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A prototypical multi-scale relaxation model

We consider the usual prototype hyperbolic system

∂τu + ∂ξV = 0,

∂τV + ∂ξp(u) = −1
ε

(V − F (u)),

Under the recalling

t = ε1+ατ, x = εξ, v(x , t) = V (ξ, τ)/εα, f (u) = F (u)/εα,

with α ∈ [0, 1], we get a multi-scale relaxation system:

∂tu + ∂xv = 0,

εα∂tv +
1
εα
∂xp(u) = −1

ε
(v − f (u)),



Particular cases for multi-scale relaxation system
• α = 0,

∂tu + ∂xv = 0,

∂tv + ∂xp(u) = −1
ε

(v − f (u)),

this system is hyperbolic with two distinct real characteristics speeds ±
√

p′(u)
and the limit system (ε→ 0) becomes

ut + f (u)x = 0, v = f (u),

The stability condition of the system reduces to |f ′(u)|2 < p′(u), i.e., sub-
characteristic condition by Liu for hyperbolic system.
• α = 1,

∂tu + ∂xv = 0,

∂tv +
1
ε2
∂xp(u) = − 1

ε2
(v − f (u)),

two distinct real characteristics speed ±
√

p′(u)/ε, and the limit system (ε→ 0)
becomes

ut + f (u)x = p(u)xx , and v = f (u)− p(u)x

The stability condition: |f ′(u)|2 < p′(u)
ε2 , and it is satisfied in the limit ε→ 0.



Issues related to the relaxation model α = 1

Stiffness both in the convection and in the relaxation terms.
Characteristic speed of the hyperbolic part is of order 1/ε leading to
a stability condition like ∆t ≈ ε∆x . This condition is too restrictive
in the hyperbolic relaxation.
Special care must be taken to assure that the numerical schemes
possess the correct zero-relaxation limit.
Naive application of most of the popular methods fail to capture the
correct behavior of the solution in the relaxation limit (ε→ 0)
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Related Issues and Goals

In all above approaches the resulting scheme, when ε→ 0 is an
explicit scheme with the usual CFL parabolic condition ∆t ≈ ∆x2 .
Goals:

Overcome the CFL parabolic restriction and require ∆t ∝ ∆x , with
corse grid ∆t ∆x � ε.
construct numerical schemes with the correct asymptotic limit. (AP
property)



Removing parabolic stiffness restriction

(Penalization technique)1 2 based on adding two opposite terms to the
first equation and treating one explicitly and one implicitly., i.e.

ut = −(vx + µ(ε)p(u)xx )︸ ︷︷ ︸
explicit

+ µ(ε)p(u)xx︸ ︷︷ ︸
implicit

ε2vt = −p(u)x︸ ︷︷ ︸
explicit

− (v − f (u))︸ ︷︷ ︸
implicit

Here µ(ε) ∈ [0, 1] is a free parameter such that µ(0) = 1, µ(1) = 03.

IMEX (implicit-explicit) RK scheme are used for time integration.

In the diffusive limit (ε→ 0), the system relaxes to the
convection–diffusion equation

ut + f (u)x︸ ︷︷ ︸
explicit

= p(u)xx︸ ︷︷ ︸
implicit

classical CFL hyperbolic condition for the time step is required ∆t ∝ ∆x .
1S.B. L. Pareschi, G. Russo, SIAM JSC 2013
2S.B. and G. Russo SINUM 2013
3S.B. P.G. LeFloch, G. Russo SIAM SISC, 2014



Different approach

Now a new idea here is to treat in the first equation the component v
implicit. We consider α = 1 and p(u) = u and f (u) = 0 with limit system
ut = uxx and v = −ux .

un+1 − un

∆t
= −vn+1

x

ε2
vn+1 − vn

∆t
= −(un

x + vn+1).

Solving the second equation for vn+1 and making use in the first equation,
one obtains the following system

un+1 − un

∆t
+

ε2

ε2 + ∆t
vn
x =

∆t
ε2 + ∆t

uxx

vn+1 − vn

∆t
+

1
ε2

un
x = − 1

ε2
vn+1.



Remarks

The left part is hyperbolic with characteristic speeds λ = ± 1√
ε2+∆t

,
if ε→ 0, characteristic speeds of the hyperbolic part do not diverge,
(with ∆t fixed), and the discrete system relaxes to

un+1 − un

∆t
= un

xx , with vn+1 = −un
x .

i.e. the limit scheme is a consistent discretization of the limit
equation when ε→ 0, i.e. the heat equation ut = uxx , (Asymptotic
preserving property, AP)
If ∆t → 0 (with ε fixed) the characteristics speeds converge to the
usual ones, i.e. λ = ± 1

ε , and the system converges to the original
one:

ut + vx = 0

vt +
1
ε2

ux = − 1
ε2

v .

We can generalize this result by using IMEX R-K schemes....



IMEX R-K schemes for the time discretization

An s-stage IMEX (IMplicit-EXplicit) Runge-Kutta method is characterized
by the s × s matrices Ã, A and vectors c̃ ; c ; b̃; b ∈ Rs , represented by the
double Butcher tableau:

Double Butcher Tableau :
c̃ Ã

b̃T

c A

bT
.

Reason: u′ = f (u) + 1
εg(u). In most cases f (u) is non stiff and 1

εg(u)
contains the stiffness.

Classical order conditions + Coupling order conditions



An important ingredient for AP

Definition

We say that an IMEX R-K scheme is globally stiffly accurate, GSA, if

1 The implicit R-K scheme is stiffly accurate, SA, if eT
s A = bT , with

eT
s = (0, ..., 0, 1︸︷︷︸

sth−comp.

). This property is important for the L-stability of

the scheme.

2 The s-stage explicit R-K scheme satisfies the condition eT
s Ã = b̃T

(FSAL, First Same As Last ).

Explicit:

0 · · ·
...

. . .
1 b̃1, b̃2, · · · , 0

b̃1, b̃2, · · · , 0

Implicit:

0 · · ·
...

. . .
1 b1, b2, · · · , bs

b1, b2, · · · , bs

.

GSA property guarantees that the numerical solution is identical to the
last internal stage values of the scheme.
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s Ã = b̃T

(FSAL, First Same As Last ).

Explicit:

0 · · ·
...

. . .
1 b̃1, b̃2, · · · , 0

b̃1, b̃2, · · · , 0

Implicit:

0 · · ·
...

. . .
1 b1, b2, · · · , bs

b1, b2, · · · , bs

.

GSA property guarantees that the numerical solution is identical to the
last internal stage values of the scheme.



Removing parabolic stiffness restriction

We consider α = 1 and p(u) = u.
Applying an GSA IMEX RK scheme we obtain

U = une −∆tAVx

V = vne +
∆t
ε2

Ã(f (U) + Ux)− ∆t
ε2

AV .

un+1 = un −∆tbTVx

vn+1 = vn − ∆t
ε2

b̃T f (U) + Ux)− ∆t
ε2

bTV .

After algebraic manipulations for the variable u in the limit case ε = 0 we obtain,

U = un + ∆tÃ(Ux − f (U))x ,

un+1 = un + ∆tb̃T (Ux − f (U))x .

We note that the scheme relaxes to an explicit RK scheme, i.e. ∆t ≈ ∆x2. In
order to remove the parabolic stability condition we choose an alternative time
discretization.



Alternative time discretization

U = une −∆tAVx

V = vne +
∆t
ε2

Ãf (U)− ∆t
ε2

A(V + Ux).

and
un+1 = un −∆tbTVx

vn+1 = vn − ∆t
ε2

b̃T f (U)− ∆t
ε2

bT (V + Ux).

After algebraic manipulations for the variable u in the limit case ε = 0 we obtain,

U = un −∆tÃf (U)x + ∆tAUxx ,

un+1 = un −∆tbTA−1Ãf (U)x + ∆tbTUxx .



AP IMEX R-K scheme

Then if the IMEX Runge-Kutta scheme is GSA, i.e.

bTA−1Ã = eT
s Ã = b̃T such scheme relaxes to the same IMEX R-K scheme,

i.e.,

U = un −∆tÃf (U)x + ∆tAUxx ,

un+1 = un −∆tb̃T f (U)x + ∆tbTUxx .

Theorem
AP property: If the IMEX R-K scheme applied to the diffusive relaxation
system (α = 1) is GSA then in the limit case, i.e. ε→ 0, the IMEX RK
scheme relaxes to the same scheme characterized by the pair (Ã, b̃),
(A, b) applied to the limit equation ut + f (u)x = p(u)xx and any CFL
parabolic restriction is required.



Remarks

Any penalized technique we require, i.e. no adding and subtracting any
quantity in the first equation, in order to overcome the classical CFL
parabolic condition ∆t ≈ ∆x2.

The property of GSA for the IMEX RK scheme guarantees that the
scheme is Asymptotic Preserving (AP), i.e. the limit scheme is a
consistent discretization of the limit equation when ε→ 0.

Note that the property of AP does not imply that the scheme preserves
the order of accuracy in time in the stiff limit ε→ 0. In the latter case the
scheme is said to Asymptotically Accurate (AA).

The classical order conditions for IMEX RK schemes guarantee the AA
only for the u-component, but not for the v -component.

In order to have a GSA IMEX RK scheme AA for both variables, we
require that the coefficients of the scheme satisfy some additional order
conditions together to the classical order ones.



Additional order conditions for the v -component

In order to reduce the number of the additional order conditions we required
c̃ = c .

bTA−2Ãe = 1, consistency,
bTA−2Ãc = 1, first order,
bTA−2Ãc2 = 1, bTA−2ÃAc = 1/2, bTA−2ÃÃc = 1/2, second
order.

We propose a new second order GSA IMEX RK that satisfies this additional
order condition and we compare it with other classical second order GSA
IMEX RK scheme presented in the literature.



Numerical results

Accuracy test: 
∂tu + ∂xv = 0,

∂tv +
1
ε2
∂xu = − 1

ε2
(v − u),

In the limit ε→ 0

ut + ux = uxx , v = u − ∂u
∂x

Note that the limiting advection-diffusion equation admits the following
exact solution

u(x , t) = e−t sin(x − t), v(x , t) = e−t(sin(x − t)− cos(x − t)),

on the domain [−π, π] with periodic boundary conditions. We choose
ε = 10−6 with final time T = 0.1.
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Comparison between classical second order ARS(2,2,2)4 scheme (right)
and the New-IMEX2 GSA scheme 5 (left) with N = 40 and ∆t = ∆x .
Green line v -component, blue line u-component.

4U. Asher, S. Ruuth, and R. J. Spiteri, ANM 1997
5S. Boscarino, L. Pareschi, G. Russo, paper in preparation



Method N L∞ u-error Order of u v -error Order v
IMEX2-GSA 40 1.4911e − 04 −− 1.3156e − 02 −−
IMEX2-GSA 80 3.9405e − 05 1.9199 1.4897e − 02 −0.1793
IMEX2-GSA 160 1.1356e − 05 1.7949 1.1520e − 03 3.6928
IMEX2-GSA 320 2.8331e − 06 2.0030 1.2584e − 03 −0.1274
IMEX2-GSA 640 7.0874e − 07 1.9991 1.2877e − 03 −0.0332

IMEX3 GSA 40 5.8318e − 06 −−
IMEX3 GSA 80 7.8658e − 07 2.8903
IMEX3 GSA 160 1.2095e − 07 2.7012
IMEX3 GSA 320 1.5297e − 08 2.9831
IMEX3 GSA 640 1.9253e − 09 2.9901

Converge rates for u component for ARS(2,2,2) with ε = 10−6.



N L∞ ρ-error Order u L∞ v -error Order v
40 1.9129e − 04 −− 2.8704e − 04 −−
80 4.9963e − 05 1.9368 8.0261e − 05 1.8385
160 1.4374e − 05 1.7974 2.0603e − 05 1.9618
320 3.5895e − 06 2.0016 5.2702e − 06 1.9669
640 9.0120e − 07 1.9939 1.4011e − 06 1.9113

Converge rates for u and v components for the New IMEX-GSA RK scheme
with ε = 10−6.



Viscous Burgers equation


∂tρ+ ∂x j = 0 ,

∂t j +
1
ε2
∂xρ =

1
ε2+α

{
−j +

1
2
(
ρ2 − ε2j2

)}
.

For small values of ε we have the viscous Burgers equation

∂tρ+ ∂x

(
ρ2

2

)
= εα∂xxρ and j =

1
2
ρ2 − εα∂xρ.

We consider two different initial conditions. The first initial condition is given
by two local Maxwelliam characterized by

{
ρL = 1.0, jL = 0, −10 < x < 0,
ρR = 2.0, jR = 0, 0 < x < 10,

with j = [(1 + ρ2ε2/2)1/2 − 1]/2ε2 and α = 1.
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Numerical solutions for the density ρ of Burgers’ equation at T = 2.0 with
∆t = 0.5∆x . Left: the rarefied regime for ε = 0.4. Right: the parabolic
regime for ε = 10−6. We use a second order IMEX2-GSA (IMEX-2) and
a classical third order IMEX3-GSA ARS(4,4,3)6. Numerical solutions are
in very good agreement with the reference solutions, solid line.

6U. Asher, S. Ruuth, and R. J. Spiteri, ANM 1997



The last test we consider, it is the propagation of an initial square wave.
The initial profile is specified as

ρ = 1.0, j = 0.0, |x | < 0.125,
ρ = 0.0, j = 0.0, |x | > 0.125

with reflecting boundary conditions.
We integrate the equations over [−0.5, 0.5] with 200 spatial cells. In Figure
we plot the behaviour of the system in the rarefied regime for ε = 0.7 and
α = 0 at time T = 0.2 and in the parabolic regime we take ε = 10−8,
α = 0.5 and 0.25 and T = 0.5. We use third order IMEX3-GSA RK
scheme.
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Numerical solutions for the mass density ρ (left) and the momentum (j)
(right) in the rarefied regime with ε = 0.7, α = 0 and ∆t = 0.0025 and
∆x = 0.005 atT = 0.2. Reference solution, obtained using fine grids with
∆x = 0.001 (1000 spatial cells)
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In the parabolic regime ε = 10−8, with α = 0.5 with ∆t = 0.004 (i.e.
∆t = 0.8∆x) at time T = 0.5.
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In the parabolic regime ε = 10−8, with α = 0.25 with ∆t = 0.004 (i.e.
∆t = 0.8∆x) at time T = 0.5.



Conclusions

Any Penalization technique is used to remove parabolic stiffness
restriction in the limit case

A time step ∆t ∝ ∆x in the limit case ε→ 0
GSA property for the IMEX RK scheme guarantees The AP property.
Additional order conditions to guarantee AA property.
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