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INTRODUCTION

Toric varieties provide a quite different yet elementary way
to see many examples and phenomena in algebraic
geometry.
In the classification scheme are special but they provide a
remarkably fertile testing ground for general theories.
Toric varieties correspond to combinatorial objects and this
makes everything much more computable and concrete
than usual.

We will work over C.
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Definition:
A complete Toric Variety of dimension n over C is a smooth
variety X that contains a torus T = (C∗)n as a dense open
subset, together with an action of T on X :

T × X −→ X

that extends the natural action of T on itself.

Example: Pn is a toric variety:

(C∗)n ⊂ Cn ⊂ Pn.

Fact:
Any toric variety will be constructed from a lattice N ∼= Zn for
some n ∈ Z and a fan ∆ in N.
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Definition:
Let N = Zn be a lattice and V = N ⊗Z R the real vector space
with dual V ∗ = M ⊗Z R being M = Hom(N,Z) the dual lattice.
A convex polyhedral cone is a set

σ = {r1v1 + · · ·+ rsvs ∈ V |ri ≥ 0}

generated by any finite set of vectors v1, · · · , vs in V . Such
vectors are called generators of the cone σ.
The dimension dim(σ) of σ is the dimension of the linear space
spanned by σ.
The dual σ∗ of σ is

σ∗ := {u ∈ V ∗|〈u, v〉 ≥ 0 for all v ∈ σ}.
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Definition:
A face τ of σ is the intersection of σ with any supporting
hyperplane

τ = σ ∩ u⊥ = {v ∈ σ|〈u, v〉 = 0}

for some u ∈ σ∗.
A cone is said to be rational if its generators can be taken from
N.

A face τ = σ ∩ u⊥ is generated by those vi in a generating set
of σ such that 〈u, vi〉 = 0. So,

a cone has only finitely many faces.

Laura Costa Toric varieties



Main Basic Facts:
(σ∗)∗ = σ.
Any face is also a convex polyhedral cone.
Any intersection of faces is a face.
Any proper face is contained in some face of codimension
one.
The dual of a convex polyhedral cone is a convex
polyhedral cone.

Proposition: (Gordon’s Lemma)
If σ is a rational cenvex polihedral cone, then

Sσ := σ∗ ∩M

is a finitely generated semigroup.
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Definition:
A cone is said to be strongly convex if it satisfies one of the
following equivalent conditions:

σ ∩ (−σ) = {0}.
σ contains no nonzero linear subspace.
There is u ∈ σ∗ with σ ∩ u⊥ = {0}.
σ∗ spans V ∗.

Notation:
From now on, a cone in N will be a rational strongly convex
polyhedral cone in N.
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Definition:
A fan ∆ in N is a set of rational strongly convex polyhedral
cones in NR such that:

Each face of a cone in ∆ is also a cone in ∆.
The intersection of two cones in ∆ is a face of each.

We will assume that a fan is finite: that consists of a finite
number of cones.
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By Gordon’s lemma, for any σ ∈ ∆

Sσ := σ∗ ∩M, σ∗ := {u ∈ V ∗|〈u, v〉 ≥ 0 for all v ∈ σ}

is a finitely generated semigroup thus the group algebra

C[Sσ]

is a finitely generated commutative C-algebra. This algebra
corresponds to an affine variety

Uσ := Spec(C[Sσ]).

If τ is a face of σ, Sσ ↪→ Sτ and this gives a map

Uτ → Uσ.
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From a fan ∆, the toric variety X (∆) is constructed by taking
the disjoint union of the affine toric varieties Uσ, one for each
σ ∈ ∆ and gluing.

Conversely,

any toric variety X can be realized as X (∆) for a unique fan ∆
in N.

The toric variety X (∆) is smooth iff any cone σ ∈ ∆ is
generated by a part of a basis of N.
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Notation:
Let N be the lattice Zn and denote by e1, . . ., en a Z-basis of N.
For any 0 ≤ i ≤ n, we put

∆(i) := {σ ∈ ∆ | dimσ = i}.

In particular, to any 1-dimensional cone σ ∈ ∆(1) there is a
unique generator v ∈ N such that σ ∩ N = Z≥0 · v and it is
called ray generator.

Examples:
Let us see the fan associated to:

P2 and Pn.
Hirzebruch surfaces.
Blp(P2).
Products of toric varieties.
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Proposition:
There is a one-to-one correspondence between the ray
generators v1, · · · , vk of ∆ and toric divisors D1, · · · ,Dk on
X (∆) and any Weil divisor D on X (∆) is of the form

D =
k∑

i=1

aiDi .

Moreover, Di1Di2 · · ·Dij = 0 if and only if the corresponding
vectors vi1 , vi2 , · · · , vij do not span a cone in ∆.
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Proposition:

If X (∆) is a smooth toric variety of dimension n (hence n is also
the dimension of the lattice N) and m is the number of toric
divisors (and hence the number of 1-dimensional rays in ∆)
then we have

0→ M → Zm → Pic(X (∆))→ 0.

In particular, the Picard number of X (∆) is ρ(X (∆)) = m − n
and the anticanonical divisor −KX(∆) is given by

−KX(∆) = D1 + · · ·+ Dm.

The relations among the toric divisors are given by

m∑
i=1

〈u, vi〉Di = 0

for u in a basis of M = Hom(N,Z).
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Definition:
A variety X is called Fano if the anticanonical divisor −KX is
ample.
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Definition:
A set of toric divisors {D1, ...,Dk} on X (∆) is called a primitive
set if D1 ∩ · · · ∩ Dk = ∅ but D1 ∩ · · · ∩ D̂j ∩ · · · ∩ Dk 6= ∅ for all j .
Equivalently, this means < v1, ..., vk >/∈ ∆ but
< v1, ..., v̂j , ..., vk >∈ ∆ for all j and we call to P = {v1, ..., vk} a
primitive collection. If S := {D1, ...,Dk} is a primitive set, the
element v := v1 + ...+ vk lies in the relative interior of a unique
cone of ∆, say the cone generated by v ′1, ..., v

′
s and

v1 + ...+ vk = a1v ′1 + ...+ asv ′s with ai > 0 is the corresponding
primitive relation.

In terms of primitive collections and relations we have a nice
criterion for checking if a smooth toric variety is Fano or not. In
fact, X (∆) is Fano if and only if for every primitive relation

vi1 + · · ·+ vik − c1vj1 − · · · − cr vjr = 0

one has k −
∑r

i=1 ci > 0.
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Classification of toric varieties:
There are different ways to approach the problem of classifying
smooth Fano toric varieties:

By its dimension
By its Picard number.
Special properties like pseudosymmetric toric varieties or
toric varieties with a splitting fan.
Etc...

By the dimension are classified Fano toric varieties up to
dimension 4.
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By its Picard Number:

If ρ = 1, then X (∆) ∼= Pn.

Assume ρ = 2. In that case X (∆) has a splitting fan and is
completely classified: there exists a sequence of toric
varieties X = Xr , . . ., X0 such that X0 = Pn for a certain n
and for 1 ≤ i ≤ r , Xi is a projectivization of a
decomposable vector bundle over Xi−1
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Assume ρ = 3. By Batyrev, ∆ has three or five primitive
collections.

If ∆ has three primitive collections, then X (∆) is a
projectivization of a decomposable vector bundle over a
smooth toric variety Y with Picard number 2.

If ∆ has exactly 5 primitive collections, X (∆) is completely
classified by Batyrev.
Fano toric varieties with maximal and almost maximal
Picard number are also classified.
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