VECTOR BUNDLES, from classical techniques to new perspectives

Catania, September - October, 2009

Rosa Maria Miró-Roig

VECTOR BUNDLES, from classical techniques to new perspectives - p. 1/3

LECTURE 3

Tilting Sheaves on Toric Varieties

KING's CONJECTURE

CONJECTURE: Any smooth complete toric variety has a tilting bundle whose summands are line bundles.

We prove the conjecture for the following types of smooth complete toric varieties:

- Any d-dimensional smooth complete toric variety with splitting fan.
- Any *d*-dimensional smooth complete toric variety with Picard number ≤ 2 .
- Any d-dimensional smooth Fano toric variety with (quasi)-maximum Picard number.
- The blow up of any smooth complete minimal toric surface at T-invariants points.

DEFINITION A coherent sheaf $T \in \mathcal{O}_X$ -mod on a smooth projective variety X is called a tilting sheaf (or, when it is a locally free sheaf, a tilting bundle) if

- (1) It has no higher self-extensions, i.e., $Ext^i(T,T) = 0$ for all i > 0,
- (2) The endomorphism algebra of T, $A = Hom_X(T, T)$, has finite global homological dimension, and
- (3) The direct summands of T generate the derived category $\mathcal{D}^b(\mathcal{O}_X mod)$ of bounded complexes of coherent sheaves of \mathcal{O}_X -mod.

The importance of tilting sheaves realize on the facts:

Tilting sheaves can be characterized as those sheaves T such that the functors

> $\mathsf{R}Hom_X(T,-): D^b(\mathcal{O}_X - mod) \longrightarrow D^b(A)$ and $-\otimes^{\mathsf{L}}_A T: D^b(A) \longrightarrow D^b(\mathcal{O}_X - mod)$

define mutually inverse equivalences between the derived categories of bounded complexes of coherent sheaves on *X* and of bounded complexes of finitely generated right *A*-modules, respectively.

• They play an important role in the problem of characterizing the smooth projective varieties X determined by its derived category of bounded complexes of coherent sheaves $D^b(\mathcal{O}_X - mod)$.

The importance of tilting sheaves realize on the facts:

Since the fundamental paper of Beilinson where he proves that $T_1 = \bigoplus_{i=0}^n \mathcal{O}_{\mathbb{P}^n}(i)$ and $T_2 = \bigoplus_{i=0}^n \Omega_{\mathbb{P}^n}^i(i)$ are tilting bundles on \mathbb{P}^n , tilting bundles have become a major tool in classifying vector bundles over smooth projective varieties

PROBLEM: To characterize smooth projective varieties which have a tilting bundle.

REMARK: The existence of tilting sheaves $T = \bigoplus_{i=0}^{m} T_i$ imposes rather a strong restriction on *X*, namely that the Grothendieck group $K_0(X) = K_0(\mathcal{O}_X - mod)$ is isomorphic to \mathbb{Z}^{m+1} .

EXAMPLE: Since, the Grothendieck group $K_0(S)$ of a smooth cubic 3-fold $S \subset \mathbb{P}^4$ has torsion, there are no tilting bundles on S.

KING's CONJECTURE

CONJECTURE: Any smooth complete toric variety has a tilting bundle whose summands are line bundles.

REMARK: There are examples of smooth projective varieties X such that any tilting bundle T on X has a summand of higher rank. Example: Gr(k, n), k < n.

CONTENTS:

- §1. Basic facts on toric varieties.
- §2. The search for tilting bundles.
- §3. King's conjecture.
- §4. Open Problems

S 1. Basic facts on toric varieties

Let *X* be a smooth complete toric variety of dimension *n* over the complex numbers, i.e., *X* is a smooth variety with an action by the algebraic torus $(\mathbb{C}^*)^n$ and a dense equivariant embedding $(\mathbb{C}^*)^n \longrightarrow X$. *X* is characterized by a fan $\Sigma := \Sigma(X)$ of strongly convex polyhedral cones in $N \otimes_{\mathbb{Z}} \mathbb{R}$ where *N* is the lattice \mathbb{Z}^n , i.e., *N* is a free abelian group of rank *n*.

The cones σ of Σ are rational, i.e. generated by lattice points. For any $0 \le i \le n$, we put $\Sigma(i) := \{\sigma \in \Sigma \mid \dim \sigma = i\}$. Note that to any 1-dimensional cone $\sigma \in \Sigma(1)$ there is a unique generator $v \in N$ such that $\sigma \cap N = \mathbb{Z}_{\ge 0} \cdot v$, we call to v a ray generator. There is a one-to-one correspondence between ray generators v and toric divisors D on X. It holds:

- Given toric divisors D_1, \ldots, D_k on X with corresponding ray generators v_1, \ldots, v_k we have $D_1 \cap \cdots \cap D_k \neq \emptyset$ iff v_1, \ldots, v_k span a cone in Σ .
- If X is a smooth toric variety of dimension n (hence n is also the dimension of the lattice N) and m is the number of toric divisors of X (and hence the number of 1-dimensional rays in ∑) then we have an exact sequence of Z-modules:

$$0 \to Hom_{\mathbb{Z}}(N,\mathbb{Z}) \to \mathbb{Z}^m \to Pic(X) \to 0.$$

In particular, the Picard number of X is $b_2(X) = m - n$.

- A set of toric divisors {D₁,...,D_k} on X is called a primitive set if D₁ ∩ · · · ∩ D_k = Ø but
 D₁ ∩ · · · ∩ D_j ∩ · · · ∩ D_k ≠ Ø for all j. Equivalently,
 < v₁,...,v_k >∉ Σ but < v₁,..., v_j,...,v_k >∈ Σ for all j and we call to P = {v₁,...,v_k} a primitive collection.
- Let X be a d-dimensional smooth complete toric variety and let ∑ be the corresponding fan. We say that ∑ is a splitting fan if any two primitive collections have no common elements.

EXAMPLE

Consider a Hirzebruch surface $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)), n \ge 0$. X is a toric variety. Its fan Σ in $N = \mathbb{Z}^2$ with basis e_1 and e_2 has the following set of one dimensional cones (ray generators):

 $v_1 = e_1, \quad v_2 = -e_1 + ne_2, \quad v_3 = e_2, \quad v_4 = -e_2$

and the corresponding toric divisors Z_1 , Z_2 , Z_3 and Z_4 . The set of primitive collections of Σ is given by

$$\mathcal{P} = \{\{v_1, v_2\}, \{v_3, v_4\}\}.$$

Since there is no common elements between the two primitive collections, the fan Σ associated to the Hirzebruch surface X is a splitting fan.

- ✓ Kleinschmidt: Let X be a d-dimensional smooth complete toric variety and let ∑ be the corresponding fan. If the Picard number of X is two then ∑ is a splitting fan.
- Batyrev: Let *X* be a *d*-dimensional smooth complete toric variety and let Σ be the corresponding fan. Then Σ is a splitting fan if and only if there exists a sequence of toric varieties $X = X_r, ..., X_0$ such that $X_0 = \mathbb{P}^n$ for a certain *n* and for $1 \le i \le r, X_i$ is a projectivization of a decomposable vector bundle over X_{i-1} .
- Any d-dimensional smooth complete toric variety X with Picard number 2 is a projectivization of a decomposable vector bundle over a projective space.

The search for tilting bundles

Let X be a smooth projective variety of dimension n.

- A coherent sheaf F on X is exceptional if $Hom(F,F) = \mathbb{C}$ and $Ext^{i}_{X}(F,F) = 0$ for i > 0.
- ▲ An ordered collection (F_0, F_1, \ldots, F_m) of coherent sheaves on X is an exceptional collection if each sheaf F_i is exceptional and $Ext^i_X(F_k, F_j) = 0$ for $j < k, i \ge 0$.
- An exceptional collection (F_0, F_1, \ldots, F_m) is a strongly exceptional collection if in addition $Ext^i_X(F_j, F_k) = 0$ for $i \ge 1, j \le k$.
- An ordered collection (F_0, \ldots, F_m) is a full (strongly) exceptional collection if it is a (strongly) exceptional collection and F_0, \ldots, F_m generate $D^b(\mathcal{O}_X - mod)$.

REMARK

Any full strongly exceptional collection (F_0, F_1, \ldots, F_m) of coherent sheaves on X defines a tilting sheaf $T = \bigoplus_{i=0}^m F_i$ because the endomorphism algebra of $T = \bigoplus_{i=0}^m F_i$ is a "triangular" algebra and it has global dimension at most m. And vice versa, each tilting bundle whose direct summands are line bundles gives rise to a full strongly exceptional collection.

The search for tilting sheaves on a smooth projective variety *X* naturally splits into two parts:

- First, we have to find a strongly exceptional collection of coherent sheaves on X, (F_0, F_1, \ldots, F_m) ; and
- Second, we have to show that F_0, F_1, \ldots, F_m generate the derived category $D^b(X)$ of bounded complexes.

Example: $(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \ldots, \mathcal{O}_{\mathbb{P}^n}(n))$ is a full strongly exceptional collection on a projective space \mathbb{P}^n . So, $T = \bigoplus_{i=0}^n \mathcal{O}(i)$ is a tilting bundle on \mathbb{P}^n .

Proposition: Let *X* be a smooth projective variety. Assume that (E_1, \dots, E_r) is an exceptional collection in $D^b(X)$. Then, the following are equivalent

(a)
$$(E_1, \dots, E_r)$$
 is full, i.e. $\langle E_1, \dots, E_r \rangle = D^b(X)$;
(b) $0 = {}^{\perp} \langle E_1, \dots, E_r \rangle := \{F \in D^b(X) | Ext^{\bullet}(F, E_i) = 0 \quad \forall i\};$
(c) $0 = \langle E_1, \dots, E_r \rangle^{\perp} := \{F \in D^b(X) | Ext^{\bullet}(E_i, F) = 0 \quad \forall i\};$
(d) $0 = {}^{\perp} \langle E_1, \dots, E_k \rangle \cap \langle E_{k+1}, \dots, E_r \rangle^{\perp}$ for all k .

Examples

- $(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \ldots, \mathcal{O}_{\mathbb{P}^n}(n))$ and $(\mathcal{O}_{\mathbb{P}^n}, \Omega^1(1), \ldots, \Omega^n(n))$ are full strongly exceptional collections on \mathbb{P}^n . So, $T_1 = \bigoplus_{i=0}^n \mathcal{O}(i)$ and $T_2 = \bigoplus_{i=0}^n \Omega^i(i)$ are tilting bundles on \mathbb{P}^n .
- Consider a Hirzebruch surface $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$, $n \ge 0$ and all its toric divisors Z_1, Z_2, Z_3 and Z_4 . It is not difficult to see that $(\mathcal{O}, \mathcal{O}(Z_1), \mathcal{O}(Z_4), \mathcal{O}(Z_1 + Z_4))$ is a full strongly exceptional collection on X.
- Let $\pi : \widetilde{\mathbb{P}^2}(1) \to \mathbb{P}^2$ be the blow up of \mathbb{P}^2 at one point $p \in \mathbb{P}^2$. Let H be the pullback of the hyperplane divisor in \mathbb{P}^2 and let $E = \pi^{-1}(p)$ be the exceptional divisor. Then the collection of divisors (0, E, H, 2H) is a full strongly exceptional collection on $\widetilde{\mathbb{P}^2}(1)$.

Examples

• (Kapranov) Let $Q_n \subset \mathbb{P}^{n+1}$, n > 2, be a hyperquadric. If n is even and Σ_1 , Σ_2 are the Spinor bundles on Q_n , then

$$(\Sigma_1(-n), \Sigma_2(-n), \mathcal{O}_{Q_n}(-n+1), \cdots, \mathcal{O}_{Q_n}(-1), \mathcal{O}_{Q_n}))$$

is a full strongly exceptional collection on Q_n ; and if n is odd and Σ is the Spinor bundle on Q_n , then

$$(\Sigma(-n), \mathcal{O}_{Q_n}(-n+1), \cdots, \mathcal{O}_{Q_n}(-1), \mathcal{O}_{Q_n})$$

is a full strongly exceptional collection of sheaves on Q_n

Examples

• (Kapranov) Take X = Gr(k, n). Denotes by S the tautological k-dimensional bundle and $\Sigma^{\alpha}S$ the space of the irreducible representations of GL(S) with highest weight $\alpha = (\alpha_1, \ldots, \alpha_s)$. Let A(k, n) be the set of locally free sheaves $\Sigma^{\alpha}S$ on Gr(k, n) where α runs over Young diagrams fitting inside a $k \times (n - k)$ rectangle. A(k, n) can be totally ordered in such a way that we obtain a full strongly exceptional collection $(E_1, \ldots, E_{\rho(k,n)})$ of sheaves on X.

Remarks

- In all these collections the order is very important.
- The length of any full strongly exceptional collection is $\geq \dim(X)+1$.
- All full strongly exceptional collections on X have the same length and it coincides with the rank of the Grothendieck group $K_0(X)$ as \mathbb{Z} -module.
- Not all full strongly exceptional collections are made up of line bundles.

Let \mathcal{E} be a rank r vector bundle on a smooth projective variety X, denote by $p : \mathbb{P}(\mathcal{E}) \longrightarrow X$ the corresponding projective bundle and $\mathcal{O}_{\mathcal{E}}(1)$ the tautological line bundle on $\mathbb{P}(\mathcal{E})$. If (F_0, F_1, \ldots, F_m) is a full exceptional collection of coherent sheaves on X, then

(*)
$$(p^*F_0 \otimes \mathcal{O}_{\mathcal{E}}(-r+1), p^*F_1 \otimes \mathcal{O}_{\mathcal{E}}(-r+1), \ldots,$$

 $p^*F_m \otimes \mathcal{O}_{\mathcal{E}}(-r+1), \ldots, p^*F_0, p^*F_1, \ldots, p^*F_m)$

is a full exceptional collection of coherent sheaves on $\mathbb{P}(\mathcal{E})$. **Proposition** With the above notation, if $H^i(X, S^a \mathcal{E} \otimes F_t \otimes F_l^{\vee}) = 0$ for $i > 0, 0 \le a \le r - 1$ and $0 \le l \le t \le m$ then (*) is a full strongly exceptional collection of coherent sheaves on $\mathbb{P}(\mathcal{E})$.

King's Conjecture

CONJECTURE (A. King): Any smooth complete toric variety has a tilting bundle whose summands are line bundles.

CONTRIBUTIONS TO KING'S CONJECTURE:

- Beilinson (1979): \mathbb{P}^n .
- King (1997): Hirzebruch surfaces.
- Costa and Miró-Roig (2004):
 - Smooth complete toric varieties with splitting fan,
 - Smooth complete toric varieties with Picard number ≤ 2
 - The blow-up of any smooth complete minimal toric surface at T-invariants points,
 - Products of toric varieties.

Contributions to King's Conjecture

- Kawamata (2005)
- Bondal (In preparation)

Let *Y* be a smooth complete toric variety which is the projectivization of a rank *r* vector bundle \mathcal{E} over a smooth complete toric variety *X*. Assume that *X* has a full strongly exceptional collection of locally free sheaves. Then, *Y* has a full strongly exceptional collection of locally free sheaves.

Theorems:

1.- Any *d*-dimensional, smooth, complete toric variety *V* with a splitting fan $\Sigma(V)$ has a tilting bundle whose summands are line bundles.

2.- Any *d*-dimensional, smooth, complete toric variety V with Picard number 2 has a tilting bundle whose summands are line bundles.

3.- Any 3-dimensional pseudo-symmetric toric Fano variety has a tilting bundle whose summands are line bundles.

Let X_1 and X_2 be two smooth projective varieties. Assume that X_i has a tilting bundle T_i whose direct summands are line bundles. Then $T_1 \otimes T_2$ is a tilting bundle of $X_1 \times X_2$ whose direct summands are line bundles. Let X_1 and X_2 be two smooth projective varieties and let $(F_0^i, F_1^i, \ldots, F_{n_i}^i)$ be a full strongly exceptional collection of locally free sheaves on X_i , i = 1, 2. Then,

$$(F_0^1 \otimes F_0^2, F_1^1 \otimes F_0^2, \dots, F_{n_1}^1 \otimes F_0^2, \dots, F_0^1 \otimes F_{n_2}^2, F_1^1 \otimes F_{n_2}^2, \dots, F_{n_1}^1 \otimes F_{n_2}^2)$$

is a full strongly exceptional collection of locally free sheaves on $X_1 \times X_2$ where

$$F_k^1 \otimes F_l^2 := p_1^* F_k \otimes p_2^* F_l$$

with $p_i: X_1 \times X_2 \rightarrow X_i$, i = 1, 2 the natural projections.

THEOREM:

Let X_1 and X_2 be two smooth projective varieties. Assume X_i has a tilting bundle T_i whose summands are line bundles. Then $T_1 \otimes T_2$ is a tilting bundle of $X_1 \times X_2$ whose direct summands are line bundles.

In particular,

COROLLARY:

Any multiprojective space $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ has a tilting bundle whose summands are line bundles.

King's Conjecture:

Any smooth complete toric variety has a tilting bundle whose summands are line bundles.

CONJECTURE:

Any smooth complete FANO toric variety has a tilting bundle whose summands are line bundles.

LAST RESULTS:

The Conjecture is true in the following cases:

- X is the blow up of $\mathbb{P}^{n-r} \times \mathbb{P}^r$ along a multilinear subspace $\mathbb{P}^{n-r-1} \times \mathbb{P}^{r-1}$ of codimension 2 of $\mathbb{P}^{n-r} \times \mathbb{P}^r$,
- X is a (Fano) Y-toric fibration over \mathbb{P}^n and Y has a titling bundle whose summands are line bundles.
- X is a d-dimensional smooth Fano toric variety with (almost) maximal Picard number (i.e. $2d-1 \le b_2(X) \le 2d$.)