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LECTURE 2

Cohomological characterization of vector bundles
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PROBLEM:
To give a cohomological characterization of vector bundles.

Horrocks (1964): Cohomological characterization of line
bundles OP

n(a).

Horrocks (1980): Cohomological characterization of the
p-differential bundle Ωp

P
n.

Ottaviani (1987): Cohomological characterization of line
bundles OQn

(a) and Spinor bundles on Qn ⊂ P
n+1.

Miró-Roig (1994): Cohomological characterization of
syzygy bundles syz(xi0

0 · · · xin
n ; i0 + · · · + in = d) on P

n.
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1. HORROCKS’ THEOREM
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Beilinson’s Theorem
(OP

n ,OP
n(1), · · · ,OP

n(n)) is a full strongly exceptional
collection or, equivalently, (OP

n,OP
n(1), · · · ,OP

n(n)) is
an orthogonal basis of Db(OP

n − mod) and its left dual
is (OP

n(n), TP
n(n − 1),∧2TP

n(n − 2), · · · ,∧nTP
n)

Let E be a coherent sheaf on P
n. ∃ two spectral

sequences situated in −n ≤ p ≤ 0, 0 ≤ q ≤ n and with
E1-term

IE
pq
1 = Hq(Pn, E(p)) ⊗ Ω−p(−p)

IIE
pq
1 = Hq(Pn, E ⊗ Ω−p(−p)) ⊗OP

n(p)

which converges to

IIE
i
∞ =I Ei

∞ =

{
E for i = 0

0 for i 6= 0.
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Beilinson’s Theorem
Let E be a coherent sheaf on P

n. ∃ two minimal complexes

L• : 0 → L−n dn−→L−n+1d−n+1

−→ · · ·
d−1

−→L0 d0−→ → · · ·
dn−1

−→Ln → 0

F • : 0 → F−n δn−→F−n+1δ−n+1

−→ · · ·
δ−1

−→F 0 δ0−→ → · · ·
δn−1

−→Fn → 0

with
Lk = ⊕j+k=iΩ

j(j)h
i(E(−j)),

F k = ⊕j+k=iOP
n(−j)h

i(E⊗Ωj(j))

and such that

ker(δk)

Im(δk−1)
∼=

ker(dk)

Im(dk−1)
∼=

{
E if k = 0

0 if k 6= 0;
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Horrocks’ Theorem

Let E be a vector bundle on P
n. The following conditions

are equivalent:

(i) E splits into a sum of line bundles.

(ii) E has no intermediate cohomology; i.e. H i(Pn, E(t)) = 0
for 1 ≤ i ≤ n − 1 and for all t ∈ Z.

Cohomological characterization of Ωp

P
n.

Cohomological characterization of syzygy bundles
syz(xi0

0 · · · xin
n ; i0 + · · · + in = d) on P

n.
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2. BEILINSON’S TYPE SPECTRAL SEQUENCE
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Let X be a smooth projective variety of dimension n.

A coherent sheaf F on X is exceptional if
Hom(F, F ) = C and ExtiX(F, F ) = 0 for i > 0.

An ordered collection (F0, F1, . . . , Fm) of coherent
sheaves on X is an exceptional collection if each sheaf
Fi is exceptional and ExtiX(Fk, Fj) = 0 for j < k, i ≥ 0.

An exceptional collection (F0, F1, . . . , Fm) is a strongly
exceptional collection if in addition ExtiX(Fj , Fk) = 0 for
i ≥ 1, j ≤ k.

An ordered collection (F0, . . . , Fm) is a full (strongly)
exceptional collection if it is a (strongly) exceptional
collection and F0, . . . , Fm generate Db(OX − mod).
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Examples

(OP
n, OP

n(1), . . ., OP
n(n)) is a full strongly exceptional

collection on a projective space P
n.

(OP
n, Ω1

P
n(1), . . ., Ωn

P
n(n)) is a full strongly exceptional

collection on a projective space P
n.

Let π : P̃
2(1) → P

2 be the blow up of P
2 at one point

p ∈ P
2. Let H be the pullback of the hyperplane divisor

in P
2 and let E = π−1(p) be the exceptional divisor. Then

the collection of divisors (0, E,H, 2H) is a full strongly

exceptional collection on P̃
2(1).
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Examples

(Kapranov) Let Qn ⊂ P
n+1, n > 2, be a hyperquadric. If

n is even and Σ1, Σ2 are the Spinor bundles on Qn, then

(Σ1(−n),Σ2(−n),OQn
(−n + 1), · · · ,OQn

(−1),OQn
)

is a full strongly exceptional collection on Qn; and if n is
odd and Σ is the Spinor bundle on Qn, then

(Σ(−n),OQn
(−n + 1), · · · ,OQn

(−1),OQn
)

is a full strongly exceptional collection of sheaves on Qn
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Examples

(Kapranov) Take X = Gr(k, n). Denotes by S the
tautological k-dimensional bundle and ΣαS the space of
the irreducible representations of GL(S) with highest
weight α = (α1, . . . , αs). Let A(k, n) be the set of locally
free sheaves ΣαS on Gr(k, n) where α runs over Young
diagrams fitting inside a k × (n − k) rectangle. A(k, n)
can be totally ordered in such a way that we obtain a full
strongly exceptional collection (E1, . . . , Eρ(k,n)) of
sheaves on X.
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Remarks

In all these collections the order is very important.

The length of any full strongly exceptional collection is
≥ dim(X)+1.

All full strongly exceptional collections on X have the
same length and it coincides with the rank of the
Grothendieck group K0(X) as Z-module.

Not all full strongly exceptional collections are made up
of line bundles.

Definition. A GEOMETRIC COLLECTION of coherent
sheaves (E0, · · · , En) on a smooth algebraic variety X is a
full exceptional collection of minimal length, dim (X)+1.
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Problems

Problem 1. To characterize smooth projective varieties
which have a geometric collection.

Problem 2.To characterize smooth projective varieties
which have a full strongly exceptional collection.

Remark: The existence of full strongly exceptional
collection imposes rather a strong restriction on X, namely
that the Grothendieck group K0(X) is isomorphic to Z

m+1.

Example: Since, the Grothendieck group K0(S) of a
smooth cubic 3-fold S ⊂ P

4 has torsion, there are no full
strongly exceptional collection on S.

Vector bundles, from classical techniques to new perspectives – p. 15/43



Theorem
Let X be a smooth projective variety of dim n with a
geometric collection (E0, · · · , En) and let F be a coherent
sheaf on X. ∃ two spectral sequences with E1-term

IE
pq
1 = Extq(R(−p)En+p, F ) ⊗ Ep+n

IIE
pq
1 = Extq((En+p)

∗, F ) ⊗ (R(−p)En+p)
∗

situated in the square 0 ≤ q ≤ n, −n ≤ p ≤ 0 which
converge to

IE
i
∞ =II Ei

∞ =

{
F for i = 0

0 for i 6= 0.
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Let X be a smooth projective variety of dimension n.

An exceptional collection (F0, F1, · · · , Fm) of coherent
sheaves on X is a block if Exti(Fj , Fk) = 0 for any i and
j 6= k.

An m-block collection of type (α0, α1, · · · , αm) is an
exceptional collection
(E0, E1, · · · , Em) = (E0

1 , · · · , E0
α0

, · · · , Em
1 , · · · , Em

αm
)

such that all the subcollections Ei = (Ei
1, E

i
2, · · · , Ei

αi
)

are blocks.

REMARK: Any exceptional collection (E0, E1, · · · , Em) of
length m + 1 is an m-block collection of type (1, · · · , 1)
where each block has one object.
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EXAMPLE

Let X = P
n1 × · · · × P

ns, d = n1 + · · · + ns and denote

OX(a1, a2, · · · , as) := p∗1OP
n1 (a1)⊗p∗2OP

n2 (a2)⊗· · ·⊗p∗sOP
ns (as).

For any 0 ≤ j ≤ d, denote by Ej the collection of all line
bundles

OX(aj
1, a

j
2, · · · , aj

s)

with −ni ≤ aj
i ≤ 0 and

∑s
i=1 aj

i = j − d. Each Ej is a block
and

(E0, E1, · · · , Ed)

is a d-block collection on X.
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EXAMPLE
Consider X = P

2 × P
3. The collection of line bundles

(O(−2,−3),O(−2,−2),O(−1,−3),O(−2,−1),

O(−1,−2),O(0,−2)O(−2, 0),O(−1,−1),

O(0,−2),O(−1, 0),O(0,−1),O(0, 0))

is a full strongly exceptional collection of length
12 > dim(X) + 1 = 6 and we pack in 6 blocks:

E0 = {O(−2,−3)}
E1 = {O(−2,−2),O(−1,−3)}
E2 = {O(−2,−1),O(−1,−2),O(0,−3)},
E3 = {O(−2, 0),O(−1,−1),O(0,−2)}
E4 = {O(−1, 0),O(0,−1)},
E5 = {O(0, 0)}
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Definition. Let σ = (E0, · · · , Em) be an m-block collection of
coherent sheaves which generates Db(X). The m-block
H = (H0, · · · ,Hm) is called the left dual m-block collection
of σ if

Extt(H i
j , E

k
l ) = 0

except for Extk(Hk
i , Em−k

i ) = C.
The m-block G = (G0, · · · ,Gm) is called the right dual
m-block collection of σ if

Extt(Ek
l , Gi

j) = 0

except for Extm−k(Em−k
i , Gk

i ) = C.
Remark. Left and right dual block collections can be
constructed by means of left and right mutations.
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EXAMPLE
Let V be a C-vector space of dim n + 1 and P

n = P(V ). We
consider the n-block collection

B = (OP
n ,OP

n(1), · · · ,OP
n(n)).

Using the exterior powers

0 −→ ∧k−1TP
n −→ ∧kV ⊗OP

n(k) −→ ∧kTP
n −→ 0

of the Euler sequence

0 −→ OP
n −→ V ⊗OP

n(1) −→ TP
n −→ 0

we compute the left dual n-block collection of B and we get

H = (H0,H1, · · · ,Hj , · · · ,Hn)

= (OP
n(n), TP

n(n − 1), · · · ,∧jTP
n(n − j), · · · ,∧nTP

n).
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Proposition
Let X = P

n1 × · · · × P
ns be a multiprojective space of

dimension d = n1 + · · · + ns. Consider B = (E0, · · · , Ed) the
d-block collection where for any 0 ≤ j ≤ d, Ej is the set of
line bundles

OX(aj
1, a

j
2, · · · , aj

s)

with −ni ≤ aj
i ≤ 0 and

∑s
i=1 aj

i = j − d. Then, for any
Ed−k

i = OX(t1, · · · , ts) ∈ Ed−k and any 0 ≤ k ≤ d,
(H0,H1, · · · ,Hj , · · · ,Hd), with

Hk
i =

−t1∧
TP

n1 (t1) ⊠ · · · ⊠
−ts∧

TP
ns (ts) ∈ Hk

is the left dual d-block collection of B = (E0, · · · , Ed).
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Sketch of the proof

For any 0 ≤ i ≤ d, we take OX(ai
1, · · · , ai

s) ∈ Ei and we apply
the Künneth formula,

Hα(X,
−t1∧

ΩP
n1 (−t1) ⊠ · · · ⊠

−ts∧
ΩP

ns (−ts) ⊗OX(ai
1, · · · , ai

s))

=
⊕

α1+···+αs=α

Hα1(Pn1 ,
−t1∧

Ω(ai
1−t1))⊗· · ·⊗Hαs(Pns,

−ts∧
Ω(ai

s−ts)).

Using Bott’s formula, it is zero unless α = k, i = d − k and
OX(ai

1, · · · , ai
s) = OX(t1, · · · , ts), which proves what we

want.
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Beilinson type spectral sequence
Let X be a smooth projective variety of dim n with an
n-block collection (E0, E1, · · · , En), Ei = (Ei

1, . . . , E
i
αi

) of
coherent sheaves which generates Db(X). Denote by
(H0,H1, · · · ,Hn), Hi = (H i

1, . . . , H
i
αi

) the left dual n-block
collection. ∀F coherent sheaf , ∃ spectral sequences

IE
pq
1 =

{ ⊕αp+n

i=1 Extq(Hp
i , F ) ⊗ Ep+n

i if − n ≤ p ≤ −1⊕αn

i=1 Extq(En
i , F ) ⊗ En

i if p = 0

IIE
pq
1 =

{ ⊕αp+n

i=1 Extq((Ep+n
i )∗, F ) ⊗ (Hp

i )∗ if − n ≤ p ≤ −1⊕αn

i=1 Extq((En
i )∗, F ) ⊗ (En

i )∗ if p = 0

which converge to IE
i
∞ =II Ei

∞ =

{
F for i = 0

0 for i 6= 0.
.
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3. COHOMOLOGICAL CHARACTERIZATION OF VECTOR BUNDLES

Vector bundles on multiprojective spaces

Steiner vector bundles on algebraic varieties
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THEOREM
Let X = P

n1 × · · · × P
ns, d = n1 + · · · + ns and (E0, · · · , Ed) the

d-block collection described before. Assume ∃F a rank
(
d
j

)
,

0 < j < d, vector bundle on X s.t.
H−p−1(X,F ⊗ Ep+d

i ) = 0 for −d ≤ p ≤ −j − 1 and 1 ≤ i ≤ αp,

H−p+1(X,F ⊗ Ep+d
i ) = 0 for − j + 1 ≤ p ≤ 0 and 1 ≤ i ≤ αp,

Hj(F ⊗ Ed−j
i ) = C for 1 ≤ i ≤ αd−j. Then

F ∼=
⊕

t1+···+ts=j−d

−t1∧
ΩP

n1 (−t1) ⊠ · · · ⊠
−ts∧

ΩP
ns (−ts)

∼=

d−j∧
(ΩP

n1×···×P
ns (1, · · · , 1)) with − ni ≤ ti ≤ 0

. Vector bundles, from classical techniques to new perspectives – p. 26/43



Sketch of the proof
We apply to F the spectral sequence with E1-term

IIE
pq
1 =

{ ⊕αp+d

i=1 Extq((Ep+d
i )∗, F ) ⊗ (Hp

i )∗ if − d ≤ p ≤ −1⊕αd

i=1 Extq(Ed∗

i , F ) ⊗ Ed∗

i if p = 0

By assumption, there is an integer j, 0 < j < d, such that

IIE
p,−p−1
1 = 0 for any −n ≤ p ≤ −j − 1 and IIE

p,−p+1
1 = 0 for

any −j + 1 ≤ p ≤ 0.

So, F contains IIE
jj
1 , i.e. F contains

((
⊕

t1+···+ts=j−d

−t1∧
TP

n1 (−t1) ⊠ · · · ⊠

−ts∧
TP

ns (−ts))
∗)αi

with αi = hj(F ⊗ En−j
i ) as a direct summand.
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Since rankF =
(
d
j

)
, we get

F ∼= (
⊕

t1+···+ts=j−d

∧
−t1 TP

n1 (−t1) ⊠ · · · ⊠
∧

−ts TP
ns (−ts))

∗

∼=
⊕

t1+···+ts=j−d

∧
−t1 ΩP

n1 (−t1) ⊠ · · · ⊠
∧

−ts ΩP
ns (−ts)

∼=
∧d−j(ΩP

n1×···×P
ns (1, · · · , 1)).
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Steiner bundles
Steiner bundles were first defined by Dolgachev and
Kapranov as vector bundles E on P

n defined by an exact
sequence of the form (Schwarzenberger: t = s + n)

(∗) 0 → OP
n(−1)s → Ot

P
n → E → 0.

They used Steiner bundles to study logarithmic bundles
Ω(logH) of meromorphic forms on P

n having at most
logarithmic poles on a finite union H of hyperplanes
with normal crossing.

Dolgachev - Kapranov: A vector bundle E on P
n is a

Steiner bundle defined by an exact sequence (*) if and
only if Hq(E ⊗ Ωp

P
n(p)) = 0 for q > 0 and also for q = 0,

p > 1.
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Steiner bundles
Definition A vector bundle E on a smooth irreducible
algebraic variety X is called a Steiner bundle if it is defined
by an exact sequence of the form

0 → F s
0

ϕ
−→ F t

1 → E → 0,

where s, t ≥ 1 and (F0, F1) is an ordered pair of vector
bundles on X satisfying the following two conditions:

(i) (F0, F1) is strongly exceptional;

(ii) F∨
0 ⊗ F1 is generated by global sections.

When X = P
n, F0 = OP

n(−1) and F1 = OP
n we obtain

the classical Steiner bundles as defined by Dolgachev
and Kapranov.
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Examples of Steiner bundles

Vector bundles E on P
n given by

0 → OP
n(a)s → OP

n(b)t → E → 0,

where 1 ≤ b − a ≤ n, are Steiner bundles on P
n.

The exact sequences define Steiner bundles on P
n:

0 → Ωp

P
n(p)s → Ot

P
n → E → 0, 1 ≤ p ≤ n,

0 → OP
n(−1)s → Ωp

P
n(p)t → F → 0, 0 ≤ p ≤ n − 1.
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Examples of Steiner bundles

Let Qn ⊂ P
+1, n ≥ 2, be the smooth hyperquadric. Let

Σ∗ denote the Spinor bundle Σ on Qn if n is odd, and
one of the Spinor bundles Σ1 or Σ2 on Qn if n is even.
The short exact sequences

0 → OQn
(a)s → Σ∗(n − 1)t → E → 0,

where 0 ≤ a ≤ n − 1, and

0 → Σ∗(−n)s → OQn
(a)t → F → 0,

where −n + 1 ≤ a ≤ 0, define Steiner bundles on Qn.
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THEOREM
Let X be a smooth projective variety of dim n with an
n-block collection B = (E0, E1, . . . , En), Ei = (Ei

1, . . . , E
i
αi

), of
vector bundles on X which generate Db(X). Let Ea

i0
∈ Ea,

Eb
j0
∈ Eb, where 0 ≤ a < b ≤ n and 1 ≤ i0 ≤ αa, 1 ≤ j0 ≤ αb,

and let E be a vector bundle on X. Then E is a Steiner
bundle of type (Ea

i0
, Eb

j0
) defined by

0 → (Ea
i0)

s → (Eb
j0)

t → E → 0,

iff (Ea
i0
)∨ ⊗ Eb

j0
is globally generated and all

hk(E ⊗ (R(m)En−m
i )∨) vanish, with the only exceptions of

hn−a−1(E⊗(R(n−a)Ea
i0)

∨) = s and hn−b(E⊗(R(n−b)Eb
j0)

∨) = t.
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COROLLARY

Let X be a smooth projective variety X with an n-block
collection B = (E0, E1, . . . , En), Ei = (Ei

1, . . . , E
i
αi

), of locally
free sheaves on X which generate D. Let Ea

i0
∈ Ea, Eb

j0
∈ Eb,

where 0 ≤ a < b ≤ n and 1 ≤ i0 ≤ αa, 1 ≤ j0 ≤ αb.

If E and F are Steiner bundles of type (Ea
i0
, Eb

j0
) on X then

any extension G of E by F ,

0 → F → G → E → 0,

is a Steiner bundle of type (Ea
i0
, Eb

j0
) on X.
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OPEN PROBLEMS

To characterize smooth projective varieties X of
dimension n with an n-block collection (of line bundles)
which generates the derived category D.

To characterize smooth projective varieties X which
have a full strongly exceptional collection (made up of
line bundles).

To characterize smooth projective varieties X which
have a geometric collection (of line bundles).

To give new cohomological characterization of vector
bundles E on projective varieties X.
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Steiner bundles
Steiner bundles were first defined by Dolgachev and
Kapranov as vector bundles E on P

n defined by an exact
sequence of the form (Schwarzenberger: t = s + n)

(∗) 0 → OP
n(−1)s → Ot

P
n → E → 0.

Dolgachev - Kapranov: A vector bundle E on P
n is a

Steiner bundle defined by an exact sequence (*) if and
only if Hq(E ⊗ Ωp

P
n(p)) = 0 for q > 0 and also for q = 0,

p > 1.
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DEFINITION

Let X be a smooth projective variety. A monad on X is a
complex of vector bundles:

M• : 0 −→ A
α

−→ B
β

−→ C −→ 0

which is exact at A and at C. The sheaf E := Ker(β)/Im(α)
is called the cohomology sheaf of the monad M•.
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A monad M• : 0 −→ A
α

−→ B
β

−→ C −→ 0 has a so-called
display:

0 0

↓ ↓

0 −→ A −→ K −→ E −→ 0

‖ ↓ ↓

0 −→ A
α

−→ B −→ Q −→ 0

↓ ↓

C = C

↓ ↓

0 0

where K := Ker(β) and Q := Coker(α).
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From the display of a monad M• one easily computes the
rank and the Chern character of its cohomology sheaf. We
have

(i) rk(E) = rk(B) − rk(A) − rk(C), and

(ii) ct(E) = ct(B)ct(A)−1ct(C)−1.

Monads were first introduced by Horrocks who showed
that all vector bundles E on P

3 can be obtained as the
cohomology bundle of a monad of the following kind:

0 −→ ⊕iOP
3(ai) −→ ⊕jOP

3(bj) −→ ⊕nOP
3(cn) −→ 0.
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LINEAR MONADS
DEFINITION Let X be a nonsingular projective variety A
linear monad on X is the short complex of sheaves

M• : 0 → OX(−1)a
α
→ Ob

X

β
→ OX(1)c → 0 (1)

which is exact on the first and last terms. EXAMPLE Manin
and Drinfield proved that mathematical instanton bundles E

on P
3 with quantum number k correspond to linear monads

0 −→ O
P

3(−1)k −→ O2k+2
P

3 −→ O
P

3(1)k −→ 0.
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PROPOSITION (Fløystead)
Let n ≥ 1. There exist monads on P

n whose entries are
linear maps, i.e. linear monads

0 −→ OP
n(−1)a

α
−→ Ob

P
n

β
−→ OP

n(1)c −→ 0

if and only if at least one of the following conditions holds:

(1) b ≥ 2c + n − 1 and b ≥ a + c.

(2) b ≥ a + c + n.

If so, there actually exists a linear monad with the map α
degenerating in expected codimension b − a − c + 1.

If n is odd (n = 2m + 1), a = c = k and b = 2k + 2m we
have an instanton bundle
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Characterization of linear sheaves

Cohomological characterization of linear sheaves on P
n,

n ≥ 1.

Fix integers a, b and c such that

(1) b ≥ 2c + n − 1 and b ≥ a + c, or

(2) b ≥ a + c + n.

We have:
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PROPOSITION
Let E be a rank b− a− c torsion free sheaf on P

n with Chern
polynomial ct(E) = 1

(1−t)a(1+t)c . It holds:

(1) If b < c(n + 1) and E has natural cohomology in the
range −n ≤ j ≤ 0, then E is the cohomology sheaf of a
linear monad

0 −→ OP
n(−1)a −→ Ob

P
n −→ OP

n(1)c −→ 0.

(2) If E is the cohomology sheaf of a linear monad

0 −→ OP
n(−1)a −→ Ob

P
n −→ OP

n(1)c −→ 0

and H0(Pn, E) = 0, then E has natural cohomology in the
range −n ≤ j ≤ 0.
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