Vector bundles, from classical techniques to new perspectives

Catania, September - October, 2009

Rosa Maria Miró-Roig

LECTURE 2

Cohomological characterization of vector bundles

PROBLEM:

To give a cohomological characterization of vector bundles.

- ▶ Horrocks (1964): Cohomological characterization of line bundles $\mathcal{O}_{\mathbb{P}^n}(a)$.
- Horrocks (1980): Cohomological characterization of the p-differential bundle $\Omega^p_{\mathbb{P}^n}$.
- Ottaviani (1987): Cohomological characterization of line bundles $\mathcal{O}_{Q_n}(a)$ and Spinor bundles on $Q_n \subset \mathbb{P}^{n+1}$.
- Miró-Roig (1994): Cohomological characterization of syzygy bundles $syz(x_0^{i_0}\cdots x_n^{i_n}; i_0+\cdots+i_n=d)$ on \mathbb{P}^n .

CONTENTS

- (1) HORROCKS' THEOREM
- (2) BEILINSON'S TYPE SPECTRAL SEQUENCE
- (3) APPLICATIONS TO COHOMOLOGICAL CHARACTERIZATION OF VECTOR BUNDLES
 - Vector bundles on multiprojective spaces
 - Steiner vector bundles on algebraic varieties
- (4) QUESTIONS/OPEN PROBLEMS

1. HORROCKS' THEOREM

Beilinson's Theorem

- $(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \cdots, \mathcal{O}_{\mathbb{P}^n}(n))$ is a full strongly exceptional collection or, equivalently, $(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \cdots, \mathcal{O}_{\mathbb{P}^n}(n))$ is an orthogonal basis of $D^b(\mathcal{O}_{\mathbb{P}^n} \text{mod})$ and its left dual is $(\mathcal{O}_{\mathbb{P}^n}(n), T_{\mathbb{P}^n}(n-1), \wedge^2 T_{\mathbb{P}^n}(n-2), \cdots, \wedge^n T_{\mathbb{P}^n})$
- ▶ Let E be a coherent sheaf on \mathbb{P}^n . \exists two spectral sequences situated in $-n \le p \le 0$, $0 \le q \le n$ and with E_1 -term

$${}_{I}E_{1}^{pq} = H^{q}(\mathbb{P}^{n}, E(p)) \otimes \Omega^{-p}(-p)$$
$${}_{II}E_{1}^{pq} = H^{q}(\mathbb{P}^{n}, E \otimes \Omega^{-p}(-p)) \otimes \mathcal{O}_{\mathbb{P}^{n}}(p)$$

which converges to

Beilinson's Theorem

Let E be a coherent sheaf on \mathbb{P}^n . \exists two minimal complexes

$$L^{\bullet}: 0 \to L^{-n} \xrightarrow{d_n} L^{-n+1} \xrightarrow{d_{-n+1}} \cdots \xrightarrow{d_{-1}} L^0 \xrightarrow{d_0} \to \cdots \xrightarrow{d_{n-1}} L^n \to 0$$

$$F^{\bullet}: 0 \to F^{-n} \xrightarrow{\delta_n} F^{-n+1} \xrightarrow{\delta_{-n+1}} \cdots \xrightarrow{\delta_{-1}} F^0 \xrightarrow{\delta_0} \to \cdots \xrightarrow{\delta_{n-1}} F^n \to 0$$

with

$$L^{k} = \bigoplus_{j+k=i} \Omega^{j}(j)^{h^{i}(E(-j))},$$
$$F^{k} = \bigoplus_{j+k=i} \mathcal{O}_{\mathbb{P}^{n}}(-j)^{h^{i}(E \otimes \Omega^{j}(j))}$$

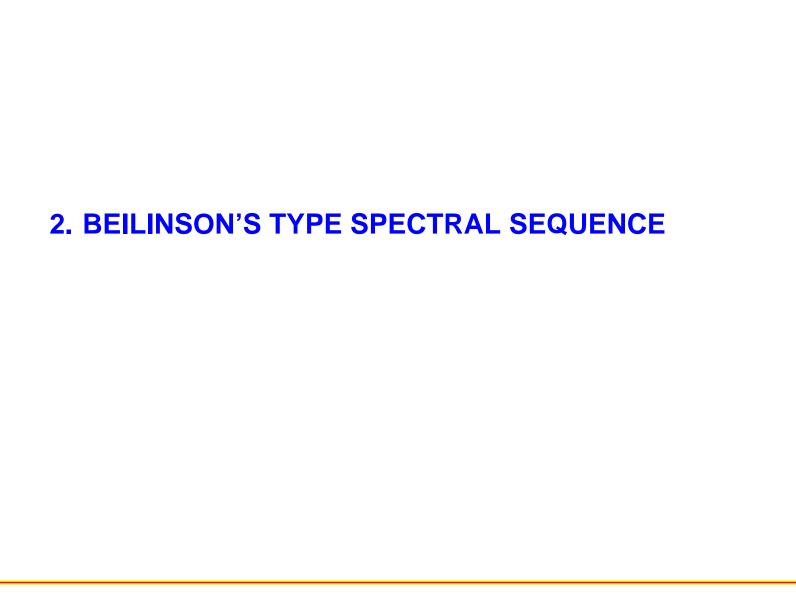
and such that

$$\frac{ker(\delta_k)}{Im(\delta_{k-1})} \cong \frac{ker(d_k)}{Im(d_{k-1})} \cong \begin{cases} E & \text{if} \quad k = 0\\ 0 & \text{if} \quad k \neq 0; \end{cases}$$

Horrocks' Theorem

Let E be a vector bundle on \mathbb{P}^n . The following conditions are equivalent:

- (i) E splits into a sum of line bundles.
- (ii) E has no intermediate cohomology; i.e. $H^i(\mathbb{P}^n, E(t)) = 0$ for $1 \le i \le n-1$ and for all $t \in \mathbb{Z}$.
- Cohomological characterization of $\Omega^p_{\mathbb{P}^n}$.
- Cohomological characterization of syzygy bundles $syz(x_0^{i_0}\cdots x_n^{i_n}; i_0+\cdots+i_n=d)$ on \mathbb{P}^n .



Let X be a smooth projective variety of dimension n.

- A coherent sheaf F on X is exceptional if $Hom(F,F)=\mathbb{C}$ and $Ext_X^i(F,F)=0$ for i>0.
- An ordered collection $(F_0, F_1, ..., F_m)$ of coherent sheaves on X is an exceptional collection if each sheaf F_i is exceptional and $Ext_X^i(F_k, F_j) = 0$ for j < k, $i \ge 0$.
- An exceptional collection (F_0, F_1, \dots, F_m) is a strongly exceptional collection if in addition $Ext_X^i(F_j, F_k) = 0$ for $i \ge 1, j \le k$.
- An ordered collection (F_0, \ldots, F_m) is a full (strongly) exceptional collection if it is a (strongly) exceptional collection and F_0, \ldots, F_m generate $D^b(\mathcal{O}_X mod)$.

Examples

- $(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \ldots, \mathcal{O}_{\mathbb{P}^n}(n))$ is a full strongly exceptional collection on a projective space \mathbb{P}^n .
- $(\mathcal{O}_{\mathbb{P}^n}, \Omega^1_{\mathbb{P}^n}(1), \ldots, \Omega^n_{\mathbb{P}^n}(n))$ is a full strongly exceptional collection on a projective space \mathbb{P}^n .
- Let $\pi: \mathbb{P}^2(1) \to \mathbb{P}^2$ be the blow up of \mathbb{P}^2 at one point $p \in \mathbb{P}^2$. Let H be the pullback of the hyperplane divisor in \mathbb{P}^2 and let $E = \pi^{-1}(p)$ be the exceptional divisor. Then the collection of divisors (0, E, H, 2H) is a full strongly exceptional collection on $\widetilde{\mathbb{P}^2}(1)$.

Examples

• (Kapranov) Let $Q_n \subset \mathbb{P}^{n+1}$, n > 2, be a hyperquadric. If n is even and Σ_1 , Σ_2 are the Spinor bundles on Q_n , then

$$(\Sigma_1(-n), \Sigma_2(-n), \mathcal{O}_{Q_n}(-n+1), \cdots, \mathcal{O}_{Q_n}(-1), \mathcal{O}_{Q_n})$$

is a full strongly exceptional collection on Q_n ; and if n is odd and Σ is the Spinor bundle on Q_n , then

$$(\Sigma(-n), \mathcal{O}_{Q_n}(-n+1), \cdots, \mathcal{O}_{Q_n}(-1), \mathcal{O}_{Q_n})$$

is a full strongly exceptional collection of sheaves on Q_n

Examples

• (Kapranov) Take X = Gr(k,n). Denotes by $\mathcal S$ the tautological k-dimensional bundle and $\Sigma^{\alpha}\mathcal S$ the space of the irreducible representations of $GL(\mathcal S)$ with highest weight $\alpha = (\alpha_1, \dots, \alpha_s)$. Let A(k,n) be the set of locally free sheaves $\Sigma^{\alpha}\mathcal S$ on Gr(k,n) where α runs over Young diagrams fitting inside a $k \times (n-k)$ rectangle. A(k,n) can be totally ordered in such a way that we obtain a full strongly exceptional collection $(E_1, \dots, E_{\rho(k,n)})$ of sheaves on X.

Remarks

- In all these collections the order is very important.
- **●** The length of any full strongly exceptional collection is $\ge \dim(X)+1$.
- All full strongly exceptional collections on X have the same length and it coincides with the rank of the Grothendieck group $K_0(X)$ as \mathbb{Z} -module.
- Not all full strongly exceptional collections are made up of line bundles.

Definition. A GEOMETRIC COLLECTION of coherent sheaves (E_0, \dots, E_n) on a smooth algebraic variety X is a full exceptional collection of minimal length, dim (X)+1.

Problems

Problem 1. To characterize smooth projective varieties which have a geometric collection.

Problem 2. To characterize smooth projective varieties which have a full strongly exceptional collection.

Remark: The existence of full strongly exceptional collection imposes rather a strong restriction on X, namely that the Grothendieck group $K_0(X)$ is isomorphic to \mathbb{Z}^{m+1} .

Example: Since, the Grothendieck group $K_0(S)$ of a smooth cubic 3-fold $S \subset \mathbb{P}^4$ has torsion, there are no full strongly exceptional collection on S.

Theorem

Let X be a smooth projective variety of dim n with a geometric collection (E_0, \dots, E_n) and let F be a coherent sheaf on X. \exists two spectral sequences with E_1 -term

$${}_{I}E_{1}^{pq} = Ext^{q}(R^{(-p)}E_{n+p}, F) \otimes E_{p+n}$$

$$_{II}E_{1}^{pq} = Ext^{q}((E_{n+p})^{*}, F) \otimes (R^{(-p)}E_{n+p})^{*}$$

situated in the square $0 \le q \le n$, $-n \le p \le 0$ which converge to

$$_{I}E_{\infty}^{i}=_{II}E_{\infty}^{i}=\left\{ egin{array}{l} F \ \mbox{for} \ i=0 \ \ 0 \ \mbox{for} \ i
eq 0. \end{array}
ight.$$

Let X be a smooth projective variety of dimension n.

- An exceptional collection (F_0, F_1, \dots, F_m) of coherent sheaves on X is a block if $Ext^i(F_j, F_k) = 0$ for any i and $j \neq k$.
- An m-block collection of type $(\alpha_0, \alpha_1, \cdots, \alpha_m)$ is an exceptional collection $(\mathcal{E}_0, \mathcal{E}_1, \cdots, \mathcal{E}_m) = (E_1^0, \cdots, E_{\alpha_0}^0, \cdots, E_1^m, \cdots, E_{\alpha_m}^m)$ such that all the subcollections $\mathcal{E}_i = (E_1^i, E_2^i, \cdots, E_{\alpha_i}^i)$ are blocks.

REMARK: Any exceptional collection (E_0, E_1, \dots, E_m) of length m+1 is an m-block collection of type $(1, \dots, 1)$ where each block has one object.

EXAMPLE

Let $X = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$, $d = n_1 + \cdots + n_s$ and denote

$$\mathcal{O}_X(a_1, a_2, \cdots, a_s) := p_1^* \mathcal{O}_{\mathbb{P}^{n_1}}(a_1) \otimes p_2^* \mathcal{O}_{\mathbb{P}^{n_2}}(a_2) \otimes \cdots \otimes p_s^* \mathcal{O}_{\mathbb{P}^{n_s}}(a_s).$$

For any $0 \le j \le d$, denote by \mathcal{E}_j the collection of all line bundles

$$\mathcal{O}_X(a_1^j, a_2^j, \cdots, a_s^j)$$

with $-n_i \le a_i^j \le 0$ and $\sum_{i=1}^s a_i^j = j - d$. Each \mathcal{E}_j is a block and

$$(\mathcal{E}_0,\mathcal{E}_1,\cdots,\mathcal{E}_d)$$

is a d-block collection on X.

EXAMPLE

Consider $X = \mathbb{P}^2 \times \mathbb{P}^3$. The collection of line bundles

$$(\mathcal{O}(-2, -3), \mathcal{O}(-2, -2), \mathcal{O}(-1, -3), \mathcal{O}(-2, -1),$$
 $\mathcal{O}(-1, -2), \mathcal{O}(0, -2)\mathcal{O}(-2, 0), \mathcal{O}(-1, -1),$
 $\mathcal{O}(0, -2), \mathcal{O}(-1, 0), \mathcal{O}(0, -1), \mathcal{O}(0, 0))$

is a full strongly exceptional collection of length 12 > dim(X) + 1 = 6 and we pack in 6 blocks:

$$\mathcal{E}_{0} = \{\mathcal{O}(-2, -3)\}\$$

$$\mathcal{E}_{1} = \{\mathcal{O}(-2, -2), \mathcal{O}(-1, -3)\}\$$

$$\mathcal{E}_{2} = \{\mathcal{O}(-2, -1), \mathcal{O}(-1, -2), \mathcal{O}(0, -3)\},\$$

$$\mathcal{E}_{3} = \{\mathcal{O}(-2, 0), \mathcal{O}(-1, -1), \mathcal{O}(0, -2)\}\$$

$$\mathcal{E}_{4} = \{\mathcal{O}(-1, 0), \mathcal{O}(0, -1)\},\$$

$$\mathcal{E}_{5} = \{\mathcal{O}(0, 0)\}\$$

Definition. Let $\sigma = (\mathcal{E}_0, \dots, \mathcal{E}_m)$ be an m-block collection of coherent sheaves which generates $D^b(X)$. The m-block $\mathcal{H} = (\mathcal{H}_0, \dots, \mathcal{H}_m)$ is called the left dual m-block collection of σ if

$$Ext^t(H_j^i, E_l^k) = 0$$

except for $Ext^k(H_i^k, E_i^{m-k}) = \mathbb{C}$.

The m-block $\mathcal{G} = (\mathcal{G}_0, \cdots, \mathcal{G}_m)$ is called the right dual m-block collection of σ if

$$Ext^t(E_l^k, G_j^i) = 0$$

except for $Ext^{m-k}(E_i^{m-k},G_i^k)=\mathbb{C}$.

Remark. Left and right dual block collections can be constructed by means of left and right mutations.

EXAMPLE

Let V be a \mathbb{C} -vector space of dim n+1 and $\mathbb{P}^n=\mathbb{P}(V)$. We consider the n-block collection

$$\mathcal{B} = (\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \cdots, \mathcal{O}_{\mathbb{P}^n}(n)).$$

Using the exterior powers

$$0 \longrightarrow \wedge^{k-1} T_{\mathbb{P}^n} \longrightarrow \wedge^k V \otimes \mathcal{O}_{\mathbb{P}^n}(k) \longrightarrow \wedge^k T_{\mathbb{P}^n} \longrightarrow 0$$

of the Euler sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n} \longrightarrow V \otimes \mathcal{O}_{\mathbb{P}^n}(1) \longrightarrow T_{\mathbb{P}^n} \longrightarrow 0$$

we compute the left dual n-block collection of \mathcal{B} and we get

$$\mathcal{H} = (\mathcal{H}_0, \mathcal{H}_1, \cdots, \mathcal{H}_j, \cdots, \mathcal{H}_n)$$

= $(\mathcal{O}_{\mathbb{P}^n}(n), T_{\mathbb{P}^n}(n-1), \cdots, \wedge^j T_{\mathbb{P}^n}(n-j), \cdots, \wedge^n T_{\mathbb{P}^n}).$

Proposition

Let $X = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$ be a multiprojective space of dimension $d = n_1 + \cdots + n_s$. Consider $\mathcal{B} = (\mathcal{E}_0, \cdots, \mathcal{E}_d)$ the d-block collection where for any $0 \le j \le d$, \mathcal{E}_j is the set of line bundles

$$\mathcal{O}_X(a_1^j, a_2^j, \cdots, a_s^j)$$

with $-n_i \leq a_i^j \leq 0$ and $\sum_{i=1}^s a_i^j = j-d$. Then, for any $E_i^{d-k} = \mathcal{O}_X(t_1, \cdots, t_s) \in \mathcal{E}_{d-k}$ and any $0 \leq k \leq d$, $(\mathcal{H}_0, \mathcal{H}_1, \cdots, \mathcal{H}_j, \cdots, \mathcal{H}_d)$, with

$$H_i^k = \bigwedge^{-t_1} T_{\mathbb{P}^{n_1}}(t_1) \boxtimes \cdots \boxtimes \bigwedge^{-t_s} T_{\mathbb{P}^{n_s}}(t_s) \in \mathcal{H}_k$$

is the left dual d-block collection of $\mathcal{B} = (\mathcal{E}_0, \cdots, \mathcal{E}_d)$.

Sketch of the proof

For any $0 \le i \le d$, we take $\mathcal{O}_X(a_1^i, \cdots, a_s^i) \in \mathcal{E}_i$ and we apply the Künneth formula,

$$H^{\alpha}(X, \bigwedge^{-t_1} \Omega_{\mathbb{P}^{n_1}}(-t_1) \boxtimes \cdots \boxtimes \bigwedge^{-t_s} \Omega_{\mathbb{P}^{n_s}}(-t_s) \otimes \mathcal{O}_X(a_1^i, \cdots, a_s^i))$$

$$= \bigoplus_{\alpha_1 + \dots + \alpha_s = \alpha} H^{\alpha_1}(\mathbb{P}^{n_1}, \bigwedge^{-t_1} \Omega(a_1^i - t_1)) \otimes \dots \otimes H^{\alpha_s}(\mathbb{P}^{n_s}, \bigwedge^{-t_s} \Omega(a_s^i - t_s)).$$

Using Bott's formula, it is zero unless $\alpha=k$, i=d-k and $\mathcal{O}_X(a_1^i,\cdots,a_s^i)=\mathcal{O}_X(t_1,\cdots,t_s)$, which proves what we want.

Beilinson type spectral sequence

Let X be a smooth projective variety of dim n with an n-block collection $(\mathcal{E}_0,\mathcal{E}_1,\cdots,\mathcal{E}_n)$, $\mathcal{E}_i=(E_1^i,\ldots,E_{\alpha_i}^i)$ of coherent sheaves which generates $D^b(X)$. Denote by $(\mathcal{H}_0,\mathcal{H}_1,\cdots,\mathcal{H}_n)$, $\mathcal{H}_i=(H_1^i,\ldots,H_{\alpha_i}^i)$ the left dual n-block collection. $\forall F$ coherent sheaf, \exists spectral sequences

$${}_{I}E_{1}^{pq} = \begin{cases} \bigoplus_{i=1}^{\alpha_{p+n}} Ext^{q}(H_{i}^{p}, F) \otimes E_{i}^{p+n} & \text{if} \quad -n \leq p \leq -1 \\ \bigoplus_{i=1}^{\alpha_{n}} Ext^{q}(E_{i}^{n}, F) \otimes E_{i}^{n} & \text{if} \quad p = 0 \end{cases}$$

$${}_{II}E_{1}^{pq} = \begin{cases} \bigoplus_{i=1}^{\alpha_{p+n}} Ext^{q}((E_{i}^{p+n})^{*}, F) \otimes (H_{i}^{p})^{*} & \text{if } -n \leq p \leq -1 \\ \bigoplus_{i=1}^{\alpha_{n}} Ext^{q}((E_{i}^{n})^{*}, F) \otimes (E_{i}^{n})^{*} & \text{if } p = 0 \end{cases}$$

which converge to
$$_IE^i_\infty=_{II}E^i_\infty=\left\{ egin{array}{ll} F \ \mbox{for} \ i=0 \\ 0 \ \mbox{for} \ i\neq 0. \end{array} \right.$$

3. COHOMOLOGICAL CHARACTERIZATION OF VECTOR BUNDLES

- Vector bundles on multiprojective spaces
- Steiner vector bundles on algebraic varieties

THEOREM

Let $X = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$, $d = n_1 + \cdots + n_s$ and $(\mathcal{E}_0, \cdots, \mathcal{E}_d)$ the d-block collection described before. Assume $\exists F$ a rank $\binom{d}{j}$, 0 < j < d, vector bundle on X s.t.

$$H^{-p-1}(X, F \otimes E_i^{p+d}) = 0 \text{ for } -d \le p \le -j-1 \text{ and } 1 \le i \le \alpha_p,$$

$$H^{-p+1}(X, F \otimes E_i^{p+d}) = 0 \text{ for } -j+1 \le p \le 0 \text{ and } 1 \le i \le \alpha_p,$$

$$H^{j}(F\otimes E_{i}^{d-j})=\mathbb{C} \text{ for } 1\leq i\leq \alpha_{d-j}.$$
 Then

$$F \cong \bigoplus_{t_1 + \dots + t_s = j - d}^{-t_1} \bigwedge^{-t_1} \Omega_{\mathbb{P}^{n_1}} (-t_1) \boxtimes \dots \boxtimes \bigwedge^{-t_s} \Omega_{\mathbb{P}^{n_s}} (-t_s)$$

$$\cong \bigwedge^{d-j} (\Omega_{\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}} (1, \cdots, 1)) \text{ with } -n_i \leq t_i \leq 0$$

Sketch of the proof

We apply to F the spectral sequence with E_1 -term

$$_{II}E_{1}^{pq} = \begin{cases} \bigoplus_{i=1}^{\alpha_{p+d}} Ext^{q}((E_{i}^{p+d})^{*}, F) \otimes (H_{i}^{p})^{*} & \text{if} \quad -d \leq p \leq -1 \\ \bigoplus_{i=1}^{\alpha_{d}} Ext^{q}(E_{i}^{d^{*}}, F) \otimes E_{i}^{d^{*}} & \text{if} \quad p = 0 \end{cases}$$

By assumption, there is an integer j, 0 < j < d, such that $_{II}E_1^{p,-p-1} = 0$ for any $-n \le p \le -j-1$ and $_{II}E_1^{p,-p+1} = 0$ for any $-j+1 \le p \le 0$.

So, F contains IIE_1^{jj} , i.e. F contains

$$\left(\left(\bigoplus_{t_1+\dots+t_s=j-d}^{-t_1} \bigwedge_{T_{\mathbb{P}^{n_1}}} (-t_1) \boxtimes \dots \boxtimes \bigwedge_{T_{\mathbb{P}^{n_s}}}^{-t_s} T_{\mathbb{P}^{n_s}} (-t_s)\right)^*\right)^{\alpha_i}$$

with $\alpha_i = h^j(F \otimes E_i^{n-j})$ as a direct summand.

Since $rankF = \binom{d}{j}$, we get

$$F \cong (\bigoplus_{t_1+\dots+t_s=j-d} \bigwedge^{-t_1} T_{\mathbb{P}^{n_1}}(-t_1) \boxtimes \dots \boxtimes \bigwedge^{-t_s} T_{\mathbb{P}^{n_s}}(-t_s))^*$$

$$\cong \bigoplus_{t_1+\dots+t_s=j-d} \bigwedge^{-t_1} \Omega_{\mathbb{P}^{n_1}}(-t_1) \boxtimes \dots \boxtimes \bigwedge^{-t_s} \Omega_{\mathbb{P}^{n_s}}(-t_s)$$

$$\cong \bigwedge^{d-j} (\Omega_{\mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_s}}(1, \dots, 1)).$$

Steiner bundles

Steiner bundles were first defined by Dolgachev and Kapranov as vector bundles E on \mathbb{P}^n defined by an exact sequence of the form (Schwarzenberger: t = s + n)

$$(*) \quad 0 \to \mathcal{O}_{\mathbb{P}^n}(-1)^s \to \mathcal{O}_{\mathbb{P}^n}^t \to E \to 0.$$

- They used Steiner bundles to study logarithmic bundles $\Omega(\log \mathcal{H})$ of meromorphic forms on \mathbb{P}^n having at most logarithmic poles on a finite union \mathcal{H} of hyperplanes with normal crossing.
- **●** Dolgachev Kapranov: A vector bundle E on \mathbb{P}^n is a Steiner bundle defined by an exact sequence (*) if and only if $H^q(E \otimes \Omega^p_{\mathbb{P}^n}(p)) = 0$ for q > 0 and also for q = 0, p > 1.

Steiner bundles

Definition A vector bundle E on a smooth irreducible algebraic variety X is called a Steiner bundle if it is defined by an exact sequence of the form

$$0 \to F_0^s \xrightarrow{\varphi} F_1^t \to E \to 0,$$

where $s, t \ge 1$ and (F_0, F_1) is an ordered pair of vector bundles on X satisfying the following two conditions:

- (i) (F_0, F_1) is strongly exceptional;
- (ii) $F_0^{\vee} \otimes F_1$ is generated by global sections.
- When $X = \mathbb{P}^n$, $F_0 = \mathcal{O}_{\mathbb{P}^n}(-1)$ and $F_1 = \mathcal{O}_{\mathbb{P}^n}$ we obtain the classical Steiner bundles as defined by Dolgachev and Kapranov.

Examples of Steiner bundles

• Vector bundles E on \mathbb{P}^n given by

$$0 \to \mathcal{O}_{\mathbb{P}^n}(a)^s \to \mathcal{O}_{\mathbb{P}^n}(b)^t \to E \to 0,$$

where $1 \leq b - a \leq n$, are Steiner bundles on \mathbb{P}^n .

• The exact sequences define Steiner bundles on \mathbb{P}^n :

$$0 \to \Omega^p_{\mathbb{P}^n}(p)^s \to \mathcal{O}^t_{\mathbb{P}^n} \to E \to 0, \quad 1 \le p \le n,$$

$$0 \to \mathcal{O}_{\mathbb{P}^n}(-1)^s \to \Omega^p_{\mathbb{P}^n}(p)^t \to F \to 0, \quad 0 \le p \le n-1.$$

Examples of Steiner bundles

Let $Q_n \subset \mathbb{P}^{+1}$, $n \geq 2$, be the smooth hyperquadric. Let Σ_* denote the Spinor bundle Σ on Q_n if n is odd, and one of the Spinor bundles Σ_1 or Σ_2 on Q_n if n is even. The short exact sequences

$$0 \to \mathcal{O}_{Q_n}(a)^s \to \Sigma_*(n-1)^t \to E \to 0,$$

where $0 \le a \le n-1$, and

$$0 \to \Sigma_*(-n)^s \to \mathcal{O}_{Q_n}(a)^t \to F \to 0,$$

where $-n+1 \le a \le 0$, define Steiner bundles on Q_n .

THEOREM

Let X be a smooth projective variety of dim n with an n-block collection $\mathcal{B}=(\mathcal{E}_0,\mathcal{E}_1,\ldots,\mathcal{E}_n)$, $\mathcal{E}_i=(E_1^i,\ldots,E_{\alpha_i}^i)$, of vector bundles on X which generate $\mathcal{D}^b(X)$. Let $E_{i_0}^a\in\mathcal{E}_a$, $E_{j_0}^b\in\mathcal{E}_b$, where $0\leq a< b\leq n$ and $1\leq i_0\leq\alpha_a$, $1\leq j_0\leq\alpha_b$, and let E be a vector bundle on X. Then E is a Steiner bundle of type $(E_{i_0}^a,E_{j_0}^b)$ defined by

$$0 \to (E_{i_0}^a)^s \to (E_{j_0}^b)^t \to E \to 0,$$

iff $(E^a_{i_0})^{\vee} \otimes E^b_{j_0}$ is globally generated and all $h^k(E \otimes (R^{(m)}E^{n-m}_i)^{\vee})$ vanish, with the only exceptions of

$$h^{n-a-1}(E \otimes (R^{(n-a)}E^a_{i_0})^{\vee}) = s \text{ and } h^{n-b}(E \otimes (R^{(n-b)}E^b_{j_0})^{\vee}) = t.$$

COROLLARY

Let X be a smooth projective variety X with an n-block collection $\mathcal{B}=(\mathcal{E}_0,\mathcal{E}_1,\ldots,\mathcal{E}_n)$, $\mathcal{E}_i=(E_1^i,\ldots,E_{\alpha_i}^i)$, of locally free sheaves on X which generate \mathcal{D} . Let $E_{i_0}^a\in\mathcal{E}_a$, $E_{j_0}^b\in\mathcal{E}_b$, where $0\leq a< b\leq n$ and $1\leq i_0\leq \alpha_a$, $1\leq j_0\leq \alpha_b$.

If E and F are Steiner bundles of type $(E_{i_0}^a, E_{j_0}^b)$ on X then any extension G of E by F,

$$0 \to F \to G \to E \to 0$$

is a Steiner bundle of type $(E_{i_0}^a, E_{j_0}^b)$ on X.

OPEN PROBLEMS

- To characterize smooth projective varieties X of dimension n with an n-block collection (of line bundles) which generates the derived category \mathcal{D} .
- To characterize smooth projective varieties X which have a full strongly exceptional collection (made up of line bundles).
- To characterize smooth projective varieties X which have a geometric collection (of line bundles).
- To give new cohomological characterization of vector bundles E on projective varieties X.

Steiner bundles

Steiner bundles were first defined by Dolgachev and Kapranov as vector bundles E on \mathbb{P}^n defined by an exact sequence of the form (Schwarzenberger: t = s + n)

$$(*) \quad 0 \to \mathcal{O}_{\mathbb{P}^n}(-1)^s \to \mathcal{O}_{\mathbb{P}^n}^t \to E \to 0.$$

• Dolgachev - Kapranov: A vector bundle E on \mathbb{P}^n is a Steiner bundle defined by an exact sequence (*) if and only if $H^q(E\otimes\Omega^p_{\mathbb{P}^n}(p))=0$ for q>0 and also for q=0, p>1.

DEFINITION

Let X be a smooth projective variety. A monad on X is a complex of vector bundles:

$$M_{\bullet}: 0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

which is exact at A and at C. The sheaf $E := Ker(\beta)/Im(\alpha)$ is called the cohomology sheaf of the monad M_{\bullet} .

A monad $M_{\bullet}: 0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$ has a so-called display:

where $K := Ker(\beta)$ and $Q := Coker(\alpha)$.

From the display of a monad M_{\bullet} one easily computes the rank and the Chern character of its cohomology sheaf. We have

(i)
$$rk(E) = rk(B) - rk(A) - rk(C)$$
, and

(ii)
$$c_t(E) = c_t(B)c_t(A)^{-1}c_t(C)^{-1}$$
.

■ Monads were first introduced by Horrocks who showed that all vector bundles E on \mathbb{P}^3 can be obtained as the cohomology bundle of a monad of the following kind:

$$0 \longrightarrow \bigoplus_{i} \mathcal{O}_{\mathbb{P}^3}(a_i) \longrightarrow \bigoplus_{j} \mathcal{O}_{\mathbb{P}^3}(b_j) \longrightarrow \bigoplus_{n} \mathcal{O}_{\mathbb{P}^3}(c_n) \longrightarrow 0.$$

LINEAR MONADS

DEFINITION Let X be a nonsingular projective variety A linear monad on X is the short complex of sheaves

$$M_{\bullet}: 0 \to \mathcal{O}_X(-1)^a \xrightarrow{\alpha} \mathcal{O}_X^b \xrightarrow{\beta} \mathcal{O}_X(1)^c \to 0$$
 (1)

which is exact on the first and last terms. **EXAMPLE** Manin and Drinfield proved that mathematical instanton bundles E on \mathbb{P}^3 with quantum number k correspond to linear monads

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^3}(-1)^k \longrightarrow \mathcal{O}_{\mathbb{P}^3}^{2k+2} \longrightarrow \mathcal{O}_{\mathbb{P}^3}(1)^k \longrightarrow 0.$$

PROPOSITION (Fløystead)

Let $n \ge 1$. There exist monads on \mathbb{P}^n whose entries are linear maps, i.e. linear monads

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-1)^a \xrightarrow{\alpha} \mathcal{O}_{\mathbb{P}^n}^b \xrightarrow{\beta} \mathcal{O}_{\mathbb{P}^n}(1)^c \longrightarrow 0$$

if and only if at least one of the following conditions holds:

- (1) $b \ge 2c + n 1$ and $b \ge a + c$.
- (2) $b \ge a + c + n$.

If so, there actually exists a linear monad with the map α degenerating in expected codimension b-a-c+1.

• If n is odd (n = 2m + 1), a = c = k and b = 2k + 2m we have an instanton bundle

Characterization of linear sheaves

• Cohomological characterization of linear sheaves on \mathbb{P}^n , $n \geq 1$.

Fix integers a, b and c such that

(1)
$$b \ge 2c + n - 1$$
 and $b \ge a + c$, or

(2)
$$b \ge a + c + n$$
.

We have:

PROPOSITION

Let E be a rank b-a-c torsion free sheaf on \mathbb{P}^n with Chern polynomial $c_t(E) = \frac{1}{(1-t)^a(1+t)^c}$. It holds:

(1) If b < c(n+1) and E has natural cohomology in the range $-n \le j \le 0$, then E is the cohomology sheaf of a linear monad

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-1)^a \longrightarrow \mathcal{O}_{\mathbb{P}^n}^b \longrightarrow \mathcal{O}_{\mathbb{P}^n}(1)^c \longrightarrow 0.$$

(2) If E is the cohomology sheaf of a linear monad

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-1)^a \longrightarrow \mathcal{O}_{\mathbb{P}^n}^b \longrightarrow \mathcal{O}_{\mathbb{P}^n}(1)^c \longrightarrow 0$$

and $H^0(\mathbb{P}^n, E) = 0$, then E has natural cohomology in the range $-n \le j \le 0$.