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Introduction

Discretize ∂tU +∇ · f (U) = S(U, . . . ) with FV-P0-cell centered schemes

Un+1
j − Un

j

∆t
+

f n
j+ 1

2
− f n

j− 1
2

∆x
= S(Un

j , . . . )

Tentative definition :

WB-FV scheme = exact for stationary solutions
AP (asymptotic preserving) schemes = WB with stiffness.

Literature on WB : it is a ”one case after another” strategy.

Can we have a global view (classification) on WB methods ?
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Model problem : Friedrichs systems with relaxation

• A paradigm is the p-system with friction : linearization yields{
∂tτ − ∂xu = 0,
∂tu + ∂xp(τ) = g − σu. =⇒

{
∂tτ1 − ∂xu1 = 0,
∂tu1 − ∂x

(
c0(x)2τ1

)
= −σu1.

One gets the linear hyperbolic heat equation

∂tU + ∂x(A(x)U) = −R(x)U, U = (c0(x)τ1, u1)t ,

where A = −c0(x)

(
0 1
1 0

)
= At and R =

(
0 c ′0(x)
0 σ

)
.

Notice the compatibility relation R + R t + A′(x) ≥ 0

∂t
|U|2

2
+ ∂x

(U,A(x)U)

2
= −1

2

(
R(x) + R(x)t + A′(x)U,U

)
≤ 0.
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Sn and DOM

• Another example is DOM (Discrete Ordinates Method) for transfer

∂t I + µ∂x I = σ (< I > −I ) .

Approximate

I (x , t, µ) =
n∑

i=1

wi fi (x , t)δ(µ− µi ) +
n∑

i=1

wigi (x , t)δ(µ+ µi ).

Normalize U = (
√

diag(wi ) f ,
√

diag(wi ) g)t ∈ R2n, with
w = (

√
w1, . . . ,

√
wn,
√
w1, . . . ,

√
wn) ∈ R2n.

One gets the Sn model

∂tU + A∂xU = −RU, A = At , R = −w ⊗ w + Id ,

Numhyp 2015 p. 5 / 29
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Main idea

• Generic model problem is

∂tU + ∂x(A(x)U) + ∂y (B(x)U) = −R(x)U, U(t, x) ∈ Rn,

where x = (x , y) ∈ R2, A(x) = A(x)t , B(x) = B(x)t .

• The vectorial space of stationary states, needed for WB analysis, is :
U = {x 7→ U(x); ∂x(A(x)U) + ∂y (B(x)U) = −R(x)U}.

Main idea - consider the adjoint equation :

∂tV + A(x)t∂xV + B(x)t∂yV = R(x)tV , V (t, x) ∈ Rn.

Magic property - this is just duality :

∂t(U,V ) + ∂x(A(x)U,V ) + ∂y (B(x)U,V ) = 0.

Numhyp 2015 p. 6 / 29
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Strategy

• The vectorial space of dual stationary states is

V =
{

x 7→ V (x); A(x)t∂xV + B(x)t∂yV = R(x)tU
}
.

• Pick up Vp ∈ V and define αp = (U,Vp) ∈ R which is solution of a
conservative equation

∂tαp + ∂x(A(x)U,Vp) + ∂y (B(x)U,Vp) = 0

a) In 1D, assemble the system of conservation laws
for α = (αp) ∈ Rdim(V) = Rdim(U).

b) Discretize the new system of conservation laws.

c) Write the new scheme for the original variable U.
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For simplicity : A is constant with det(A) 6= 0

So dim(V) = dim(U) = n.

At∂xV = R tV ⇐⇒ ∂xV = A−tR tV ⇐⇒ V (x) = eA
−tRtxV (0)

where eA
−tRtx is a matrix exponential.

Proposition : Define the change-of-basis matrix P(x) = eRA
−1x , and the

change of unknown α = P(x)U ⇐⇒ U = P−1(x)α.

The new conservative system rewrites

∂tα + ∂x(Q(x)α) = 0

with a matrix defined through a global change of basis

Q(x) = P(x)AP−1(x)

Note Q(x) is similar to A, so has the same eigenvalues.
But the eigenvectors depend on x .
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Discretization

• For additional simplification (once again), A is also symmetric :
A = At ∈ Rn×n. One has the spectral decomposition Aup = λpup, λp 6= 0

(
up,U

∗
j+ 1

2
− Uj

)
= 0, λp > 0,(

up,U
∗
j+ 1

2
− Uj+1

)
= 0, λp < 0.

Intermediate state

RL

The intermediate state is computed in function of L = j and R = j + 1.

• The FV discretization of ∂tα + ∂xβ = 0 with β = Q(x)α writes

αn+1
j − αn

j

∆t
+
βn
j+ 1

2
− βn

j− 1
2

∆xj
= 0

where βn
j+ 1

2
is the flux at time step tn = n∆t.
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Diagonalisation of Q

The right and left spectral decompositions of
Q∗ = Q(x∗) = P(x∗)AP(x∗)−1 6= Q∗ are{

Q(x∗)r∗p = λpr
∗
p , r∗p = P(x∗)up,

Qt(x∗)s∗p = λps
∗
p , s∗p = P(x∗)−tup.

The solution at interface of the system ∂t
(
s∗p , β

)
+ λp∂x

(
s∗p , β

)
= 0 yields

a family of Riemann solvers.

One-state solvers : defined by the well-posed linear system{ (
s∗p , β

∗ − βL
)

= 0, λp > 0,(
s∗p , β

∗ − βR
)

= 0, λp < 0.

It defines a first Riemann solver ϕ : Rn × Rn × R→ Rn

ϕ(βL, βR , x
∗) = β∗.
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The WB scheme with the one-state solver

• First formulation with the global change of basis
αn+1
j −αn

j

∆t
+

ϕ(βn
j ,β

n
j+1,xj+ 1

2
)−ϕ(βn

j−1,β
n
j ,xj− 1

2
)

∆xj
= 0

• Second formulation
Un+1
j −Un

j

∆t
+ P(xj)

−1
ϕ(βn

j ,β
n
j+1,xj+ 1

2
)−ϕ(βn

j−1,β
n
j ,xj− 1

2
)

∆xj
= 0

• Third purely local formulation, the one for implementation,

Un+1
j − Un

j

∆t
+ A

U∗
j+ 1

2
− U∗

j− 1
2

∆xj

+
P(xj)

−1P(xj+ 1
2
)− I

∆xj
AU∗j+ 1

2
+

I − P(xj)
−1P(xj− 1

2
)

∆xj
AU∗j− 1

2
= 0.

where the flux U∗
j+ 1

2
is solution of the linear system (with ∆x±j = xj± 1

2
− xj)

(
up,U

∗
j+ 1

2
− e−A−1R∆x+

j Uj

)
= 0, λp > 0,(

up,U
∗
j+ 1

2
− e−A−1R∆x−j+1Uj+1

)
= 0, λp < 0.

Property : the scheme is WB.

Proof : If βj = β for all j , the solution is stationary in the first formulation.
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Schematic

• Structure of the one-state solver.

R

Intermediate state

RL

N
L

N

• Two-states solver. Same principle but with upwinding of the eigenvectors{ (
sLp , β

∗∗ − βL
)

= 0, λp > 0,(
sRp , β

∗∗ − βR
)

= 0, λp < 0,

It defines ψ : Rn × Rn × R× R→ Rn : ψ(βL, βR , xL, xR) = β∗∗.

R

Intermediate state

RL

N
L

N

Th. : If R + R t ≥ 0, then
{
sLp
}
λp>0

∪
{
sRp
}
λp<0

is linearly independent.
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Interpretation for : ∂tp + ∂xu = 0,
∂tu + ∂xp = −σu

A−1R =

(
0 σ
0 0

)
is nilpotent. So eA

−1Rx = I + A−1Rx .

• One-state solver = Steady state approximation of Huang-Liu 1986, or
Jin-Levermore 1996

p∗
j+ 1

2
=

pj + pj+1

2
+

(1− σ∆x+
j )uj − (1 + σ∆x−j+1)uj+1

2
,

u∗
j+ 1

2
=

pj − pj+1

2
+

(1− σ∆x+
j )uj + (1 + σ∆x−j+1)uj+1

2
.

• Two-state solver= Equal to the Gosse-Toscani scheme 2002. p∗∗
j+ 1

2
=

1−σ∆x−j+1

2+σ∆x+
j −σ∆x−j+1

(pj − uj) +
1+σ∆x+

j

2+σ∆x+
j −σ∆x−j+1

(pj+1 − uj+1),

u∗∗
j+ 1

2
= 1

2+σ∆x+
j −σ∆x−j+1

(uj + uj+1 + pj − pj+1).

- Immediate interest for non linear fluid solvers with σ the friction parameter.
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Applications
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#1 : Pn method, Valentin
(PhD-CEA)+Enaux+Laffitte

This is a challenging problem with a vast literature in neutron propagation.

Machorro 2007 : consider µ∂ru + 1−µ2

r
u = −σu + q with

u(r , µ) =
∑n

i=0 ui (r)Pi (µ) in the domain

Solve ∂tU + A∂rU + 1
r
GU = −σU + b.

Valentin-Enaux-Lafitte propose to use Magnus series to compute the local
matrix exponentials.
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Pn results : Machorro 2007

Discontinuity of coefficients. flux dip, oscillations, higher cost with DG.
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Pn results : Valentin 2015

No flux dip, no oscillations, reduced cost.
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#2 : Transport-Doppler effect, Leroy
(PhD-CEA)+Buet+D.

Solve : ∂tρ = κ
3
ν∂νρ+ σ(ν)(B(ν)− ρ), v , t > 0 with κ = ∂xu ∈ R.

The SWB (Spectrally Well Balanced) scheme writes

∂tρj =
σ(νj)

1−M(νj+1, νj)

ρ(νj | νj+1, ρj+1)− ρj
∆νj

where

ρ(ν | ν∗, ρ∗) = ρ∗e
− 3
κ

∫ ν∗
ν

σ(s)
s

ds +
3

κ

∫ ν∗

ν

B(s)σ(s)

s

∫ s

τ

σ(τ)

τ
dτds

is the stationary solution at νj and the additional term

M(νj+1, ν) = e
− 3
κ

∫ νj+1
νj

σ(s)
s

ds
gives the correct limit κ→ 0.
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Upwing/WB/SWB

WB and SWB correct WB non correct for κ = 0
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#3 : System with a zero eigenvalue

This is a serious issue, related to ”resonance” in hyperbolic theory.

Consider P1 model coupled a linear temperature equation
∂tp +∂xu = τ(T − p),
∂tu +∂xp = −σu,
∂tT = τ(p − T ),

A = At =

 0 1 0
1 0 0
0 0 0

 and R = R t =

 τ 0 −τ
0 σ 0
−τ 0 τ

 .

Assume σ, τ > 0 : the solutions of the adjoint stationary equation satisfy
T̂ = p̂, so ∂x û = 0 and ∂x p̂ = σû. Therefore

dim(V) = dim(U) = 2 < 3 with basis

V1 =

 1
0
1

 and V2 =

 σx
0
σx

 .

Numhyp 2015 p. 19 / 29
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One abstract solution= shift the spectrum

Consider progressive solutions of the adjoint equation{
∂tV + A∂xV = RV ,
∂tV + ξ∂xV = 0, ξ ∈ R,

where ξ ∈ R is arbitrary. It yields the shifted problem

Aξ∂xV = RV , Aξ = A− ξI .

So det(Aξ) 6= 0.

Probably non correct in the regime ξ → 0, so useless.
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Ad-hoc integration in time

Set α1 = (U,V1) = p + T , α2 = (U,V2) = σx(p + T ) + u and α3 = T
∂tα1 + ∂x(−σxα1 + α2) = 0,
∂tα2 + ∂x

(
(1− σ2x2)α1 + σxα2 − α3

)
= 0,

∂tα3 = τ(α1 − 2α3).

The last equation is more an ODE (e2τ tα3)′ = τe2τ tα1

α3(x , t) = e−2τ t

∫ t

0

τe2τsα1(x , s)ds + e−2τ tα3(x , 0).

Explicit Euler approximation over ∆t reads

α3(x ,∆t) ≈ 1

2

(
1− e−2τ∆t

)
α1(x , 0) + e−2τ∆tα3(x , 0).

It yields{
∂tα1 + ∂x(−σxα1 + α2) = 0,
∂tα2 + ∂x

(
(1− σ2x2)α1 + σxα2 − 1

2

(
1− e−2τ∆t

)
α1 − e−2τ∆tα3(0)

)
= 0.
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#4 : 2D

• Assume σ > 0 is constant
∂tp +∂xu +∂yv = 0,
∂tu +∂xp = −σu,
∂tv +∂yp = −σv ,

Here det(A) = 0, det(B) = 0 and AB 6= BA.

• The adjoint stationary states (p̂, û, v̂) are
∂x û +∂y v̂ = 0,
∂x p̂ = σû,

∂y p̂ = σv̂ .

So (û, v̂) = 1
σ
∇p̂ and ∆p̂ = 0. Therefore dim(V) = dim(U) =∞

V =

{
(p̂, û, v̂); p̂ is harmonic and (û, v̂) =

1

σ
∇p̂
}
.
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New formulation

• Set Vn = V ∩ {p̂ is an harmonic polynomial of degree ≤ n}.
p ∈ V1 is equivalent to p̂ = a + bx + cy .

• V1 yields three test functions

V1 =

 1
0
0

 , V2 =

 σx
1
0

 , V3 =

 σy
0
1


Set αi = (U,Vi ) for i = 1, 2, 3. The new system is

∂t

 α1

α2

α3

+ ∂x

 m1

α1 + σxm1

σym1

+ ∂y

 m2

σxm2

1 + σym2

 = 0

with m1 = −σxα1 + α2 and m2 = −σyα1 + α3.

The original variable is recovered as U = P(x)−1α where

P(x) =

 1 0 0
σx 1 0
σy 0 1

 is non singular, and P(x)P(y) = P(y)P(x).
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Convergence

• Performed on the problem with an additional small parameter{
∂tp + 1

ε
∇ · u = 0,

∂tu + 1
ε
∇p = − σ

ε2 u,

where σ > 0 is given and ε > 0 is a small parameter.

• In the limit ε ≈ 0+, one gets asymptotically the parabolic equation
∂tp − 1

σ
∆p = 0.

• Theorem (2D on general grids) : The implicit edge-based-FV WB
scheme (= Gosse-Toscani if 1D on uniform mesh) is convergent∥∥pεh,∆t − pε, uεh,∆t − uε

∥∥
L2([0,T ]×Ω)

≤ C(h
1
4 + ∆t

1
2 ),

uniformly with respect to small parameter ε ∈ (0, 1] (numerics show
convergence order between 1 and 2).

Sketch of the proof : linear estimates but of hyperbolic-parabolic type, balance between dissipativity and

source terms, general grid, control of the constants, . . ..
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Non AP feature of the standard edge based VF
scheme
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Meshes and P1 (E. Franck)

Initial data is Dirac mass at center

Kershaw mesh Random mesh

non WB-AP WB-FV edge, non AP WB-AP corner

Mesh imprint vastly reduced with WB-AP corner-based-flux FV scheme.
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Convergence order

Analytical solution in the torus : p = f + ε2

σ
∂t f and u = − ε

σ
∇f with

∂t f +
ε2

σ
∂2
t f −

1

σ
∆f = 0, f (t, x , y) = α(t) cos(Lπx)) cos(Lπy).

α′(t) + ε2

σ
α′′(t) + 2L2π2

σ
α(t) = 0, α(t) = λ2

λ2−λ1
eλ1t − λ1

λ2−λ1
eλ2t .

 1e-05
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L
2

 E
rr

o
r

N

2:

1:

0.5:

0.25:

0:

order one

In tests : ε = 0.01(40h)τ for τ ∈ {0, 1
4
, 1

2
, 1, 2}.

1 ≤ experimental convergence ≤ 2.
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#5 : Lagrangian fluid dynamics, comparison
standard FV versus WB-FV

Initial stage of Rayleigh-Taylor instability :
source term = gravity.

standard FV WB-FV
spurious velocities vortex is ”correct”
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Conclusions

Unification of WB based on the dual equation

essentially 2 ideas : duality and linear Riemann solvers,

essentially 2 families of WB solvers.

General principle : any WB-FV is a standard FV.

AMC 2015, Buet-D : and references therein.

Validated for Friedrichs systems of large size inspired by
radiation/neutron inspired problems.

Any Riemann solver can be used : high order, even FEM is possible,
or central schemes, . . .

The change-of-basis matrix P(x) seems the good object to
manipulate, particularly in multiD.

Ongoing : convergence estimates, zero eigenvalue problem.

Open problems :

- Comparison with other methods for transport equations.

- Convergence for AP with this method : eA
−1R ∆x

ε

- Extension to the full non linear case.
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