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LECTURE 4

Moduli Spaces of Vector Bundles on Surfaces

and on higher dimensional varieties
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Moduli spaces are one of the fundamental
constructions of Algebraic Geometry and they arise in
connection to classification problems.

A moduli space for a collection of objects A and an
equivalence relation ∼ is a classification space, i.e. a
space (in some sense of the word) such that each point
corresponds to one, and only one, equivalence class of
objects.

A moduli space of vector bundles on a smooth,
algebraic variety X is a scheme whose points are in
"natural bijection" to equivalence classes of vector
bundles on X.

Vector bundles, from classical techniques to new perspectives – p. 3/43



Let C be a category (e.g., C = (Sch/k)) and let
M : C −→ (Sets) be a contravariant moduli functor.

DEFINITION A moduli functor M : C −→ (Sets) is
represented by M ∈ Ob(C) if it is isomorphic to the functor
of points of M , hM , defined by hM (S) = HomC(S,M). The
object M is called a fine moduli space for the moduli functor
M.

If a fine moduli space exists, it is unique up to
isomorphism.

There are very few contravariant moduli functors for
which a fine moduli space exits.
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DEFINITION

A moduli functor M : C −→ (Sets) is corepresented by
M ∈ Ob(C) if ∃ natural transformation α : M −→ hM such
that α({pt}) is bijective and ∀ N ∈ Ob(C) and ∀ natural
transformation β : M −→ hN ∃! ϕ : M −→ N such that
β = hϕα, i.e., the following diagram commutes:

M

β
!!

BB
BB

BB
BB

α
// hM

hϕ}}{{
{{

{{
{{

hN

The object M is called a coarse moduli space for the
contravariant moduli functor M.
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If a coarse moduli space exists, it is unique up to
isomorphism.

A fine moduli space for a given moduli functor M is
always a coarse moduli space but not vice versa.
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PROBLEM

To classify stable vector bundles on smooth, irreducible,
projective varieties

MODULI SPACES OF VECTOR BUNDLES
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Let X be a smooth, irreducible, projective variety of
dimension n and H an ample divisor on X. Fix P ∈ Q[z] and
consider the moduli functor

MP
X,H(−) : (Sch/k) → (Sets); S 7−→ MP

X,H(S),

MP
X,H(S) = {S− flat families F −→ X ×S of µ-stable vector

bundles on X with Hilbert polynomial P}/ ∼, with F ∼ F ′ if,
and only if, F ∼= F ′ ⊗ p∗L for some L ∈ Pic(S) being
p : S × X → S the natural projection. And if f : S′ → S is a
morphism in (Sch/k), let MP

X,H(f)(−) be the map obtained
by pulling-back sheaves via fX = f × idX :

MP
X,H(f)(−) : MP

X,H(S) −→ MP
X,H(S′); [F ] 7−→ [f∗

XF ].
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MARUYAMA’s THEOREM
MP

X,H(−) has a coarse moduli scheme MP
X,H which is a

separated scheme and locally of finite type over k. This
means

∃Ψ : MP
X,H(−) −→ Hom(−,MP

X,H), which is bijective for
any reduced point x0.

∀N and ∀Φ : MP
X,H(−) −→ Hom(−, N),

∃!ϕ : MP
X,H −→ N for which the following diagram

commutes

MP
X,H(−)

Φ
''OOOOOOOOOOO

Ψ
// Hom(−,MP

X,H)

ϕ∗

vvmmmmmmmmmmmmm

Hom(−, N)
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REMARKS:

(1) MP
X,H is unique (up to isomorphism).

(2) In general, MP
X,H is not a fine moduli space. In fact,

there is no a priori reason why the map

Ψ(S) : MP
X,H(S) → Hom(S,MP

X,H)

should be bijective for varieties S other than {pt}.

(3) MP
X,H decomposes into a disjoint union of schemes

M s
X,H(r; c1, · · · , cmin(r,n)) where M s

X,H(r; c1, · · · , cmin(r,n)) is
the moduli space of rank r, µ-stable vector bundles on X
with Chern classes (c1, · · · , cmin(r,n)) up to numerical
equivalence.
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PROBLEM:
When M s

X,H(r; c1, · · · , cmin(r,n)) is non-empty?

If X is a smooth curve of genus g ≥ 2, then the moduli
space of µ-stable vector bundles of rank r and fixed
determinant is smooth of dimension (r2 − 1)(g − 1).

If dim(X) ≥ 3, then there are no general results which
guarantee the non-emptiness of the moduli space of
µ-stable vector bundles on X.

If dim(X) = 2, then the existence conditions are well
known whenever X is P2 or P1 × P1 and, in general, it is
known that the moduli space M s

X,H(r; c1, c2) = ∅ if
∆(r; c1, c2) < 0 (Bogomolov’s inequality) and non-empty
provided ∆(r; c1, c2) ≫ 0.
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THEOREM

Let X be a smooth, irreducible, projective variety of
dimension n and let E be a µ-stable vector bundle on X

with Chern classes ci(E) = ci ∈ H2i(X, Z), represented by a
point [E] ∈ M s

X,H(r; c1, · · · , cmin(r,n)). Then,

T[E]M
s
X,H(r; c1, · · · , cmin(r,n)) ∼= Ext1(E,E).

If Ext2(E,E) = 0 then M s
X,H(r; c1, · · · , cmin(r,n)) is smooth at

[E]. In general, we have the following bounds:

dimkExt1(E,E) ≥ dim[E]M
s
X,H(r; c1, · · · , cmin(r,n))

≥ dimkExt1(E,E) − dimkExt2(E,E).
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If X is a smooth projective surface and E ∈ M s
X,H(r; c1, c2),

then (Hirzebruch-Riemann-Roch’s Theorem)

ext1(E,E)−ext2(E,E) = 2rc2(E)−(r−1)c2
1−r2χ(OX)+1+pg(X).

The number 2rc2(E) − (r − 1)c2
1 − r2χ(OX) + 1 + pg(X) is

called the expected dimension of M s
X,H(r; c1, c2).
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PROBLEMS

When M s
X,H(r; c1, · · · , cmin(r,n)) is non-empty?

To study the local and global structure of the moduli
space M s

X,H(r; c1, · · · , cmin(r,n)).

What does the moduli space look like, as an algebraic
variety? Is it, for example, connected, irreducible,
rational or smooth? What does it look as a topological
space? What is its geometry?
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PROPOSITION

Let X = P1
k × P1

k be a smooth quadric surface and denote by
ℓ and m the standard basis of Pic(X) ∼= Z2. ∀0 < c2 ∈ Z, we
fix the ample divisor L = ℓ + (2c2 − 1)m. We have

(1) The moduli space MX,L(2; ℓ, c2) is a smooth, irreducible,
rational projective variety of dimension 4c2 − 3. Even
more, MX,L(2; ℓ, c2) ∼= P4c2−3.

(2) For any two ample divisors L1 and L2 on X = P1
k × P1

k,
the moduli spaces MX,L1

(2; ℓ, c2) and MX,L2
(2; ℓ, c2) are

birational whenever non-empty.
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MODULI SPACES

Moduli space of stable vector bundles on surfaces

Moduli space of vector bundles on higher dimensional
varieties
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Surfaces

X smooth, irreducible, algebraic surface / k and H an
ample line bundle on X.

MX,H(r;L, n) = moduli space of rank r vector bundles E

on X, µ-stable with respect to H with
det(E) = L ∈ Pic(X) and c2(E) = n ∈ Z.

MX,H(r;L, n) = moduli space of rank r torsion free
sheaves E on X, GM-semistable with respect to H with
det(E) = L ∈ Pic(X) and c2(E) = n ∈ Z.
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REMARK

From now on, we will assume that the discriminant

∆(r;L, n) := 2rn − (r − 1)L2 ≫ 0.

If ∆(r;L, n) < 0 then MX,H(r;L, n) = ∅ (Bogomolov’s
inequality)

If ∆(r;L, n) ≫ 0 then MX,H(r;L, n) 6= ∅
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THEOREM

Let X be a smooth, irreducible, projective surface and let H
be an ample line bundle on X.

If ∆(r;L, n) ≫ 0, then the moduli space MX,H(r;L, n) is a
normal, generically smooth, irreducible, quasi-projective
variety of dimension 2rn − (r − 1)L2 − (r2 − 1)χ(OX).
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QUESTION

Let X be a smooth, irreducible, projective variety and let H
and H ′ be two different ample line bundles on X.

What is the difference between the moduli spaces
MX,H(r;L, n) and MX,H ′(r;L, n)?

Are MX,H(r;L, n) and MX,H ′(r;L, n) isomorphic or, at
least, birational?
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The ample cone CX of X has a chamber structure such
that the moduli space MX,H(r;L, n) only depends on
the chamber of H.

In general, the moduli space MX,H(r;L, n) changes
when H crosses a wall between two chambers.
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DEFINITION
Let CX be the ample cone in R ⊗ Num(X). ∀ξ ∈ Num(X),
we define

W ξ := CX ∩ {x ∈ Num(X) ⊗ R s.t. x · ξ = 0}.

W ξ is called the wall of type (c1, c2) determined by ξ if and
only if ∃G ∈ Pic(X) with G ≡ ξ such that G + c1 is divisible
by 2 in Pic(X) and c2

1 − 4c2 ≤ G2 < 0.

W ξ is a non-empty wall of type (c1, c2) if ∃ ample line bundle
L with Lξ = 0.

Let W (c1, c2) be the union of the walls of type (c1, c2). A
chamber of type (c1, c2) is a connected component of
CX \ W (c1, c2).
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The ample cone CX of X has a chamber structure such
that the moduli space MX,H(r;L, n) only depends on
the chamber of H.

In general, the moduli space MX,H(r;L, n) changes
when H crosses a wall between two chambers.
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THEOREM Let X be a smooth, irreducible, projective
surface and let H and H ′ be ample line bundles on X.
If ∆(r;L, n) ≫ 0, then the moduli spaces MX,H(r;L, n) and
MX,H ′(r;L, n) are birational.

When X is a smooth Fano surface and r = 2, the
assumption ∆(r;L, n) ≫ 0 can be avoided.

REMARK The birational map between MX,H(2;L, c2) and
MX,H ′(2;L, c2) is not, in general, an isomorphism
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We can reduce the study of the rationality of the moduli
space MX,H(r;L, n) for any ample line bundle H to the
study of the rationality of MX,H(r;L, n) for a suitable
ample divisor H.

EXAMPLE X = P1
k × P1

k, Pic(X) =< ℓ,m >, L = ℓ + 5m.
The moduli space MX,L(2; ℓ, 3) ∼= P9 and hence it is rational.
Applying the last results, we conclude that for any other
ample line bundle H on X the moduli space MX,H(2; ℓ, 3) is
rational whenever non-empty.
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RATIOINALITY OF MX,H(r;L, k(n))

There is at present no counterexample known to the
question whether the moduli spaces are always rational
provided the underlying surface is rational.

QUESTION

Whether the moduli spaces MX,H(r; c1, c2) are rational
provided X is rational?
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THEOREM

Let X be a smooth rational surface, L ∈ Pic(X) and n ∈ Z.
Assume that ∆(2;L, n) ≫ 0. Then, there exists an ample
line bundle H on X such that the moduli space
MX,H(2;L, n) is rational.
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Higher dimensional varieties
X is a smooth, projective, n-dimensional variety over an
algebraically closed field of characteristic 0

We denote by MX,L(r; c1, · · · , cmin{r,n}) the moduli
space of rank r, vector bundles E on X, µ-stable with
respect to an ample line bundle L with fixed Chern
classes ci(E) = ci ∈ H2i(X, Z).

It was a major result in the theory of vector bundles on
an algebraic surface S the proof that the moduli space
MS,L(r; c1, c2) of rank r vector bundles E on S, µ-stable
with respect to a fixed ample line bundle L and with
given Chern classes ci ∈ H2i(S, Z) is irreducible and
generically smooth provided c2 ≫ 0.
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Examples:
Ein proved that the minimal number of irreducible
components of the moduli space of rank 2 stable vector
bundles on P3 with fixed c1 and c2 going to infinity grows
to ∞.

For all integers k ≥ 3 and n ≥ 2, the moduli spaces,
MI2n+1(k), of mathematical instanton bundles over
P2n+1 with second Chern class c2 = k are singular.
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Example

Take E :=
⊕d

i=0 OP
1(ai) with 0 = a0 ≤ a1 ≤ ... ≤ ad and

ad > 0. Let

π : X = P(E) = Proj(Sym(E)) → P
1

be the projectived vector bundle and let OP(E)(1) be the
tautological line bundle. OP(E )(1) defines a birational map

f : X = P(E) → P
N ,

where N = d +
∑d

i=0 ai. The image of f is a variety Y of

dimension d + 1 and minimal degree (deg(Y ) =
∑d

i=0 ai)
called rational normal scroll. By abusing, we shall also call
to X rational normal scroll.
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Let H be the class in Pic(X) associated to the tautological
line bundle OP(E )(1) on X and let F be the fiber of π. We
have

Pic(X) ∼= Z
2 ∼=< H,F > with Hd+1 =

d∑

i=0

ai;H
dF = 1;F 2 = 0.

A divisor L = aH + bF on X is ample if and only if a > 0
and b > 0.
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Our approach will be to write µ-stable with respect to L,
rank 2 vector bundles E on X, as an extension of two line
bundles.
It is well known is that any vector bundle of rank r ≥ 2 on a
curve can be written as an extension of lower rank vector
bundles.
For higher dimensional varieties we may not be able to get
such a nice result. (For instance, it is not true for vector
bundles on X = Pn).
However it turns to be true for certain µ-stable with respect
to L, rank 2 vector bundles E on rational normal scrolls. In
fact, using this idea we construct big enough families of
µ-stable with respect to L, rank 2 vector bundles E on
rational normal scrolls.
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Construction Let X be a (d + 1)-dimensional, rational,
normal scroll, 0 ≪ c2 ∈ Z. We construct a rank 2 vector
bundle E on X as a non-trivial extension

e : 0 −→ OX(H − c2F ) −→ E −→ OX(c2F ) −→ 0.

Theorem: Let X be a (d + 1)-dimensional, rational, normal
scroll and 0 ≪ c2 ∈ Z. We fix the ample divisor L = dH + bF

on X with b = 2c2 − Hd+1 − 1. Then ML(2;H, c2HF ) is a
smooth, irreducible, rational, projective variety of dimension

2(d + 1)c2 − Hd+1 − (d + 2).
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The last Theorem reflects nicely the general philosophy
that (at least for suitable choice of the Chern classes
and the ample line bundle) the geometry of the
underlying variety and of the moduli spaces are
intimately related.

We hope that phenomena of this sort will be true for
other high dimensional varieties.
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Remarks:

To bigger n − r is the more difficult it becomes to find
rank r vector bundles on Pn.

PROBLEM: For which n and r are there indecomposable
rank r vector bundles on Pn?

HARTSHORNE’s CONJECTURE There are no rank 2
vector bundles on Pn, n ≥ 6.
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Some of the techniques we use to construct/study vector
bundles on smooth projective varieties and to address their
classification problem are

Serre’s construction,

Beilinson’s type spectral sequences,

Elementary transformations, and

Monads.
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DEFINITION

Let X be a smooth projective variety. A monad on X is a
complex of vector bundles:

M• : 0 −→ A
α

−→ B
β

−→ C −→ 0

which is exact at A and at C. The sheaf E := Ker(β)/Im(α)
is called the cohomology sheaf of the monad M•.

Monads were first introduced by Horrocks who showed
that all vector bundles E on P3 can be obtained as the
cohomology bundle of a monad of the following kind:

0 −→ ⊕iOP
3(ai) −→ ⊕jOP

3(bj) −→ ⊕nOP
3(cn) −→ 0.
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LINEAR MONADS
DEFINITION Let X be a nonsingular projective variety A
linear monad on X is the short complex of sheaves

M• : 0 → OX(−1)a
α
→ Ob

X

β
→ OX(1)c → 0 (1)

which is exact on the first and last terms. EXAMPLE Manin
and Drinfield proved that mathematical instanton bundles E

on P3 with quantum number k correspond to linear monads

0 −→ OP3(−1)k −→ O2k+2
P3 −→ OP3(1)k −→ 0.
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PROPOSITION (Fløystead)
Let n ≥ 1. There exist monads on Pn whose entries are
linear maps, i.e. linear monads

0 −→ OP
n(−1)a

α
−→ Ob

Pn

β
−→ OP

n(1)c −→ 0

if and only if at least one of the following conditions holds:

(1) b ≥ 2c + n − 1 and b ≥ a + c.

(2) b ≥ a + c + n.

If so, there actually exists a linear monad with the map α
degenerating in expected codimension b − a − c + 1.

If n = 3, a = c = k and b = 2k + 2 we have an instanton
bundle.
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Characterization of linear sheaves

Cohomological characterization of linear sheaves on Pn,
n ≥ 1 (i.e. cohomology sheaves of linear monads).

Fix integers a, b and c such that

(1) b ≥ 2c + n − 1 and b ≥ a + c, or

(2) b ≥ a + c + n.

We have:
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PROPOSITION
Let E be a rank b− a− c torsion free sheaf on Pn with Chern
polynomial ct(E) = 1

(1−t)a(1+t)c . It holds:

(1) If b < c(n + 1) and E has natural cohomology in the
range −n ≤ j ≤ 0, then E is the cohomology sheaf of a
linear monad

0 −→ OPn(−1)a −→ Ob
Pn −→ OPn(1)c −→ 0.

(2) If E is the cohomology sheaf of a linear monad

0 −→ OPn(−1)a −→ Ob
Pn −→ OPn(1)c −→ 0

and H0(Pn, E) = 0, then E has natural cohomology in the
range −n ≤ j ≤ 0.

Vector bundles, from classical techniques to new perspectives – p. 42/43



QUESTION:

QUESTION Is any linear sheaf on a cyclic variety µ-stable
or at least µ-semistable?

QUESTION: Is any instanton bundle on P2n+1 µ-stable?

PROBLEM: Cohomological characterization of linear
shaves on projective varieties
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