w.r.t. &.

What if the initial data o is uncertain?
e What is the right notion of solution?
e Does there exist such a solution?
e What does “uniqueness” mean for uncertain data?
e How can we approximate the “uncertain” solution numerically?

e How to measure convergence of numerical schemes?
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Entropy solutions

Oru+ Oxf(u) =0

u(x,0) = o(x) @)

Definition

A function u € L}(R x Ry ) is a weak solution of (1) if

/ / ups + f(u) - Vo dxdt+/ t(x)e(x,0) dx =0 Vo € CHR x Ry).
R JR, R
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Entropy solutions

Oru+ Oxf(u) =0

u(x,0) = o(x) @)

Definition

A function u € L}(R x Ry ) is a weak solution of (1) if
// ups + f(u) - Vo dxdt+/ﬂ(x)<p(x,0) dx =0 Vo € CHR x Ry).
R JR, R

Entropy conditions are imposed to single out a unique “physical” solution.

Definition
e Entropy pair: Functions (7, q), with n(u) convex and q’(u) = n/(u) - f'(u).

o A weak solution u is an entropy solution of (1) if for all entropy pairs (7, q)
Otn(u) + 0xq(u) <0 in D/(R x Ry).

Total entropy/energy decreases in time:

/Rn(u(x, T)) dx < /Rn(ﬂ(x)) dx.
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Well-posedness: scalar equations

Oru+ Oxf(u) =0

u(x,0) = o(x) @)

Theorem (Kruzkov 1970)

For scalar conservation laws there exists a unique entropy solution of (1) whenever & € L1(R).
The solutions are stable with respect to initial data:

/ lu(x,t) — v(x, t)| dx < / |a(x) — v(x)| dx for all t > 0
R R

for entropy solutions u and v with initial data o and v.

We denote the solution operator for (1) by

S LY(R) — LY(R), Sel = u(-, t).
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Section 1

Uncertain initial data

S. Fjordholm (N Statistical solutions of conservation laws



Uncertain initial data

Uncertainty quantification

Oru + Oxf(u) =0
u(x,0) = (x), x €R. @)

e Error and uncertainty in the measurement of T is inevitable.

e Uncertainty quantification: Given uncertainties in I, what are the statistics of the solution
at time t > 07

e The overall aim is well-posedness — our statistical predictions are the only possible
predictions.

Questions
e How to represent uncertain initial data?
e In what sense is (1) satisfied for uncertain data?

e How do we (numerically) approximate this “statistical solution”?

17 June 2015
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Uncertain initial data

Representation of data: random fields

Approach #0
Fix a probability space (2, X, P), let the initial data X be a random field

0 = o(w; x).

o Pathwise solution: a random field u = u(w; x, t) such that for every w € Q,
u(w; -, ) is a solution of (1) with initial data o(w, -)

(similar to “strong” or "weak” solutions of SDEs).
o We can study the law of u (say, (u#P) (A; x, t) := P ({u(w; x, t) € A}) for AC R).
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Uncertain initial data

Representation of data: random fields

Approach #0

Fix a probability space (2, X, P), let the initial data X be a random field
0 = o(w; x).

Problems with Approach #0:

e Inherently non-unique — & can always be reparametrized over a different space (fl, X, ,‘5).

e Distances (metrics) between two solutions u and & depend on the arbitrary parametrization
w € Q.

e Depends completely on the well-posedness of the deterministic problem (1).

We would like to study the law of u directly.
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Uncertain initial data

Probability measures on L!(RR)

Approach #1
Initial data is a probability measure on solution space: i € Prob(L!(R)).

Examples:
e For some & € L1(R), let
=0z (@ is atomic)

U. S. Fjordholm (NTNU) Statistical solutions of conservation laws 17 June 2015 8 /28



Uncertain initial data

Probability measures on L!(RR)

Approach #1
Initial data is a probability measure on solution space: i € Prob(L!(R)).

Examples:
e For some & € L1(R), let
=0z (@ is atomic)
e For iy, tp € LY(R) and a; >0, a +ax =1, let

o= O¢15f,1 + 042(552.
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Uncertain initial data

Probability measures on L!(RR)

Approach #1
Initial data is a probability measure on solution space: i € Prob(L!(R)).

Examples:
e For some & € L1(R), let
=0z (@ is atomic)
e For iy, tp € LY(R) and a; >0, a +ax =1, let
o= O¢15f,1 + 042(552.
o For i; € LY(R) and o; >0, "M ;= 1, let
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Uncertain initial data

One-point statistics

Approach #2 (first attempt)
For each x € R, assign a probability measure 7« € Prob(R), giving the statistics of the value at x.
Examples:
e For some & € L1(R), let
Px = Oa(x)

(7 is atomic).

0.8
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X

Figure : All mass concentrated at T(x).
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Uncertain initial data

One-point statistics

Approach #2 (first attempt)

For each x € R, assign a probability measure 7« € Prob(R), giving the statistics of the value at x.

Examples:
e For some & € L}(R), let e For functions @(x), 5(x), let
D = Oa(x) 7x = N((x),52(x))
(7 is atomic). (normal distribution with mean value @(x)).
1
0.8
0.6
0.4
02
0
0 0.2 0.4 0.6 0.8 1 “o 02 04 0.6 0.8 1
x x
Figure : All mass concentrated at ii(x). Figure : Mass normally distributed around sin(2mx).
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Uncertain initial data

One-point statistics

If x ¢ R and A C R then

U. S. Fjordholm (NTNU)

vx(A) = probability of u(x) € A.
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Uncertain initial data

One-point statistics

If xR and A C R then
vx(A) = probability of u(x) € A.
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Uncertain initial data

One-point statistics

If xR and A C R then
vx(A) = probability of u(x) € A.

However, one-point statistics do not adequately describe the uncertain data: There are several
different realizations (random fields) corresponding to the same 7.
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Uncertain initial data

Pointwise statistics: correlations

We can add information in the form of correlations (“joint probability distributions” ):

Two-point correlations Correlation between values at x = x; and x = xa:
V2 . € Prob(R?).

X1,X2
k-point correlations Correlation between values at x = x1, ..., xx:
th,m,xk IS Prob(]Rk).

We call these k-point correlation marginals.

Figure : Vil (A)
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Uncertain initial data

Pointwise statistics: correlations

We can add information in the form of correlations (“joint probability distributions” ):

Two-point correlations Correlation between values at x = x; and x = xa:
V2 . € Prob(R?).

X1,X2
k-point correlations Correlation between values at x = x1, ..., xx:
th,m,xk IS Prob(]Rk).

We call these k-point correlation marginals.

X )

Figure : v2 (A x B)

X1 ,X9
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Uncertain initial data

Pointwise statistics: correlations

We can add information in the form of correlations (“joint probability distributions” ):

Two-point correlations Correlation between values at x = x; and x = xa:
V2 . € Prob(R?).

X1,X2
k-point correlations Correlation between values at x = x1, ..., xx:
th,m,xk IS Prob(]Rk).

We call these k-point correlation marginals.

X ) X3

. L3
Figure : Vi xo0xs

(Ax B x C)
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Uncertain initial data

Correlation measures: definition

Definition

Fix p € [1,00). A correlation measure is a collection v = (11,12, ...) satisfying:
(i) Weak* measurability: Each map v : RX — Prob(R¥) is Weak*-measurable
(ii) LP-boundedness: v¥ is bounded in J: there exists an R > 0 such that

il i= ([, 0k 160l -6} o) R vken
(iii) Symmetry: If o is a permutation of {1,...,k} and f € Go(R¥) then
(Vo F(0(8))) = (v, F(€))  forae. x € RX.
(iv) Consistency: If f € Co(Rk~1) then
W o F& &) = WiTE (& &)

Each element ¥ is a correlation marginal. Denote by £P = LP(R,R) the set of all correlation
measures from R to R.

(Here, ( = Jak F(E)dA(E), the expected value of f w.r.t. A € Prob(R¥).)
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Uncertain initial data

Equivalence between Prob(LP(R)) and LP(R)

Theorem (USF, Lanthaler, Mishra 2015)

e Fix p € [1,00). For every correlation measure v € LP(R) there exists a unique probability
measure (1 € Prob(LP(R)) with bounded support such that

L s at@a= [ [ su)da  veect @

o Conversely, for every probability measure p € Prob(LP(R)) with bounded support there exists
a unique correlation measure v € LP(R) such that (2) holds.
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Section 2

Statistical solutions
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Statistical solutions

Statistical solutions — overview

e By the equivalence theorem, we can view every
w € Prob(L1(R))

as a correlation measure
v=("412,...) € LY(R),

and vice versa.
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Statistical solutions

Statistical solutions — overview

e By the equivalence theorem, we can view every

w € Prob(L}(R))

as a correlation measure
v=("412,...) € LY(R),

and vice versa.

e We consider initial data given by
i € Prob(L}(R))

(or, equivalently, 7 € £L1(R)).
e \We propagate the initial data
i — we € Prob(LL(R)), t>0

(or 7+ vy = (v},v2,...)), obtaining a statistical solution.
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Statistical solutions

The canonical statistical solution

Question:

How do we expect the solution to look like?
e If i = 85 € Prob(L(R)) for some & € L1(R) then

bt = s,z = St#il

should be the only solution.
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Statistical solutions

The canonical statistical solution

Question:
How do we expect the solution to look like?
e If i = 85 € Prob(L(R)) for some & € L1(R) then
bt = s,z = St#il

should be the only solution.
o If ="M ;6 then

M
He = Zaitssta,- = Si#i.

i=1
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Statistical solutions

The canonical statistical solution

Question:
How do we expect the solution to look like?

e If i = 85 € Prob(L(R)) for some & € L1(R) then

bt = s,z = St#il
should be the only solution.
o If ="M ;6 then
M
ut = Zailssta,- = Sit#Qi.

i=1

Answer:
For general fi € Prob(L!(R)), we want

pe = St
This is the canonical solution.

17 June 2015
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Statistical solutions

Evolution equation for statistical solutions

Question:

What equations does the canonical solution satisfy?

e We want an evolution equation for the statistical solution p: <> v:.

e Correlation measures v = (v1,12,...) € L1(R) are uniquely determined by its moments

<Vi17€1>7 <V§1,x27§1£2>7 L) <V)‘<(1,..4,xk7€1"'§k>7

(recall: e.g. (1/31&,5152) = f]Rz §162 dV>2(1,x2(£17§2))'
e We write down evolution equations for these (infinite number of) moments.
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Statistical solutions

Evolution equation for statistical solutions (motivation)

If pe is atomic (i.e. ue = d,(y)) then its k-th moment is

(Vg 6162+ €k) = ulx, t)u(xe, £) - u(xk, ).

Let now u = u(x, t) be a (classical) solution of (1).
o k=1:
Oru(xi, t) + Oy F(u(x1, t)) =0
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Statistical solutions

Evolution equation for statistical solutions (motivation)

If pe is atomic (i.e. ue = d,(y)) then its k-th moment is

(Vg 6162+ €k) = ulx, t)u(xe, £) - u(xk, ).

Let now u = u(x, t) be a (classical) solution of (1).
o k=1:
Oru(xi, t) + Oy F(u(x1, t)) =0
o k=2

Ot [u(x1, t)u(xe, t)] = (Beu(x1, t))u(xe, t) + u(x1, ) (Oru(x2, )
= =0y f(u(xa, t))u(xe, t) — Oy u(x1, t)f(u(x2, t))
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Statistical solutions

Evolution equation for statistical solutions (motivation)

If pe is atomic (i.e. ue = d,(y)) then its k-th moment is

(Vg 6162+ €k) = ulx, t)u(xe, £) - u(xk, ).

Let now u = u(x, t) be a (classical) solution of (1).
o k=1:
Oru(xi, t) + Oy F(u(x1, t)) =0

o k=2:

Or [u(xt, t)u(xa, t)] + O Fu(x1, t))u(xe, t) + O u(xt, t)F(u(x2, 1)) =0
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Statistical solutions

Evolution equation for statistical solutions (motivation)

If pe is atomic (i.e. ue = d,(y)) then its k-th moment is

(Vg 6162+ €k) = ulx, t)u(xe, £) - u(xk, ).

Let now u = u(x, t) be a (classical) solution of (1).
o k=1:
Oru(xi, t) + Oy F(u(x1, t)) =0

o k=2:
O¢ [u(xl, t)u(x2, t)] + Ox, F(u(x1, t))u(x, t) + Ox u(x1, t)f(u(x2,t)) =0
e General k € N:

K
Or[u(xt, t) - u(xe, t)] + Zax,- [U(XL t) - f(u(xi, t) - u(xx, t)] =0,

i=1
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Statistical solutions

Evolution equation for statistical solutions

Denote V = (Oxq, ..., dx,) and F(&1,..., &) = (&1 F(&) - &)y

Definition

A family p: € Prob(L}(R)) (for t € [0,00)) with corresponding correlation measures v; is a
statistical solution of (1) if for every k € N,

k
By €1 €+ D BV E1 F(6) -6 = O

=il

in the sense of distributions on R¥ x [0, co).

Note: The equation for k = 1 gives the definition of a measure-valued solution (DiPerna, 1985).
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Entropy conditions

Section 3

Entropy conditions — stability and uniqueness
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Entropy conditions

Uniqueness for atomics

Entropy condition, version 1

Entropy condition for one-point correlations:
(v, 1€ = CI) + 05 (v, a(: €)) <O,
Theorem (USF, Kappeli, Mishra, Tadmor 2015)

Let v be an entropy solution with initial data v, and let p be a statistical solution with initial data
L. Then for all t > 0,

/Ll(lR) /]R lu(x) — v(x, t)|dxdu:(u) < /Ll(R) /R |u(x) — v(x)| dxdp(u) Vt>0.

/Rwl(’/l},xﬂdv(x,t)) dxg/Rwl(ﬁi,év(X)) dx.

Here, Wi(p, \) is the Wasserstein metric between p, A € Prob(R).
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Entropy conditions

Uniqueness for convex combinations of atomics

Entropy condition, version 2
For all k € N and all (1,...,¢x € R,

B 161 — Gl 16k — Ckl) + Vi - (%, Q(€:¢)) <O in D'(R* x Ry).

Theorem (USF, Lanthaler, Mishra 2015)

If
M

b= Z ooy

=1

(initial data is convex combination of atomics), then the canonical statistical solution p: = St#[
is the only solution.
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Entropy conditions

Uniqueness of statistical solutions

Recall that the canonical statistical solution is

pe i= Se#til

(i.e. St applied to initial data f).

Conjecture

The canonical statistical solution is the only statistical solution.
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Entropy conditions

Uniqueness of statistical solutions

Recall that the canonical statistical solution is
pe i= Se#til
(i.e. St applied to initial data f).

Conjecture

The canonical statistical solution is the only statistical solution.

Corollary (USF, Mishra 2015)

Statistical solutions are stable in the Wasserstein metric on Prob(L!(R)):

Wl(u‘tv pt) < Wl(ﬁv ﬁ)
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Numerical approximation

Section 4

Numerical approximation
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Numerical approximation

Monte Carlo method

Recall that the canonical statistical solution is
we = Se#til
(i.e. St applied to initial data f).

Monte Carlo algorithm

©® Pick only finitely many points & € supp(&)
® Apply numerical scheme S2% instead of S;

©® Put together all computed solutions in an approximate statistical solution it
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Numerical approximation

Monte Carlo method

Algorithm
Let initial data fi € Prob(L!(R)) be given. Let M € N.
® Randomly choose M initial data oy, ..., Uy according to the distribution .

® Evolve each data T; numerically
ui(t) = StAXL_I;.

©® Compose the statistical solution:

M

1

M,Ax

A= =N b
Ht M,‘l u;(t)

Theorem (USF, Mishra 2015)

The above Monte-Carlo method converges in the Wi metric to a statistical solution:

Wl(u?/”Ax,ut)ﬁo Vt>0asM— oo, Ax — 0.

U. S. Fjordholm (NTNU) Statistical solutions of conservation laws 17 June 2015

26 / 28



Numerical approximation

Summary and outlook

Summary

e We evolve the law of the solution over time. Two equivalent ways to define the law:

Local: Correlation measures v = (v,12,...) € LP(R)
Global: Probability measures p € Prob(LP(R))

e A statistical solution evolves moments
k
[t vt = [, uta)-ulw) duu)
Rk LY(R)

over time.
e Monte-Carlo type numerical schemes converge to the canonical statistical solution.
o The right metric is Wy, the Wasserstein metric on Prob(L!(R)).

U. S. Fjordholm (N ) Statistical solutions of conservation laws 17 June 2015 27 / 28



Numerical approximation

Summary and outlook

Summary

e We evolve the law of the solution over time. Two equivalent ways to define the law:

Local: Correlation measures v = (v,12,...) € LP(R)
Global: Probability measures . € Prob(LP(R))

e A statistical solution evolves moments
[t vt = [, uta)-ulw) duu)
RK L1(R)

over time.
e Monte-Carlo type numerical schemes converge to the canonical statistical solution.
e The right metric is Wy, the Wasserstein metric on Prob(L!(R)).

To do list
o Well-posedness for arbitrary initial data i € Prob(L(R))

e Study more sophisticated numerical methods (multi-level/quasi Monte Carlo, stochastic
Galerkin, ...)

e Extend framework to other equations (linear PDE = easy; nonlinear PDE = hard).
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Numerical approximation

Thank you for your attention!
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