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Euler Equations with Gravity
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e p is the density
e u,v are the x- and y-velocities

e [/ is the total energy

o pis the pressure; B = —2— + P2 4+ 4?)
vy—1 2

e ¢ is the time-independent linear gravitational potential; ¢, = 0 and
Oy =g




Euler Equations with Gravity

Plays an important role in modeling model astrophysical and atmospheric
phenomena in many fields including supernova explosions, (solar) climate
modeling and weather forecasting;

This is a system of balance laws: in many physical applications, solutions
of the system are small perturbations of the steady states.

Capturing such solutions numerically is a challenging task since the size
of these perturbations may be smaller than the size of the truncation
error on a coarse grid;

To overcome this difficulty, one can use very fine grid, but in many
physically relevant situations, this may be unaffordable;

It is important to design a well-balanced numerical method, that is,
the method which is capable of exactly preserving some steady state
solutions. Then, perturbations of these solutions will be resolved on a
coarse grid in a non-oscillatory way.

A type of solutions of interest are steady state ones




Steady States

Steady state solution:

u=0, v=0, w= Const

Here,
Y

wi=p+ R, Rzy.t) :=g/p<x,§,t> e

Numerical Challenges : Well-balanced scheme should exactly balance the
flux and source terms so that the steady states are preserved.




Well-Balanced Methods Some References

e Developed mainly in the context of shallow water models.

e Euler equations with gravitational fields:

— R. Leveque and D. Bale (1998) — quasi-steady wave-propagation
methods for models with a static gravitational field

— N. Botta, R. Klein, S. Langenberg, and S. Liitzenkirchen (2004) -
well-balanced finite-volume methods, which preserve a certain class of
steady states for nearly hydrostatic flows

— C. T. Tian, K. Xu, K. L. Chan, and L. C. Deng (2007), K. Xu, J.
Luo, and S. Chen (2010), J. Luo, K. Xu, and N. Liu (2011) — gas-
kinetic schemes for multi-D gas dynamic equations and well-balanced
numerical methods for problems, in which the gravitational potential
was modeled by a piecewise step function

— Y. Xing and C.-W. Shu (2013) — higher order finite-difference methods
for the gas dynamics with gravitation

— M. Zenk, C. Berthon and C. Klingenberg (2014), P. Chandrashekar,
C. Klingenberg (2015) — FV methods




1-D System — For Simplicity

o+ (pv)y =0
(pv)e + (pv* +p)y = —pg
B+ (v(E 4+ p))y = —pug

/"

Steady state solution:
v =0, w = Const

Here,
Yy

wi=p+R, Ry :=9/p(€,t) e

How to design a well-balanced scheme?




Finite-Volume Methods
U +gU), =S8

=N

1
o U, ~ Ay /U(y,t”) dy : cell averages over C}, := (yk_%,yk+%)
C

e Semi-discrete FV method:

_ G.11t)—-6G,_1(t) _
iU/g(t):— k+2()Ay - 2()—|—Sk

gk+%(t): numerical fluxes

S).: quadrature approximating the corresponding source terms

e Central-Upwind (CU) Scheme:
[Kurganov, Lin, Noelle, Petrova, Tadmor, et al.; 2000—2007]




U0} = U1 > {UTS 0} = {940} = Okt + A1)}

(Discontinuous) piecewise-linear reconstruction:

~

U(y.t) :==U(t) + (Uyk(y —yr), v € Ch

It is conservative, second-order accurate, and non-oscillatory provided the
slopes, {(Uy,);}, are computed by a nonlinear limiter

Example — Generalized Minmod Limiter

Yy — : ,

Ay 2Ay Ay
where _ .
ming{zy }, if zp >0 Vk,
minmod(z1, 29, ...) := ¢ maxg{zx}, if zp <0 Vk,
L0, otherwise,

and 6 € [1,2] is a constant
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No Well-Balanced Property

For steady-state solution: v =0, w = Const, we have

y

\

dpy, By (PR = k) = By (o — o)
dt Ay
dpo)e _ (PRga +P) — (PR + i)
dt 2Ay

dE B _Bk+%(p2—|—1 —pp) — Bk—%(pg —Pp_1)
dt (v —1)Ay

e The RHS does not necessarily vanish and hence the steady state would
not be preserved at the discrete level;

e [ his would also true for the first-order version of the scheme:

e For smooth solutions, the balance error is expected to be of order (Ay)?,
but a coarse grid solution may contain large spurious waves;

e [he lack of balance between the numerical flux and source terms is a
fundamental problem of the scheme.
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Well-Balanced Scheme

1-D system in the y-direction:

p pU 0
pv | +| | pv*4+p | = —pg
EJ, v(E+p)), \—pvyg

Define
Y

R(y) =g / p(E)dE = R, =pg

Then
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Well-Balanced Scheme

e Incorporating the source term —pg into the flux:

y
wi=p+R, Ry :=g/p<g,t> e

p pU 0

ov | + | pv?+w = 0

EJ), \v(E+Dp) —pug
e Reconstruct equilibrium variables W = (p, pv, w)?

e Compute the point values of conservative variables U = (p, pv, E

)"

(UL} = U, 1) — {W}jﬁ(t)} o {U}}S(t)} o {gk+%(t)} UL (LAL)

12




1-D Reconstruction

e Compute the point values of p and pv at yy:

W) = e+ (oly — )] - Xe () — oy
po(y) =D [0k + ((p0)y)ely — w)] - Xe () — (po)°

e Integrate p(y) to obtain an approximation of R = [ gpdy:

Y 1

k—1
=g [Ay D ooy =y 1)+ @((y Y)Y = Y1) - X, )
k

i=ky
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1-D Reconstruction

e The point values of R at the cell interfaces and cell centers are

Ay g(Ay)?

R, _—gAysz and Rk—gAysz 9=y

’I,—kL 1= kL

or recursively

( Rk-l—% — Rk;—l + gAYy g,
Rk_l:O < 2 k:kL...kR
L ’ gAy  g(Ay 7t
i \Rk:Rkl—'_—z Di — (8)(py)k,

e [ he values of w at the cell centers are set as
wy = pr + Ry

where
pr=(y—1) (Ek - %Uk)
and
vg = (PU)k /P
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1-D Reconstruction

e Equipped with wi = pr + Rg, we apply the minmod reconstruction
procedure to {wy} and obtain the point values of w at the cell interfaces:

Ay Ay
wllj = W + T(Wy)ka w,§+1 = Wk+1 — T(wy)k—l—l

where

: W41 — W W41 — Wg—1 , W — Wk—-1
(wy), = minmod | 0 , 0

Ay 2Ay Ay

e Finally, the point values of p and E are

and
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Well-Balanced Evolution

Here, the second and third components of the numerical fluxes G are
computed as before

G(Q) B b;:—l—% (pllj(vllj)2 + w}g) — b;_}_% (p2+1(vl§+1)2 + w%_'_l)
k+% - b+ L — b— ,
k‘|‘§ k—l—g
+ Byl ((P”)gﬂ — (pv)r)
(3) by Vi (B +Pi) = b0k (B + i) . .
GH? bt . — b + Byr1 (B k
k+s  k+i
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Well-Balanced Evolution

However, to ensure a well-balanced property of the scheme, the first
component of the flux and the source term have to be modified:

+ N — S
o _ bk+%<,0v)k - bk+%(P'U)k+1
k+% - b+ 1 - b_ 1
|wk+1 — wk| Yrp+s = k-3 S N
B . 2 2 _
+ Bk—i—% ( Ay man{UJk} (Iokz—l-l Pk )

Sk = (0,0, —g(pv)x)"

0.81

0.61

0.4

0.2}

0 0.01 0.02 0.03 0.04
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Proof of the Well-Balanced Property

Theorem. The semai-discrete scheme coupled with the well-balanced

reconstruction and evolution is well-balanced in the sense that it preserves
the steady state v =0, w = Const.

Proof: Assume that at certain time level, we have
v =vp=0vp =0 and w) = wy, = w; = @ = Const

To show that the proposed scheme is well-balanced, we need to show that

18




Proof of the Well-Balanced Property

Theorem. The semai-discrete scheme coupled with the well-balanced

reconstruction and evolution is well-balanced in the sense that it preserves
the steady state v =0, w = Const.

Proof: Assume that at certain time level, we have
v =vp=0vp =0 and w) = wy, = w; = @ = Const

To show that the proposed scheme is well-balanced, we need to show that

i_ gk"’% gk_% _|_S _
dt " Ay b
G,y 2 —
k+5 bt . —b
k+3 k+3
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Proof of the Well-Balanced Property

Theorem. The semai-discrete scheme coupled with the well-balanced

reconstruction and evolution is well-balanced in the sense that it preserves
the steady state v =0, w = Const.

Proof: Assume that at certain time level, we have
v =vp=0vp =0 and w) = wy, = w; = @ = Const

To show that the proposed scheme is well-balanced, we need to show that

d o7 gk-% — 01

4@ b_,;r1 (Px (03)? + wy) — bk+% (P%+1(U2+1)2 + wl§+1) 0
st br o, —b N
ki Tkl
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Proof of the Well-Balanced Property

Theorem. The semai-discrete scheme coupled with the well-balanced

reconstruction and evolution is well-balanced in the sense that it preserves
the steady state v =0, w = Const.

Proof: Assume that at certain time level, we have
v =vp=0vp =0 and w) = wy, = w; = @ = Const

To show that the proposed scheme is well-balanced, we need to show that

d = _gk+% ~ G953 g =
dt * Ay b
B s Ny Perd s
kot L 5k+;( k+1 k)_,y_l(pkz—kl_pk)
B
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pU
PV

t

2-D Well-Balanced Scheme

oU PV 0
pu® + p PUD B 0

puv po>+p | T | gp
u(E + p) v(E+p)/ gpv

e Incorporating the source term —pg into the flux:

pU
pU

)
wi=p+R, Rlx.y1) :=g/p<x,»s,t> e

pU pU
pu” +p puv _
PpUV ,0’02 + w
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2-D Reconstruction

In the x-direction: Reconstruct conservative variables

EW
Ujk 75

J

Tk} > Ut = {

f =1

e In the reconstruction step, we compute

—|—%,k} — {ﬁj,k(t + At)}

Pj.k — ﬁ(vat) — {

() = Bt = {0}
()i = BCt) = {3 (0]
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2-D Reconstruction

In the y-direction: Reconstruct equilibrium variables W = (p, pu, pv, w)’":

U} > OCt) 5 AW 5 {UNS {9,001} = T+
e In the reconstruction step, we compute

Pj,k — ﬁ(: 7t) — {pi;ss(t)}

() = g t) = {ow) )}

()i = BCt) = {0}

. U2, +(pU)>
° Compute w],k: — pj,ki —|— Rj,k;, ijc = (”7 - 1) (E],k — (p )],k:_ (p )j7k>

( —
Rjpsy = Bjpy + 9AYD;
Bik-1=00 gAy _ g(Ay)?

R = Ry e T (P
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2-D Reconstruction

In the y-direction: Reconstruct equilibrium variables W = (p, pu, pv, w

(U0} = T, t) = {WH

e Reconstruct w

e Finally, obtain the point values:

N

)"

} — {Ugl-\f,;s} — {gj,,ﬁ%} — {U,; x(t+At)}

N S S
Pik = Wik — Bl Pip= Wik — 151
and from the EOS:
N ° N 2 S . 2
o (o) (o)) s () + ((00)S)
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Well-Balanced Evolution

dt

Similar to the 1-D case ...

Theorem. The 2-D semi-discrete central-upwind scheme scheme
described with the described well-balanced reconstruction and evolution
15 well-balanced in the sense that it preserves the steady state exactly.
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Example — 1-D Isothermal Equilibrium Solution

[Xing, Shu; 2013]

e The ideal gas with v = 1.4; domain [0, 1]

e The gravitational forceis ¢, =g =1

e The steady-state initial conditions are

p(y,0) =e Y,

p(y,0) =e™ Y,

v(y,0) =0

e A zero-order extrapolation at the boundaries is used

Well-Balanced Test — Ll-errors at T = 2:

N

0

pv

E

40
100
200
400

2.33E-016
4.33E-016
7.58E-016
1.14E-015

1.15E-016
9.64E-016
1.48E-015
3.97E-016

1.27E-015
5.46E-016
1.23E-015
1.24E-015
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A small initial pressure perturbation:

Perturbation

5y —
p(y,0) =e™?, v(y,0) =0,
x 10~ |
10- ---initial state
- WB, N=200
g —WAB, N=2000

- Non-WB, N=200|

—100(y—0.5)

p(y,0) = ge™¥ +ne ,
x10° |
10- ---initial state
- WB, N=200
~WB, N=2000
8" - Non-WB, N=200|
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Example — 2-D Isothermal Equilibrium Solution

[Xing, Shu; 2013]

The ideal gas with v = 1.4; domain |0, 1] x |0, 1]
The gravitational force is ¢, =g =1
The steady-state initial conditions are

_ —1.21y

p(z,y,0) =1.21e” 2 p(z,y,0) =e , u(z,y,0) = v(z,y,0) =0

Solid wall boundary conditions imposed at the edges of the unit square

50 x 50 1.70E-016 | 0.00E+00 | 2.43E-016 | 5.97E-016
100 x 100 | 5.88E-017 | 0.00E+4-00 | 3.42E-016 | 5.31E-016
200 x 200 | 1.60E-016 | 0.00E+00 | 2.85E-016 | 5.33E-016

N x N 0 pU PV E

50 x 50 1.05E-03 | 0.00E+00 | 5.72E-05 | 9.61E-05
100 x 100 | 4.02E-04 | 0.00E+4-00 | 2.07E-05 | 4.10E-05
200 x 200 | 1.63E-04 | 0.00E+00 | 7.11E-06 | 1.57E-05
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Perturbation

A small initial pressure perturbation:

p(z,y,0) = e 12V 4 ne~121((2=0.3)"+(y—0.3)°)

50 x 50

Y

n=10"3
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0.8}

W B : 50 x 50, 200 x 200

0.8}

NW B : 50 x 50, 200 x 200
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Example — 2-D Explosion

The ideal gas with v = 1.4; domain domain [0, 3] x [0, 3]
The gravitational force is ¢, =g =1

The steady-state initial conditions are

p(2,5,0) =1, u(z,y,0) = v(z,y,0) = 0

0.005, (x — 1.5)% + (y — 1.5)* < 0.01,

p(xvya()):l_gy_l_ .
0, otherwise.

A zero-order extrapolation at the boundaries is used
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NWB t = 1.2, Density

—

0.9995
0.999
0.9985

0.998

x10™

|
e—p

NWB t = 1.8, Density

3 ___

NWB t=1.8, VeIOC|ty

—_—

0.9995
0.999

0.9985

x 107
40

NWB t = 2.4, Density

NWB t = 2.4, Velocity
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WB t = 1.2, Density WB t = 1.8, Density WB t = 2.4, Density

3
0.999 0.999
2
1
0

—
—_—
—

0.999

0.998 0.998

0.997 0.997 0.997

0.998

0 1 2 3

x10

3 3
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THANK YOU!
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