
A

Appendix

A.1 Operations with sparse matrices
appendix:sparse

In Chapter 2 we have seen that a sparse graph is represented by a sparse
matrix. One of the most common operations with matrices is the matrix-
vector multiplication, and this is where the sparse representation of the matrix
allows a dramatic cut in the complexity.

There are several representations of sparse matrices that are commonly
used in the literature. Here we consider the two most common, we show the
relative advantages of each other, and how to switch from one representation
to the other.

A common way to represent a sparse matrix is to assign three vectors,
whose length is equal to the number of non zero elements of the matrix. Such
vectors store the values of the nonzero elements of the matrix, and their row
and column indices. This representation was introduced in chapter 2.

With this representation it is very simple to perform the matrix vector
product. Let A = (s, i, j) be a sparse N × N matrix , and let x ∈ RN be a
column vector. Let M denote the number of non zero elements of matrix A,
i.e. M is the length of vectors s, i, j.

The components of the product

y = Ax

are computed by the algorithm

for k = 1 : M
y(i(k)) = y(i(k)) + s(k) ∗ x(i(k));

end

(A.1) eqA1:multIJ

Here we use a Matlab notation, so that most of the algorithms presented can
be immediately implemented. However, such algorithms are not supposed to
be implemented in Matlab the way they are written, since Matlab is very
inefficient when used with scalar operations. A C version of the algorithms,

246 A Appendix

which is much more efficient, can be downloaded from the web @@@Inserire
il riferimento@@@.

The number of floating point operations (multiplications) required by the
above algorithm is M . Note also that the algorithm can be written in a form
which is more compact than the usual matrix-vector multiplication, which
requires two nested cycles. Note also that before starting the cycle, one has
to be sure that the vector y is zero. This can be done by explicitly setting all
components of y to zero, before starting cycle A.1

When using the SLAP row format, the matrix information is stored in
two three vectors, s, r, j, with s a vector with M components storing the non
zero values of the matrix, j a vector with M components storing the column
index of each non zero component of the matrix, ordered by index, and r is a
vector of dimension N + 1, such that ri, i = 1, . . . , N is the index of the first
non zero element of the i=th row, and rN+1 is equal to M + 1. In this way
all non zero elements of the i-th row of the matrix will be stored in positions
k = ri, . . . , ri+1 − 1.

Note that this representation is equivalent to assigning an adjacency list
to each node. For this reason it is sometimes referred as adjacency-list repre-
sentation ??.

If a matrix A = [s, r, j] is stored in a SLAP row format, and x ∈ RN is
a column vector, then the matrix-vector product y = Ax is obtained by the
algorithm

for i = 1 : N
for k = r(i1) : r(i1 + 1)− 1

y(k) = y(k) + s(k) ∗ x(i1);
end

end

(A.2) eqA1:multRL

Sometimes it is useful to switch from one sparse matrix representation
to the other. Here we show how to switch from the ij-representation of the
matrix to the SLAP-row format, and vice versa. It is trivial to switch from
the compressed row format to the ij-format, in fact it is enough to define a
vector i as

for j = 1 : N
for k = r(j) : r(j + 1)− 1

i(k) = j;
end

end

(A.3) eqA1:computei

The construction of the SLAP representation from the ij representation is
slightly more complicated, mainly because i and j vectors are stored without
any specific order. One possibility to switch from ij- to SLAP- format is
to sort vector i, and then create a vector r by scanning the sorted vector
i. However, there ia a simpler and faster way to do it, which is shown in
Algorithm illustrated in Table A.1. The method is faster that standard sorting,
first because we know a priori what the possible values of i are, and because

A.2 Eigenvalues and Eigenvectors of a matrix 247

the j values will not be sorted. Given vector i ∈ NM , the algorithm produces
a vector r ∈ NN+1 and a vector L such that the vector j in the SLAP format
will be given by jSLAP(k) = j(L(k)), k = 1, . . . , M .

The algorithm works as follows: First the number of elements in each row
is computed and stored in r(i + 1), i = 1, . . . , N . From this information, the
vector r is computed as r(1) = 1, r(i + 1) = r(i + 1) + r(i), / > i = 1, . . . , N .
Finally, vector i is scanned again. Once the value ī appears, its index is stored
in vector L.

% Set r = 0 and p = 0
for k = 1 : N

r(k + 1) = 0;
p(k) = 0;

end

% Count the number of elements for each row
for k = 1 : M

r(i(k) + 1) = r(i(k) + 1) + 1;
end

% Compute vector r
r(1) = 1;
for ii = 1 : N

r(ii + 1) = r(ii) + r(ii + 1);
end

% Compute vector L
for k = 1 : M

ii = i(k);
L(r(ii) + p(ii)) = k;
p(ii) = p(ii) + 1;

end

Table A.1. Conversion from ij- to SLAP row format. Vectors r and L are created
such that the new vector jSLAP(k) = j(L(k)), k = 1, . . . , M . tabA1:ij2rl

The procedure can be easily followed by looking at figure A.1.

A.2 Eigenvalues and Eigenvectors of a matrix
appendix:eigenvalues

Let A ∈ Rn×n be a real square matrix. Suppose we want to find a vector
whose direction remains unchanged under the action of the matrix, i.e. we
look for a non trivial vector u ∈ Cn proportional to Au. Such relation means
that we seek a vector such that

Au = λu (A.4) eqA2.eig1

248 A Appendix

Fig. A.1. Creation of the L vector. Suppose that the first 11 entries of vector i
contain four times i = 1, three times i = 2, two times i = 3, and two times i = 4,
and suppose that during the generation of vector r, we counted seven times i = 1,
seven times i = 2, four times i = 3 and three times i = 4. Then before the insertion
of the 12-th value, we would have the situation shown in the figure. Suppose that
the 12-th value of i is 2. Then we insert such value as indicated in the table, which
means we set L(r(2) + p(2)) to 12, and increase p(2) by one. figA1:ij2rl

for some values of λ. If λ and u exist, they are called, respectively, eigenvalue
and right eigenvector (or simply eigenvector) of matrix A. Note that system
A.4 may be written in the form

(λI − A)u = 0 (A.5) eqA2.eig2

where I denotes the (n × n) identity matrix. Because the system is homoge-
neous, if det(λI − A) 6= 0 it admits the only solution u = 0. If we look for a
non trivial solution, than we have to impose

p(λ) = 0 (A.6) eqA2.characteristic

where p(λ) ≡ det(λI − A) is called characteristic polynomial of matrix A.
Therefore the eigenvalues of A are the roots of the polynomial p. Observe that
p is a polynomial of degree exactly n. The fundamental theorem of algebra
states that p(λ) has n roots (in general complex), if each root is counted with
the proper multiplicity. Once the eigenvalues λ1, . . . , λn have been found, the
eigenvectors can be computed by solving the linear homogeneous systems

(λαI −A)uα = 0, α = 1, . . . , n (A.7) eqA2.eig3

The set of eigenvalues λ(A) = {λ1, . . . , λn} is called the spectrum of A.
The largest eigenvalue (in absolute value) is called the spectral radius of the
matrix: ρ(A) = max1≤α≤n|λα|.

Similarly, it is possible to define left eigenvectors vi ∈ Cn, such that

vα†A = λαvα†. (A.8) eqA2.lefteig

Here the symbol † denotes the adjoint of a vector: given a column vector
x ∈ Cn, its adjoint y = x† is a row vector such that yi = x̄i, i = 1, . . . , n,
where ∀x ∈ C, x̄ denotes the complex conjugate of x.

First let us show the following orthogonality property.

A.2 Eigenvalues and Eigenvectors of a matrix 249

Proposition A.1. Left and right eigenvectors corresponding to different eigen-
values are orthogonal, i.e. vα†uβ = 0 if λα 6= λβ.

Real symmetric matrices (and, more generally, Hermitian matrices) have
special properties concerning eigenvalues. First, let us observe that the eigen-
values of real symmetric matrices (or in general of complex Hermitian matri-
ces) are real. In fact, taking the adjoint of the relation

Au = λu

one as
u†A† = λu† (A.9) eqA2.transpose

left multiplying the first relation by u†, right multiplying the second relation
by u and subtracting each other, one obtains

u†(A−A†)u = (λ− λ)u†u

Let ‖u‖ ≡ (
∑N

i=1 |ui|2)1/2 denote the Euclidean norm of a vector u. Since
u†u = ‖u‖2 > 0, if A = A† it follows λ = λ, i.e. λ ∈ R.

Then let us observe that if a matrix is symmetric (or Hermitian), then
left and right eigenvectors coincide. This is a consequence of Eq.(A.9), since
λ = λ.

Because the eigenvalues of a real symmetric matrix are real [8], it is possible
to choose real eigenvectors (since the eigenvectors are computed from a real
linear homogeneous system).

Because of the orthogonality property of the eigenvectors, it appears nat-
ural to normalize them in such a way that their Eucledian norm is one, i.e.
we impose that

uα⊤uα = 1, α = 1, . . . , n

Because of the orthogonality condition, this implies that if the eigenvalues are
all distinct, i.e. if λα 6= λβ∀α 6= β, α, β = 1, . . . , n

uα⊤uβ = δαβ , α, β = 1, . . . , n

In a matrix form this can be written as U⊤U = I, where we denote by
U = (u1, . . . ,un) a square matrix formed by the eigenvectors of matrix A.

This relation tells us that the eigenvectors are independent (since det(U) 6=
0), and, furthermore, that the transpose of matrix U is equal to its inverse,
i.e. that U−1 = U⊤.

If the matrix is not symmetric, then it is not guaranteed that the eigenval-
ues are real. However, it may be shown that, if the eigenvalues are all distinct,
i.e. if

λα 6= λβ , α 6= β, α, β = 1, . . . , n

we have that the n eigenvectors corresponding to the n eigenvalues are inde-
pendent. This means that the set {uα, α = 1 . . . , n} forms a basis of Cn (see,
for example, [8], chapter VIII).

250 A Appendix

We now prove that if a matrix has all distinct eigenvalues then the eigen-
vectors form a basis of Cn. This is in fact a corollary of the following

Theorem A.1. Let λ1, λ2, . . . , λk denote k ≤ n distinct eigenvalues of matrix
A ∈ Rn×n, and let us denote by u1, . . . ,uk the corresponding eigenvectors. If
λi 6= λj, ∀i 6= j, i, j = 1, . . . , k, then the k eigenvectors u1, . . . , uk are linearly
independent.

For a proof of the theorem see, for example, [8]. An immediate consequence
of the theorem is that if k = n then the eigenvectors form a basis. Observe
that the relation

Auα = λαuα, α = 1, . . . , n

can be written, using matrix notation, as

AU = UΛ

where U = (u1, . . . ,un) is the matrix whose columns are the eigenvectors,
while Λ = diag(λ1, . . . , λn) is a diagonal matrix containing the eigenvalues. If
the eigenvectors form a basis of Rn, then det(U) 6= 0, and one can write

Λ = U−1AU.

In this case we say that the matrix is diagonalizable.
If the eigenvalues are not all distinct, then it may or may not still be

possible to find a basis of eigenvectors, depending on the structure of the
matrix itself.

Suppose that the distinct eigenvalues are λ1, . . . , λm, where the eigenvalue
λi has multiplicity mi, so that

∑m
i=1 mi = n. Then, since the eigenvectors

corresponding to different eigenvalues are linearly independent, and since there
could be no more that mi independent eigenvectors corresponding to a given
eigenvalue λi, a necessary and sufficient condition for diagonalizability is that
for each eigenvalue λi there are exactly mi linearly independent eigenvectors.
If this condition is satisfied, than the matrix is still diagonalizable. If this
is not the case, then the matrix cannot be reduced to a diagonal matrix by
a similarity transformation. It can be shown, however, that in this case the
matrix can be reduced in the so called canonical Jordan form (see, for example,
[8], chapter 10).

If the matrix is real symmetric or Hermitian, it is always possible to find
a basis of eigenvectors [8].

A.3 Eigenvalue and eigenvector computation
appendix:powermethod

The problem of finding eigenvalues and eigenvectors of a matrix is a classical
problem of numerical analysis, which is very important for the numerous appli-
cations in science. Several methods have been designed to solve this problem.

A.3 Eigenvalue and eigenvector computation 251

All methods are based on iterations, since the eigenvalue problem is equiva-
lent to the problem of finding the root of a polynomial, and there no direct
methods that can solve algebraic equations of degree greater than four.

We can distinguish between methods that are suited to compute one or
few eigenvalues (and eigenvectors) and methods that will provide all eigenval-
ues and eigenvectors. Another distinction depends on whether the matrix is
symmetric or not.

A.3.1 The power method

The most common methods for finding the largest eigenvalue and eigenvector
of a matrix are the power method, and the Lanczos methods. Although the
methods based on the latter approach are probably the most effective ones
for the computation in the case of a sparse matrix, their description is beyond
the scope of the the book, and we address the interested reader to the book
by Golub and Van Loan, which is an excellend reference book for numerical
linear algebra [Golub and Van Loan, second edition, chapters 7–9]. In the
following we describe in detail the power method. An implementation of the
method will be found at the web site of the book. Let A ∈ RN×N be a real
square matrix. Let us denote by λ1, . . . , λN its eigenvalues, in decreasing order
of absolute value, and assume λ1 is simple, i.e.

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λN |. (A.10) eqA1:condition

Let us assume, furthermore, that A admits a basis of eigenvectors, and let us
denote them by ui : Aui = λiu

i, i = 1 . . . , N . This assumption is not strictly
necessary, as we shall see by some examples later, but it will simplify the
description of the method.

Let us generate a sequence of column vectors xn as follows: x0 is an ar-
bitrary non zero vector, for example x0 = (1, . . . , 1)T . Then we generate a
sequence of vectors according to the rule

xn+1 = Axn.

We claim that the vector xn will tend to be aligned to the eigenvector u1

and that xn+1 will be approximately proportional to xn, with proportionality
constant equal to the first eigenvalue, i.e. that xn+1 ≈ λ1xn.

Let us express the vector x0 on the basis of the eigenvectors of A

x0 =

N
∑

i=1

αiu
i.

Then we have:

x1 = Ax0 =

N
∑

i=1

αiAui =

N
∑

i=1

αiλiu
i,

252 A Appendix

and, in general,

xn = Axn−1 =

N
∑

i=1

αiλ
n
i ui = λn

1

(

α1u
1 +

N
∑

i=2

αi

(

λi

λ1

)n

ui

)

(A.11) eqA1:xn

It is clear that, if α1 6= 0, which we assume true, then the first component will
be the dominant one, since (λi/λ1) → 0 as n → ∞, and therefore the vector
xn will tend to be proportional to u1. To make this assertion more formal, let
us take the ratio between the generic component, j, of vectors xn+1 and xn

xn+1,j

xn,j
= λ1

α1u
1,j +

∑N
i=2 αi(λi/λ1)

n+1ui,j

α1u1,j +
∑N

i=2 αi(λi/λ1)nui,j
(A.12) eqA1:ratio1

If α1u
1,j 6= 0, the fraction above will tend to 1, and therefore

lim
n→∞

xn+1,j

xn,j
= λ1.

In particular, the dominant term of the error will be proportional to (λ2/λ1)
n,

therefore one has
xn+1,j

xn,j
= λ1 + O

(∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n)

Which component j should we use? Ideally, we would like to use the largest
component, relative to the other terms appearing in the sums in the numerator
and denominator of Eq. A.12, but we do not know which one it is. A better
solution os to use a weighted average of all the components, with weights
proportional to the components of vector xn:

σn ≡
xn⊤Axn

xn⊤xn

This quantity

σ(A,x) ≡ x†Ax

x†x

is called the Rayleigh quotient, and, for matrix with real eigenvalues, has the
property of being mini λi ≤ σ(A,x) ≤ maxi λi. Using the same argument as
before, we can show that

lim
n→∞

σn = λ1

Furthermore, if the matrix is symmetric, then the Rayleig quotient will provide
a faster convergence to the eigenvalue. In fact, in this case the vectors ui will
form an orthogonal basis, and we can write

xn⊤Axn =

N
∑

i=1

αiλ
n
i ui⊤

N
∑

j=1

αjλ
n+1
j uj =

N
∑

i=1

|αi|2λ2n+1
i ‖ui‖2

A.3 Eigenvalue and eigenvector computation 253

and therefore

σn = λ1
|α1|2‖u1‖2 +

∑N
i=2 |αi|2‖ui‖2(λi/λ1)

2n+1

|α1|2‖u1‖2 +
∑N

i=2 |αi|2‖ui‖2(λi/λ1)2n

which means

σn = λ1 + O

(

(

λ2

λ1

)2n
)

Stopping criteria A practical stopping criterion is obtained by imposing
a small relative residual, i.e.

‖Axn − σnxn‖2 ≤ ε‖Axn‖2 (A.13) eqA1:stop1

where ε is a preassigned tolerance. Then the ε represents a bound on the
relative error of the eigenvalue. This property is due to the following theorem
Then the following teorem holds [5]

Theorem A.2. For any σ ∈ C, and x ∈ Cn, let η(σ,x) = Ax − σx. Then it
follows

min
i
|λi − σ| ≤ ‖η‖‖x‖

If condition A.13 is satisfied, then one has

min
i
|λi − σn ≤

Axn − σnxn

xn
≤ ε

Axn

xn
≈ ελ1

which shows that ε is basically a bound on the relative error on the eigen-
value. Practical considerations The method just described is not practical
because, if |λ1| > 1, then the sequence of vectors xn diverges, and the com-
puter program will incur in an overflow. On the other hand, if |λ1| < 1 then
xn → 0, and the computer will signal an underflow, or it will replace the
components of xn by machine zero.

For this reason it is better to normalize the vector xn. A normalized version
of the method reads

◦ Start from x0 ∈ RN arbitrary, for example x0 = (1, . . . , 1)⊤

◦ set n = 0
1.set yn = xn/‖xn‖

xn+1 = Ayn

σn = yn⊤xn+1

if ‖xn+1 − σnyn‖ > ε‖xn+1‖
n = n+1
go to 1.

endif

254 A Appendix

A careful implementation of the algorithm requires the storage for two
vectors and one sparse matrix, and it requires one matrix-vector product and
two norm computation at each time step.

The condition α1 6= 0 will be satisfied in most cases, since it is extremely
unlikely that an arbitrary vector x0 contains no component of the first eigen-
vector. If α1 = 0, and if |λ2| > |λ3|, using the procedure described above, one
the Rayleigh quotient should converge to the second eigenvalue, e.i.

σn → λ2, and yn → u2 as n→∞.

However, in practice, because of round-off errors, there will always be a small
component of u1 in xn, and therefore the procedure will converge to the first
eigenvalue and the corresponding eigenvector.

The computation of λ2 and of the corresponding eigenvector can be ob-
tained by subtracting, from xn, the contribution proportional to u1. In this
case one would start from

x0 =

N
∑

i=2

αiu
i

and the application of the power method should produce a Rayleigh quotient
σn converging to λ2, if the assumption |λ2| < |λ3| is satisfied. A straightfor-
ward application of the method, however will not work. Because of inaccu-
racy in the initial condition and of round-off errors in machine arithmetic, the
contribution of the first eigenvector in xn is not zero, and therefore it will
evantually dominate over the other terms. This technique can nevertheless
be applied, if one regularly subtracts the contribution of the first eigenvector
from xn (say every iteration or every few iterations). This approach, called
deflation, is described in [5] @@@Verifica che e’ cosi@@@. Applying deflation,
the power method can be used for the computation of few largest eigenvalues
(and corresponding eigenvectors). The power method, applied to the inverse
of matrix A, can be used for the computation of the smallest eigenvalue (in
absolute value), and for the improvement of the approximation of a given
eigenvalue [5].

A.3.2 All eigenvalues

If several eigenvalues are required, then the power method is no longer the
method of choice. The most popular methods for the computations of all
eigenvalues and eigenvectors are based on the so called QR factorization of the
matrix and its variants [?]. More modern methods, particularly suited for the
computation of a few largest and smallest eigenvalues of a large sparse matrix,
are based on the Krylov subspace generated by a vector. The interested reader
can find an extensive treatment of numerical methods for large sparse matrices
in the book by Yousuf Saad [9].

Matlab provides an effective tool for the computation of all eigenvalues of
a matrix, even if the matrix is in sparse form [10].

