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Prototype problem

Prototype discontinuous flux problem

Prototype scalar conservation law with discontinuous flux (DFSCL):

Oy + x (f(u) Tx<o + fa(U) Ix-0) = O @ Which notion(s) of solution ?
Answer: depends on the model !

Oy + Oxfa(u) = 0 [Adimurthi,Mishra,V.Gowda’05]
( in Kruzhkov’s sense )

Ot + Oxfr(u) =0

( in Kruzhkov’s sense ) P UniqueneSS r)

@ Existence (passage to the limit) ?
Trace "u,. race UR

> @ Numerical approximation ?

In many examples, DFSCL can be seen as a singular limit problem.
What information is inherited at the limit ?

How can solutions of DFSCL be characterized intrinsically ?



Setting & state-of-the-art
°

Prototype problem

Prototype discontinuous flux problem

Prototype scalar conservation law with discontinuous flux (DFSCL):

Oy + x (f(u) Tx<o + fa(U) Ix-0) = O @ Which notion(s) of solution ?
Answer: depends on the model !

Oy + Oxfa(u) = 0 [Adimurthi,Mishra,V.Gowda’05]

( in Kruzhkov’s sense )

Ot + Oxfr(u) =0
( in Kruzhkov’s sense ) P Uniqueness n
@ Existence (passage to the limit) ?

Trace "u,. race UR

> @ Numerical approximation ?

In many examples, DFSCL can be seen as a singular limit problem.
What information is inherited at the limit ?
How can solutions of DFSCL be characterized intrinsically ?

Answer: the essential information is contained in stationary solutions
= importance of well-balanced schemes for FV approximation of DFSCL

NB: away from the interface, we will always use
the Kruzhkov notion of entropy solution
+ Finite Volume approximations with two-point monotone fluxes.
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Example: Buckley-Leverett eqn. as vanishing capillarity limit

Example: Buckley-Leverett equation as vanishing capillarity limit

Consider Buckley-Leverett equation in 1D medium
constituted of two rocks with distinct physical properties

oru + ax(fL(U) Iy<o0 + fr(U) ][x>0) =0

O+ Oxf(u) =0
( = c0y(\L(U)dymL(u)) )

o + a)(f:‘:t'(l‘l) =0
< = e0x(AR(U)OxmR(U)) )

Coupling: RH +

continuity of pressure

Trace uL(t) Trace UR(t)

X
>

NB: the nonlinearities 7, r (capillary pressures) and A. g
enter the model for e > 0 but don’t enter the limit model
= should Interface Coupling keep memory of =, g and A\ g ?




Setting & state-of-the-art
o] 1o}

Example: Buckley-Leverett eqn. as vanishing capillarity limit

Numerical examples: practical interest of the limit model

Constant initial condition, some choice of f, g and 7 g

saturation
hyperbolic (Upstream)
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(a) Numerical solution up, (b) Numerical solution ug
of the limit (hyperbolic) problem of the parabolic problem (¢ = 10—3)

Speed-up hyperbolic versus parabolic : factor 800.

The limit problem is approximated according to the recipes of
[A.,Cances’12 and '14], [A.,Cancés’15]
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Example: Buckley-Leverett eqn. as vanishing capillarity limit

Numerical examples: the limit model is under-determined

Same initial condition, same choice of f; g, but 7, g are changed

saturation
hypertolic (Upstream)
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(c) Numerical solution up (d) Numerical solution ug
of the limit (hyperbolic) problem of the parabolic problem (¢ = 103)

Conclusion: the limit DFSCL model should indeed depend on =, g(-)
Goal : understand and formalize this dependence

in terms of ICC (Interface Coupling Conditions)

and find numerical strategies for approximating DFSCL + ICC
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A glimpse into well-posedness theory. Convergence of approximations

Focus on steady states for DFSCL.

[A.,Karlsen,Risebro’11] : understanding the model DFSCL equation
atu + 8x(fL(u)1x<0 + fH(U)1x>O) =0

One can characterize the Interface Coupling

by describing the set G of all couples (u;, ug) € R?

that can appear as possible traces on the (left,right) at x = 0.
Scaling invariance =

(uL, uR) € G iff k(x) = ug1x<o + ugly=o is an (admissible) solution
Thus, we are speaking about the piecewise constant steady states !
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A glimpse into well-posedness theory. Convergence of approximations

Focus on steady states for DFSCL.

[A.,Karlsen,Risebro’11] : understanding the model DFSCL equation
atu + 8x(fL(u)1x<0 + fH(U)1x>O) =0

One can characterize the Interface Coupling
by describing the set G of all couples (u;, ug) € R?
that can appear as possible traces on the (left,right) at x = 0.

Scaling invariance =

(uL, uR) € G iff k(x) = ug1x<o + ugly=o is an (admissible) solution
Thus, we are speaking about the piecewise constant steady states !
Algebraic property of G (called L'D germ):

e (conservative coupling) Y(ur,ug) € G f(uL) = fr(ur)

o (L'-dissipative coupling) ¥(u., ug), (i, Ur) € G

Sign(UL*lAJL)(fL(UL)ffL(EIL)) — sign(quE/,q)(fR(uR)ffR(C/R)) >0

e G is called maximal if it has no extension satisfying these constraints
e G is called definite if it has a unique maximal extension, called G*
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A glimpse into well-posedness theory. Convergence of approximations

Notion of solution and well-posedness.

Definition
Assume G is a definite L'D germ.
An L function u is a G-entropy solution

if it is a local Kruzhkov solution away from {x = 0}
and moreover, for a.e. t > 0, the couple (u(t,07), u(t,07)) € G*.

Equivalently, the trace condition can be replaced by
adapted entropy inequalities:
V(uL, ug) € G, setting k(x) = u <o + Uglx=o,

Or|lu — k(x)| + dx (sign(u — k(x))(f(x, u) — f(x, k(x)))) <0 inD".

Theorem

| \

For every definite L' D germ,

Cauchy problem is well posed in the setting of G-entropy solutions.
The Godunov scheme (including the G-Godunov solver at {x = 0})
converges to this solution.
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A glimpse into well-posedness theory. Convergence of approximations

Convergence of approximations.

Numerical (Godunov) or suitable viscosity approximations are proved
to converge using the following arguments:

@ The approximation method fulfills the (approximate)
localized contraction inequality:

AU — 0" + dx (sign(u— ) (f(x, u™) — f(x,&")) < Rem" in D’
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A glimpse into well-posedness theory. Convergence of approximations

Convergence of approximations.

Numerical (Godunov) or suitable viscosity approximations are proved
to converge using the following arguments:

@ The approximation method fulfills the (approximate)
localized contraction inequality:

AU — 0" + dx (sign(u— ) (f(x, u™) — f(x,&")) < Rem" in D’

@ the steady states k(x) = uy1x<o + uglyso, (U, UR) €G
are limits of the approximation method
@ the inequality is used for {(t, x) = k(x);
at the limit h — 0, one gets adapted entropy inequalities for u.
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A glimpse into well-posedness theory. Convergence of approximations

Convergence of approximations.

Numerical (Godunov) or suitable viscosity approximations are proved
to converge using the following arguments:

@ The approximation method fulfills the (approximate)
localized contraction inequality:

AU — 0" + dx (sign(u— ) (f(x, u™) — f(x,&")) < Rem" in D’

@ the steady states k(x) = uy1x<o + uglyso, (U, UR) €G
are limits of the approximation method

@ the inequality is used for U(t, x) = k(x);
at the limit h — 0, one gets adapted entropy inequalities for u.

Thus, crucial features for a numerical method are:
@ Discrete contraction

@ Preservation (exact, or at the limit h — 0)
of the steady states k(x) defined from G.

NB: If G is known... If the Godunov scheme is used... it converges.
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Boundary Conditions for SCL: beyond Bardos-LeRoux-Nédélec

General dissipative boundary conditions

O+ OxFlul =0, x<0
+CB x=0"

(F[u] denotes the flux)

Trace F[u](0. 1) Pl

Trace u(0,t)

t

Domain boundary

/

Boundary condition

rescribing (u(0,.), F[u](0,.)

)

Local “Kato inequality” obtained from the local entropy formulation:

. ve € D(Q)*
/Q|u—0\(T,x)—/Q|uo—Uo|+/o /Qsign(u—ﬁ)(F[u]—F[fJ])~V§§O

Exploit KI near the boundary: testfct. £, — 1q with V&, — —d|son =

/Q u— U\(T=X)j/§; |to — o <‘/(;Tvaahoc{sign(uil)(/:[u]F[ff])ﬂ}(f) dt
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Boundary Conditions for SCL: beyond Bardos-LeRoux-Nédélec

Classical boundary conditions

Trace de F[u] Trace de F[u]

CB  Dirichlet @
Trace de u Trace de u

Trace de F[u] Trace de F[u]
Trace de u

CB  Robin CB obstacle
Trace de u

In these cases, (u, F[u]) € /3 for some maximal monotone graph 5 .
General framework: BC set up in terms of a maximal monotone
dependence between the solution v and flux F[u] at the boundary
Boundary dissipation:

sign (u — 0)(F[u] — F[0]) = sign(u— 0)(B(u) — (&) > 0!
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Dissipative BC in the hyperbolic setting

Dissipative BC for hyperbolic conservation law. Projection.

Hyperbolic equation u; + f(u)x = 0 + formal BC (u, Flu]) € 5 :
@ Uniqueness is obvious for the formal problem
@ Formal problem ill-posed (in general, existence fails )
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Dissipative BC in the hyperbolic setting

Dissipative BC for hyperbolic conservation law. Projection.

Hyperbolic equation u; + f(u)x = 0 + formal BC (u, Flu]) € 5 :
@ Uniqueness is obvious for the formal problem
@ Formal problem ill-posed (in general, existence fails )

@ Problem with ... = =92, u is well posed.
The limit is a local entropy solution verifying effective BC
(u, Flu]) € 3 where 3 is a projection of 3.
Problem with effective BC (i.e., 3 in BC) is well posed
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Dissipative BC in the hyperbolic setting

Dissipative BC for hyperbolic conservation law. Projection.

Hyperbolic equation u; + f(u)x = 0 + formal BC (u, Flu]) € 5 :
@ Uniqueness is obvious for the formal problem
@ Formal problem ill-posed (in general, existence fails )

@ Problem with ... = =92, u is well posed.
The limit is a local entropy solution verifying effective BC
(u, Flu]) € 3 where 3 is a projection of 3.
Problem with effective BC (i.e., 3 in BC) is well posed

@ One can easily grasp the projection procedure by picturing A.
One observes : g is the maximal monotone subgraph of f
which is the closest to 3 !

Example: BLN condition [Bardos,LeRoux,Nédélec’79]
can be reformulated this way [Dubois,LeFloch’88]

@ One can describe 3 in terms of the “Godunov numerical flux”:
B={(uF) )f = H(u) = God[u, 7] € (1)}
Détails : [Thesis Sbihi’06],[A.,Sbihi’15]
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Dissipative BC in the hyperbolic setting

Example for a general BC: the projection procedure

Graph B(.)

B coincides with the

lower increasing envelope of @,

Graph ¢,(.)

S
>

B coincides with the
upper increasing envelope of @,

Graph B (solid and dashed bold curves)
and its restriction 3 (solid bold curves)

Partof set D~ Partof set D"
(undershoot)  (overshoot)
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Interface Coupling Conditions

Dissipative Interface Coupling Conditions (ICC)

Analogy : One assimilates inner interface to a “double boundary”

Interface Coupling Conditions (ICC) can be expressed, as in the BC
case, by

((uL,uH), (FL,FH)> € H CR? x R

where u; g are the traces (left and right) of the solution u
and F; g are the normal traces (left and right) of the flux F[u].

The ICC is conservative if V((uL, ug), (F, Fr)) € H, FL. + Fr = 0.
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Interface Coupling Conditions

Dissipative Interface Coupling Conditions (ICC)

Analogy : One assimilates inner interface to a “double boundary”

Interface Coupling Conditions (ICC) can be expressed, as in the BC
case, by

((uL,uH), (FL,FH)> € H CR? x R

where u; g are the traces (left and right) of the solution u
and F; g are the normal traces (left and right) of the flux F[u].

The ICC is conservative if V((uL, ug), (F, Fr)) € H, FL. + Fr = 0.

The L'-dissipativity of the CCl is equivalent to the monotonicity of
in the sense: H is called 1-monotone if

V((UL7UR)7 (FL, FH))7 ((I:ILJAIH), (Fi, ,:_R)) €H
sign max(UL — EIL)(FL — I:_L) + sign max(UFf — ltl,c;)(FH — /A:,q) >0

Principle: The situation of ICC is fully analogous to that of BC!

NB : Idea comes from [Imbert,Monneau’14] (HJegns on networks).
Natural extension to networks [A.,Coclite,Donadello, in prep.]
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Interface Coupling Conditions

The projection procedure for ICC. The return of the “germs”.

In particular: a formally prescribed ICC is projected: H — A,

H = {(uL,Ur; Fi,Fr) € R? x R?|3( e, Un; Fi, Fr) €
Fi = fi(u) = God,[u, U], —Fr = fa(ug) = Godg[Ur, ug] }

(Gody g, -] being the Godunov fluxes associated with f ).
As for the BC case, # should be seen as the effective ICC [A.;15] .
One finds:
@ 7 is conservative = 7 is also conservative
o His L'-dissipative = % is also L'-dissipative ;
moreover, the domain of 7 is an L' D germ
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Interface Coupling Conditions

The projection procedure for ICC. The return of the “germs”.

In particular: a formally prescribed ICC is projected: H — A,

H = {(uL,Ur; Fi,Fr) € R? x R?|3( e, Un; Fi, Fr) €
Fi = fi(u) = God,[u, U], —Fr = fa(ug) = Godg[Ur, ug] }

(Gody g, -] being the Godunov fluxes associated with f ).
As for the BC case, # should be seen as the effective ICC [A.;15] .
One finds:

@ 7{is conservative = % is also conservative

@ His L'-dissipative = ¥ is also L'-dissipative ;

moreover, the domain of 7 is an L' D germ

Example of ICC: “conservative inflow-outflow Robin conditions”
Given monotone continuous functions A, g : R — R (e.g.,

ALgr(u) = 1f§fﬁu for some parameters A, g € (0, 1)),

H = {(UL,UH; F,—F) S RQ X Rz ’ urp €< R, F= AL(UL) —AF;(UF;)}.
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Examples of ICC,
applications and
well-balanced FV schemes
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Main Example: transmission maps (the conservative case)

Conservative ICC defined by transmission maps

The example of vanishing capillarity suggests the following ICC:
(U/_, up; F[_, F,q') S 'H(TI'L,R) & F 4+ Fp= 07 ﬂ'L(U/_) = ﬂ'n(Un).

The interface coupling by transmission map r — (7. (r), 7r(r)) :

(9tU + afo(U) =0
( in Kruzhkov’s sense )

Ou + Oxfr(u) =0

( in Kruzhkov’s sense )

Dirichlet BC 7. (r(t)) Dirichlet BC 7g(r(t))

—

Transmission: two Dirichlet pbs (in the BLN sense) coupled by
@ the Dirichet BC 7 g(r(t)) (r(t) being additional unknown)

@ the conservativity relation
Gody[u(t,07), 7(r(t))] = Godg[rg(r(t)), u(t,0%)].



Examples of ICC, applications & FV schemes
oeo

Main Example: transmission maps (the conservative case)

Well-balanced FV schemes for transmission-map ICC

[A.,Cances’12,14,15] FV schemes for the transmission=map ICC:
the two-point interface flux Fix(-, ) is defined by

Fint(u—, uy) = God[u—, 71 (r)] = Godg[rg(r), U]
where r € R solves Godg[rg(r), u.] — God [u_, 7 (r)] = 0.

Properties of the scheme:
@ One implicit unknown per interface point;
the equation to be solved is a scalar monotone equation
(e.g., = regula falsi method)
@ The numerical flux Fj,; is monotone and Lipschitz
@ The scheme is well balanced
(it preserves the “germ” steady states) = the scheme converges
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Main Example: transmission maps (the conservative case)

Well-balanced FV schemes for transmission-map ICC

[A.,Cances’12,14,15] FV schemes for the transmission=map ICC:
the two-point interface flux Fix(-, ) is defined by

Fint(u—, uy) = God[u—, 71 (r)] = Godg[rg(r), U]
where r € R solves Godg[rg(r), u.] — God [u_, 7 (r)] = 0.

Properties of the scheme:

@ One implicit unknown per interface point;
the equation to be solved is a scalar monotone equation
(e.g., = regula falsi method)
@ The numerical flux Fj,; is monotone and Lipschitz
@ The scheme is well balanced
(it preserves the “germ” steady states) = the scheme converges
NB: we use Godunov fluxes of f g...
but not the Riemann solver at the interface !

@ Moreover, God; g can be replaced by any classical num. flux!
The scheme is “asymptotically well-balanced” and convergent.
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Main Example: transmission maps (the conservative case)

Numerical example in 2D (IMPES scheme)

Combination with 2D IMplicit Pressure - Explicit Saturation Scheme:

il caf ag)
g os
‘A o oo or
/1 oo a4
/€2 os
y a
[yl N q q
57 NN ] ] N
7| [ | 03
/ Q4 N as ay
/1 — s e o2
14 i
A a o M .

The two-rock domain is initially saturated in water. Two barriers (rock €2)
have a higher entry pressure. The vertical boundaries are impermeable.
Bottom+top : a constant rate of a total flux is prescribed. Saturation s = 0.5
imposed on I'j,. Details: [Andreianov,Brenner,Cancés’13] .
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Example: flux limitation in road and pedestrian traffic

Traffic models with point constraint

[Colombo,Goatin’07] : LWR model ;u + dxf(u) =0
with point constraint f(u)|x=0 < q(t)-
Models red lights, pay tolls, construction cites,...

The underlying ICC is:

H(t) ={(k,k,F,—F) |k arbitrary, F < q(t)} (the Kruzhkov part)
U{(ki,kn, F,—F) | kL > kg, F = q(t)} (non-Kruzhkov jumps)

Given any monotone consistent Lipschitz numerical flux F(-,-) ,
the interface numerical flux for the constrained model is defined by:

Fine(t; u—, uy) = min{F(u—, uy), q(t)}.
@ the flux Fj,; is monotone and Lipshitz
@ the scheme is asymptotically well balanced = it converges
[A.,Goatin,Seguin’10]
@ if F is the Godunov flux of f, then the resulting scheme is the
Godunov scheme also at the interface [Cances,Seguin’12]
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Example: flux limitation in road and pedestrian traffic

Application to pedestrian traffic modeling

Let us make depend g(t) on the solution u(t, -). We propose new
pedestrian (“panic at the exit”) models [A.,Donadello,Rosini’14] :

f(U)]i=o < q(t) = P</ w(x)u(t, x) dx), w > 0, w(x)dx =1.
JR_ JR_
P(-) non-increasing = “Faster is Slower”and Braess paradoxes!
Simulations of [A.,Donadello,Razafison,Rosini prep.15] .

200
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) 02 04 06 08 1 Vmax

(e) Flux f(-) of the LWR model and the (f) Dependence of evacuation time at the
“exit-clugging map” P(+) exit on the speed vmax at the entrance

evacuation time
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Example: the particle-in-Burgers problem

Coupling of Burgers fluid and a point Particule via a drag force

Model proposed by [Lagoutiére,Seguin, Takahashi’07] :

{ O+ 0% = —(u— H(t))do(x — (1)),
'(t) = u(t, h(t)) — R (1)

Non-conservative

Trajectory of the particle -
coupling

x = h(t) \

P
Trace u(t) Trace Ug(t)

— Splitting arguments or fixed point arguments = decoupling

— Change of variable = reduction to the case ' = 0.

Theory: [A.,Lagoutiére,Seguin,Takahashi’ 14] ;

numerics: [ALST 10],[Aguillon,Lagoutiere,Seguin’14],[Towers’15]

X
L
-
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Example: the particle-in-Burgers problem

Burgers equation perturbed by a singular source term

Simplified version of the previous problem:
AU+ 0L = —udo(x)

t

Non-conservative

Trajectory of the particle -
coupling

x=0

7T

Trace u(t) Trace UR(t)

X

L
—

NB: Formal dissipativity = the “germ”/ICC formalism can be used.
[Lagoutiere,Seguin, Takahashi’07] : the rigorous interpretation of the
non-conservative product u(t, x)do(x) reduces to finding steady
states via d.,e — 0. Particular steady states:

k(X) = ulxco + Urlxs0, UL =T+ 3, Ur="r— 3,

moreover, the corresponding defect of conservation equals r
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Transmission maps in the non-conservative setting

Transmission maps for hon-conservative coupling

One can attempt to encode the ICC using:
@ the transmission map r s (r + 3,r — %)
@ and the dissipation map r — ¢(r) =r

O+ Okfi(u) =0

Ot + Oxfa(u) =0
( in Kruzhkov’s sense )

in Kruzhkov’s sense

Transmission
+ dissipation

Dirichlet BC r(t) +

o=

Dirichlet BC r(f) — 1

Transmission: two Dirichlet pbs (in the BLN sense) coupled by

@ the Dirichet BC r(t) & § (r(t): the additional unknown)
@ the dissipativity relation

Godg[r(t)+ 5, u(t,07)] — God[u(t,07), r(t)— 2] + ¥(r) = O.
Result: ) monotone = same recipes apply for the FV scheme
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Transmission maps in the non-conservative setting

Numerics: drafting-kissing-tumbling. Extension to Euler system?

In fact, a simpler (fully explicit) but less robust scheme has already
been proposed for Burgers-particle problem. A simulation:

f Particle 1 ]
- 25F ¢ Particle 2 -

Figure: Trajectories of two particles

NB: For Euler-particle pb., extension of this scheme fails [Aguillon’14]
Preliminary results on the transmission-like scheme are encouraging.
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Conclusions

Conclusions:

@ in modeling with DFSCL,

identification of Interface Coupling Conditions is essential
@ well-balanced (asymptotically) monotone FV schemes converge
@ no general strategy (except for transmission+dissipation ICC)

@ successful examples

Perspectives:

@ other examples of ICC that appear in practice ?
@ (partial) extension of transmission strategies to some systems ??

GRAZIE !
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