
Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

Well-balanced Finite Volume schemes
for scalar discontinuous-flux

conservation laws

Boris Andreianov

Université de Franche-Comté, Besançon, France

based upon joint works with
Clément Cancès (Paris VI)
and many other co-authors

NumHyp2015 — Cortona, Italy – June 2015



Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

1 Discontinuous-flux setting and state-of-the-art
Prototype problem
Example: Buckley-Leverett eqn. as vanishing capillarity limit
A glimpse into well-posedness theory.
Convergence of approximations

2 Boundary Conditions and Interface Coupling Conditions
Boundary Conditions for SCL: beyond Bardos-LeRoux-Nédélec
Dissipative BC in the hyperbolic setting
Interface Coupling Conditions

3 Examples of Interface Coupling Conditions. Applications.
Well-balanced Finite Volume schemes

Main Example: transmission maps (the conservative case)
Example: flux limitation in road and pedestrian traffic

4 Conservation laws with point source
Example: the particle-in-Burgers problem
Transmission maps in the non-conservative setting
Conclusions



Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

Discontinuous-flux setting

and state-of-the-art



Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

Prototype problem

Prototype discontinuous flux problem

Prototype scalar conservation law with discontinuous flux (DFSCL):

∂tu + ∂x fR(u) = 0∂tu + ∂x fL(u) = 0

x

t

Trace uL

∂tu + ∂x
(
fL(u)1Ix<0 + fR(u)1Ix>0

)
= 0

(
in Kruzhkov’s sense

)

Trace uR

(
in Kruzhkov’s sense

)
Which coupling?

Which notion(s) of solution ?
Answer: depends on the model !
[Adimurthi,Mishra,V.Gowda’05]

Uniqueness ?

Existence (passage to the limit) ?

Numerical approximation ?

In many examples, DFSCL can be seen as a singular limit problem.
What information is inherited at the limit ?
How can solutions of DFSCL be characterized intrinsically ?

Answer: the essential information is contained in stationary solutions
⇒ importance of well-balanced schemes for FV approximation of DFSCL

NB: away from the interface, we will always use
the Kruzhkov notion of entropy solution
+ Finite Volume approximations with two-point monotone fluxes.
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Example: Buckley-Leverett eqn. as vanishing capillarity limit

Example: Buckley-Leverett equation as vanishing capillarity limit

Consider Buckley-Leverett equation in 1D medium
constituted of two rocks with distinct physical properties

∂tu + ∂x fR(u) = 0∂tu + ∂x fL(u) = 0

x

t

Trace uL(t)

∂tu + ∂x
(
fL(u)1Ix<0 + fR(u)1Ix>0

)
= 0

(
= ε∂x(λR(u)∂xπR(u))

)

Trace uR(t)

(
= ε∂x(λL(u)∂xπL(u))

)
Coupling: RH +

continuity of pressure

NB: the nonlinearities πL,R (capillary pressures) and λL,R
enter the model for ε > 0 but don’t enter the limit model
⇒ should Interface Coupling keep memory of πL,R and λL,R ?
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Example: Buckley-Leverett eqn. as vanishing capillarity limit

Numerical examples: practical interest of the limit model

Constant initial condition, some choice of fL,R and πL,R

(a) Numerical solution uh
of the limit (hyperbolic) problem

(b) Numerical solution uε
h

of the parabolic problem (ε = 10−3)

Speed-up hyperbolic versus parabolic : factor 800.
The limit problem is approximated according to the recipes of
[A.,Cancès ’12 and ’14], [A.,Cancès’15]
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Example: Buckley-Leverett eqn. as vanishing capillarity limit

Numerical examples: the limit model is under-determined

Same initial condition, same choice of fL,R , but πL,R are changed

(c) Numerical solution uh
of the limit (hyperbolic) problem

(d) Numerical solution uε
h

of the parabolic problem (ε = 10−3)

Conclusion: the limit DFSCL model should indeed depend on πL,R(·)
Goal : understand and formalize this dependence

in terms of ICC (Interface Coupling Conditions)
and find numerical strategies for approximating DFSCL + ICC
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A glimpse into well-posedness theory. Convergence of approximations

Focus on steady states for DFSCL.

[A.,Karlsen,Risebro’11] : understanding the model DFSCL equation

∂tu + ∂x
(
fL(u)1Ix<0 + fR(u)1Ix>0

)
= 0

One can characterize the Interface Coupling
by describing the set G of all couples (uL,uR) ∈ R2

that can appear as possible traces on the (left,right) at x = 0.
Scaling invariance⇒
(uL,uR) ∈ G iff k(x) = uL1Ix<0 + uR1Ix>0 is an (admissible) solution
Thus, we are speaking about the piecewise constant steady states !

Algebraic property of G (called L1D germ):
• (conservative coupling) ∀(uL,uR) ∈ G fL(uL) = fR(uR)

• (L1-dissipative coupling) ∀(uL,uR), (ûL, ûR) ∈ G

sign(uL−ûL)
(
fL(uL)−fL(ûL)

)
− sign(uR−ûR)

(
fR(uR)−fR(ûR)

)
≥ 0

• G is called maximal if it has no extension satisfying these constraints
• G is called definite if it has a unique maximal extension, called G∗
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A glimpse into well-posedness theory. Convergence of approximations

Notion of solution and well-posedness.

Definition

Assume G is a definite L1D germ.

An L∞ function u is a G-entropy solution
if it is a local Kruzhkov solution away from {x = 0}
and moreover, for a.e. t > 0, the couple

(
u(t ,0−),u(t ,0+)

)
∈ G∗.

Equivalently, the trace condition can be replaced by
adapted entropy inequalities:
∀(uL,uR) ∈ G, setting k(x) = uL1Ix<0 + uR1Ix>0,

∂t |u − k(x)|+ ∂x
(
sign(u − k(x))(f (x ,u)− f (x , k(x)))

)
≤ 0 in D′.

Theorem

For every definite L1D germ,
Cauchy problem is well posed in the setting of G-entropy solutions.
The Godunov scheme (including the G-Godunov solver at {x = 0})
converges to this solution.
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A glimpse into well-posedness theory. Convergence of approximations

Convergence of approximations.

Numerical (Godunov) or suitable viscosity approximations are proved
to converge using the following arguments:

The approximation method fulfills the (approximate)
localized contraction inequality:

∂t |uh−ûh|+ ∂x
(
sign(u−û)(f (x ,uh)− f (x , ûh))

)
≤ Remh in D′

the steady states k(x) = uL1Ix<0 + uR1Ix>0, (uL,uR) ∈ G
are limits of the approximation method
the inequality is used for û(t , x) = k(x);
at the limit h→ 0, one gets adapted entropy inequalities for u.

Thus, crucial features for a numerical method are:
Discrete contraction
Preservation (exact, or at the limit h→ 0)
of the steady states k(x) defined from G.

NB: If G is known... If the Godunov scheme is used... it converges.
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Boundary Conditions and

Interface Coupling Conditions
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Boundary Conditions for SCL: beyond Bardos-LeRoux-Nédélec

General dissipative boundary conditions

t

x

Domain boundary

Trace u(0, t)

Trace F [u](0, t)

{
∂tu + ∂xF [u] = 0, x < 0
+CB x = 0−

(F [u] denotes the flux)

entropy solution

Boundary condition

prescribing
(
u(0, .),F [u](0, .)

)

Local “Kato inequality” obtained from the local entropy formulation:

∀ξ ∈ D(Ω)+∫
Ω

|u− û|(T , x)−
∫

Ω

|u0− û0|+
∫ T

0

∫
Ω

sign (u− û)(F [u]−F [û]) · ∇ξ ≤ 0

Exploit KI near the boundary: test fct. ξn→1Ω with ∇ξn⇀−δ|∂Ωn ⇒∫
Ω

|u − û|(T , x)−
∫

Ω

|u0 − û0| ≤−
∫ T

0
γad hoc

{
sign (u−û)(F [u]−F [û])·n

}
(t) dt
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Boundary Conditions for SCL: beyond Bardos-LeRoux-Nédélec

Classical boundary conditions

Trace de F [u] Trace de F [u]

Trace de u Trace de u

CB Dirichlet CB zero-flux

Trace de F [u] Trace de F [u]

Trace de u Trace de u

CB obstacleCB Robin

In these cases, (u,F [u]) ∈ β for some maximal monotone graph β .
General framework: BC set up in terms of a maximal monotone
dependence between the solution u and flux F [u] at the boundary
Boundary dissipation:
sign (u − û)

(
F [u]− F [û]

)
= sign (u − û)

(
β(u)− β(û)) ≥ 0 !
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Dissipative BC in the hyperbolic setting

Dissipative BC for hyperbolic conservation law. Projection.

Hyperbolic equation ut + f (u)x = 0 + formal BC (u,F [u]) ∈ β :

Uniqueness is obvious for the formal problem
Formal problem ill-posed (in general, existence fails )
Problem with ... = ε∂2

xxu is well posed.
The limit is a local entropy solution verifying effective BC
(u,F [u]) ∈ β̃ where β̃ is a projection of β.
Problem with effective BC (i.e., β̃ in BC) is well posed

One can easily grasp the projection procedure by picturing β̃.
One observes : β̃ is the maximal monotone subgraph of f

which is the closest to β !
Example: BLN condition [Bardos,LeRoux,Nédélec’79]

can be reformulated this way [Dubois,LeFloch’88]
One can describe β̃ in terms of the “Godunov numerical flux”:

β̃ =
{

(u,F)
∣∣∣F = f (u) = God[u, ũ] ∈ β(ũ)

}
Détails : [Thesis Sbihi’06],[A.,Sbihi’15]
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Dissipative BC in the hyperbolic setting

Example for a general BC: the projection procedure
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Interface Coupling Conditions

Dissipative Interface Coupling Conditions (ICC)

Analogy : One assimilates inner interface to a “double boundary”
Interface Coupling Conditions (ICC) can be expressed, as in the BC
case, by (

(uL,uR) , (FL,FR)
)
∈ H ⊂ R2 × R2

where uL,R are the traces (left and right) of the solution u
and FL,R are the normal traces (left and right) of the flux F [u].
The ICC is conservative if ∀

(
(uL,uR), (FL,FR)

)
∈ H, FL + FR = 0.

The L1-dissipativity of the CCI is equivalent to the monotonicity of H
in the sense: H is called 1-monotone if

∀
(

(uL,uR) , (FL,FR)
)
,
(

(ûL, ûR) , (F̂L, F̂R)
)
∈ H

sign max (uL − ûL)(FL − F̂L) + sign max (uR − ûR)(FR − F̂R) ≥ 0

Principle: The situation of ICC is fully analogous to that of BC!
NB : Idea comes from [Imbert,Monneau’14] (HJeqns on networks).

Natural extension to networks [A.,Coclite,Donadello, in prep.]



Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

Interface Coupling Conditions

Dissipative Interface Coupling Conditions (ICC)

Analogy : One assimilates inner interface to a “double boundary”
Interface Coupling Conditions (ICC) can be expressed, as in the BC
case, by (

(uL,uR) , (FL,FR)
)
∈ H ⊂ R2 × R2

where uL,R are the traces (left and right) of the solution u
and FL,R are the normal traces (left and right) of the flux F [u].
The ICC is conservative if ∀

(
(uL,uR), (FL,FR)

)
∈ H, FL + FR = 0.

The L1-dissipativity of the CCI is equivalent to the monotonicity of H
in the sense: H is called 1-monotone if

∀
(

(uL,uR) , (FL,FR)
)
,
(
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Interface Coupling Conditions

The projection procedure for ICC. The return of the “germs”.

In particular: a formally prescribed ICC is projected: H −→ H̃,

H̃ :=
{

( uL,uR ; FL,FR ) ∈ R2 × R2
∣∣ ∃( ūL, ūR ; FL,FR ) ∈ H

FL = fL(uL) = GodL[uL, ūL], −FR = fR(uR) = GodR[ūR ,uR]
}

(GodL,R[·, ·] being the Godunov fluxes associated with fL,R).

As for the BC case, H̃ should be seen as the effective ICC [A.,’15] .
One finds:
H is conservative ⇒ H̃ is also conservative
H is L1-dissipative ⇒ H̃ is also L1-dissipative ;
moreover, the domain of H̃ is an L1D germ

Example of ICC: “conservative inflow-outflow Robin conditions”
Given monotone continuous functions AL,R : R→ R (e.g.,
AL,R(u) =

λL,R
1−λL,R

u for some parameters λL,R ∈ (0,1)),

H :=
{(

uL,uR ; F ,−F
)
∈ R2 × R2

∣∣uL,R ∈ R, F = AL(uL)− AR(uR)
}
.
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Examples of ICC,

applications and

well-balanced FV schemes
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Main Example: transmission maps (the conservative case)

Conservative ICC defined by transmission maps

The example of vanishing capillarity suggests the following ICC:

( uL,uR ; FL,FR ) ∈ H(πL,R) ⇔ FL + FR = 0, πL(uL) = πR(uR).

The interface coupling by transmission map r 7→ (πL(r), πR(r)) :

∂tu + ∂x fR(u) = 0∂tu + ∂x fL(u) = 0

x

t

Dirichlet BC πL(r(t))

(
in Kruzhkov’s sense

)

Dirichlet BC πR(r(t))

(
in Kruzhkov’s sense

)
Transmission

Transmission: two Dirichlet pbs (in the BLN sense) coupled by
the Dirichet BC πL,R(r(t)) (r(t) being additional unknown)
the conservativity relation
GodL[u(t ,0−), π(r(t))] = GodR[πR(r(t)),u(t ,0+)].
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Main Example: transmission maps (the conservative case)

Well-balanced FV schemes for transmission-map ICC

[A.,Cancès’12,’14,’15] FV schemes for the transmission=map ICC:
the two-point interface flux Fint (·, ·) is defined by

Fint (u−,u+) = GodL[u−, πL(r)] = GodR[πR(r),u+]

where r ∈ R solves GodR[πR(r),u+]− GodL[u−, πL(r)] = 0.

Properties of the scheme:
One implicit unknown per interface point;
the equation to be solved is a scalar monotone equation
(e.g., ⇒ regula falsi method)

The numerical flux Fint is monotone and Lipschitz
The scheme is well balanced
(it preserves the “germ” steady states)⇒ the scheme converges
NB: we use Godunov fluxes of fL,R ...
but not the Riemann solver at the interface !
Moreover, GodL,R can be replaced by any classical num. flux !
The scheme is “asymptotically well-balanced” and convergent.
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Main Example: transmission maps (the conservative case)

Numerical example in 2D (IMPES scheme)

Combination with 2D IMplicit Pressure - Explicit Saturation Scheme:

The two-rock domain is initially saturated in water. Two barriers (rock Ω2)
have a higher entry pressure. The vertical boundaries are impermeable.
Bottom+top : a constant rate of a total flux is prescribed. Saturation s = 0.5
imposed on Γin. Details: [Andreianov,Brenner,Cancès’13] .
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Example: flux limitation in road and pedestrian traffic

Traffic models with point constraint

[Colombo,Goatin’07] : LWR model ∂tu + ∂x f (u) = 0
with point constraint f (u)|x=0 ≤ q(t).

Models red lights, pay tolls, construction cites,...
The underlying ICC is:

H(t) ={(k , k ,F ,−F ) | k arbitrary, F ≤ q(t)} (the Kruzhkov part)⋃
{(kL, kR ,F ,−F ) | kL > kR , F = q(t)} (non-Kruzhkov jumps)

Given any monotone consistent Lipschitz numerical flux F (·, ·) ,
the interface numerical flux for the constrained model is defined by:

Fint (t ; u−,u+) = min{F (u−,u+),q(t)}.
the flux Fint is monotone and Lipshitz
the scheme is asymptotically well balanced⇒ it converges
[A.,Goatin,Seguin’10]
if F is the Godunov flux of f , then the resulting scheme is the
Godunov scheme also at the interface [Cancès,Seguin’12]
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Example: flux limitation in road and pedestrian traffic

Application to pedestrian traffic modeling

Let us make depend q(t) on the solution u(t , ·). We propose new
pedestrian (“panic at the exit”) models [A.,Donadello,Rosini’14] :

f (u)|t=0 ≤ q(t) = P
(∫

R−

w(x)u(t , x) dx
)
, w ≥ 0,

∫
R−

w(x) dx = 1.

P(·) non-increasing⇒ “Faster is Slower”and Braess paradoxes!
Simulations of [A.,Donadello,Razafison,Rosini prep.’15] .
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Conservation Laws

with point source
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Example: the particle-in-Burgers problem

Coupling of Burgers fluid and a point Particule via a drag force

Model proposed by [Lagoutière,Seguin,Takahashi’07] :

x

x = h(t)

Trace uL(t) Trace uR(t)

{
∂tu + ∂x

u2

2 = −
(
u − h′(t)

)
δ0(x − h(t)),

h′′(t) = u(t ,h(t))− h′(t)
t

Trajectory of the particle

Kruzhkov solution Kruzhkov solution

Non-conservative
coupling

– Splitting arguments or fixed point arguments⇒ decoupling
– Change of variable⇒ reduction to the case h′ ≡ 0.
Theory: [A.,Lagoutière,Seguin,Takahashi’14] ;
numerics: [ALST’10],[Aguillon,Lagoutière,Seguin’14],[Towers’15]



Setting & state-of-the-art Boundary Conditions & Interface Coupling Conditions Examples of ICC, applications & FV schemes CL with point source

Example: the particle-in-Burgers problem

Burgers equation perturbed by a singular source term

Simplified version of the previous problem:

x

t

Trace uL(t) Trace uR(t)

Trajectory of the particle
x ≡ 0

∂tu + ∂x
u2

2 = −uδ0(x)

Kruzhkov solution Kruzhkov solution

Non-conservative
coupling

NB: Formal dissipativity⇒ the “germ”/ICC formalism can be used.
[Lagoutière,Seguin,Takahashi’07] : the rigorous interpretation of the
non-conservative product u(t , x)δ0(x) reduces to finding steady
states via δε,ε→ 0. Particular steady states:

k(x) = uL1Ix<0 + uR1Ix>0, uL = r + 1
2 , uR = r − 1

2 ,

moreover, the corresponding defect of conservation equals r
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Transmission maps in the non-conservative setting

Transmission maps for non-conservative coupling

One can attempt to encode the ICC using:
the transmission map r 7→ (r + 1

2 , r −
1
2 )

and the dissipation map r → ψ(r) = r

∂tu + ∂x fR(u) = 0∂tu + ∂x fL(u) = 0

x

t

Dirichlet BC r(t) + 1
2

(
in Kruzhkov’s sense

)

Dirichlet BC r(t)− 1
2

(
in Kruzhkov’s sense

)
Transmission
+ dissipation

Transmission: two Dirichlet pbs (in the BLN sense) coupled by
the Dirichet BC r(t)± 1

2 (r(t): the additional unknown)
the dissipativity relation
GodR[r(t)+ 1

2 ,u(t ,0+)]− GodL[u(t ,0−), r(t)− 1
2 ] + ψ(r) = 0.

Result: ψ monotone⇒ same recipes apply for the FV scheme
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Transmission maps in the non-conservative setting

Numerics: drafting-kissing-tumbling. Extension to Euler system?

In fact, a simpler (fully explicit) but less robust scheme has already
been proposed for Burgers-particle problem. A simulation:
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Figure: Trajectories of two particles

NB: For Euler-particle pb., extension of this scheme fails [Aguillon’14]
Preliminary results on the transmission-like scheme are encouraging.
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Conclusions

Conclusions:

in modeling with DFSCL,
identification of Interface Coupling Conditions is essential

well-balanced (asymptotically) monotone FV schemes converge

no general strategy (except for transmission+dissipation ICC)

successful examples

Perspectives:

other examples of ICC that appear in practice ?

(partial) extension of transmission strategies to some systems ??

GRAZIE !
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