Brill-Noether theory for moduli spaces of sheaves on algebraic varieties

Laura Costa

Pragmatic 09

Laura Costa Brill-Noether theory for moduli spaces of sheaves

 Let X be an n-dimensional smooth projective variety / K = K, char(K) = 0.

Let

$$M_{X,H}(r; c_1, \cdots, c_s)$$

be the moduli space of rank r, H-stable vector bundles E on X with fixed Chern classes

$$c_i(E) = c_i$$
 for $i = 1, \cdots, s := min\{r, n\}$.

- Moduli spaces of stable vector bundles were constructed in the 1970's by Maruyama.
- Since then they have been extensively studied from different points of view.
- Unfortunately, except in the classical case of vector bundles on curves, relatively little is known about their geometry in terms of the existence and structure of their subvarieties.

Classical Brill-Noether Theory

- Deals with the case of line bundles on smooth projective curves *C* of genus *g*.
- It is concerned with the subvarieties W^k of Pic^d(C) whose line bundles have at least k + 1 independent global sections.
- Basic questions concerning non-emptiness, connectedness, irreducibility, dimension, singularities....have been answered when the curve *C* is generic on the moduli space of curves of genus *g*.

Ways to generalize the classical Brill-Noether theory

Consider vector bundles of any rank on curves

• Giving rise to the Brill-Noether loci

 $W^k(r,d) = \{E \in M(r,d) | h^0(E) \ge k\}$

in the moduli space of stable rank *r* and degree *d* vector bundles on curves.

- During the last two decades, a great amount of job has been made around this Brill-Noether stratification giving rise to nice and interesting descriptions of these subvarieties.
- Many questions concerning their geometry still remain open.

Consider line bundles on varieties of arbitrary dimension

Ways to generalize the classical theory of Brill-Noether

Go in both directions simultaneously

- Consider *X* a smooth projective variety of arbitrary dimension.
- Consider the moduli space

$$M_{X,H}(r; c_1, \cdots, c_s)$$

of rank r, H-stable vector bundles E on X with fixed Chern classes c_i .

 Try to study the subschemes in *M*_{X,H}(*r*; *c*₁, · · · , *c*_s) defined by conditions {dim H^j(X, E) ≥ n_j}.

Remark:

If we are dealing with vector bundles *E* on curves, we only have at most two non-vanishing cohomology groups $H^0(E)$ and $H^1(E)$ which are related by Riemman-Roch Theorem. Thus, the condition $h^0(E) \ge k$ defines a filtration of the moduli space M(r, d).

If we are dealing with vector bundles *E* on *n*-dimensional projective varieties, a priory we have n + 1 non-vanishing cohomology groups $H^i(E)$ and with the conditions $\{\dim H^j(X, E) \ge n_j\}$ we get a multigraded filtration.

GOAL:

The main GOAL is to introduce a Brill-Noether theory for moduli spaces of rank r, H-stable vector bundles on algebraic varieties of arbitrary dimension, extending, in particular, the Brill-Noether theory on curves to higher dimensional varieties.

We will define the Brill-Noether locus

 $W_H^k(r; c_1, \cdots, c_s)$

in $M_{X,H}(r; c_1, \cdots, c_s)$ as the set of vector bundles in $M_{X,H}(r; c_1, \cdots, c_s)$ having at least *k* independent sections.

- Associated to this locus we will consider the generalized Brill-Noether number $\rho_{H}^{k}(r; c_{1}, \dots, c_{s})$.
- We will prove that W^k_H(r; c₁, · · · , c_s) has a natural structure of algebraic variety and that any of its non-empty components has dimension ≥ ρ^k_H(r; c₁, · · · , c_s)
- We will address the main problems and we will analyze them for several concrete moduli problems.

DEFINITION:

Let *H* be an ample line bundle on *X*. For a torsion free sheaf *F* on *X* we set

$$\mu(F) = \mu_H(F) := \frac{c_1(F)H^{n-1}}{rk(F)}$$

The sheaf F is said to be H-semistable if

$$\mu_H(E) \leq \mu_H(F)$$

for all non-zero subsheaves $E \subset F$ with rk(E) < rk(F); if strict inequality holds then *F* is *H*-stable.

Remark:

The definition of stability depends on the choice of the ample line bundle H.

THEOREM:

Let *X* be an *n*-dimensional smooth projective variety and $M_H = M_{X,H}(r; c_1, \dots, c_s)$. Assume that for any $E \in M_H$, $H^i(E) = 0$ for $i \ge 2$. Then, for any $k \ge 0$, there exists a determinantal variety $W_H^k(r; c_1, \dots, c_s)$ such that

$$Supp(W_H^k(r; extsf{c}_1, \cdots, extsf{c}_s)) = \{ E \in M_H | h^0(E) \geq k \}.$$

Moreover, each non-empty irreducible component of $W_{H}^{k}(r; c_{1}, \cdots, c_{s})$ has dimension at least $\dim(M_{H}) - k(k - \chi(r; c_{1}, \cdots, c_{s}))$, and $W_{H}^{k+1}(r; c_{1}, \cdots, c_{s}) \subset Sing(W_{H}^{k}(r; c_{1}, \cdots, c_{s}))$ whenever $W_{H}^{k}(r; c_{1}, \cdots, c_{s}) \neq M_{X,H}(r; c_{1}, \cdots, c_{s})$.

Sketch of the Proof.

Assume that M_H has a universal family $\mathcal{U} \rightarrow X \times M_H$ such that for any $t \in M_H$,

$$\mathcal{U}|_{X \times \{t\}} = E_t$$

is an *H*-stable rank *r* vector bundle on *X* with Chern classes c_i . Let *D* be an effective divisor on *X* such that for any $t \in M_H$,

$$h^0(E_t(D)) = \chi(E_t(D)), \quad H'(E_t(D)) = 0, \quad i \ge 1.$$

Consider $\mathcal{D} = D \times M_H$ the corresponding product divisor on $X \times M_H$ and denote by

$$\nu: X \times M_H \to M_H$$

the natural projection.

We get the exact sequence

$$0 \to \nu_*\mathcal{U} \to \nu_*\mathcal{U}(\mathcal{D}) \xrightarrow{\gamma} \nu_*(\mathcal{U}(\mathcal{D})/\mathcal{U}) \to R^1\nu_*\mathcal{U} \to 0.$$

The map γ is a morphism between locally free sheaves on M_H of rank $\chi(E_t(D))$ and $\chi(E_t(D)) - \chi(E)$ respectively. The $(\chi(E_t(D)) - k)$ -th determinantal variety

$$W_H^k(r; c_1, \cdots, c_s) \subset M_H$$

associated to it has support

$$\{E_t \in M_H | \operatorname{rank} \gamma_{E_t} \leq \chi(E_t(D)) - k\}$$

i.e. $W_{H}^{k}(r; c_{1}, \dots, c_{s})$ is the locus where the fiber of $R^{1}\nu_{*}\mathcal{U}$ has dimension at least

 $(\chi(E_t(D)) - \chi(E_t)) - (\chi(E_t(D)) - k) = k - \chi(E_t).$ For any $E_t \in M_H$ the assumption $h^i(E_t) = 0, i \ge 2$, implies

$$h^1(E_t) = h^0(E_t) - \chi(E_t).$$

Thus,

$$Supp(W_{H}^{k}(r; c_{1}, \cdots, c_{s})) = \{E \in M_{H} | h^{1}(E) \ge k - \chi(E)\} \\ = \{E \in M_{H} | h^{0}(E) \ge k\}.$$

Finally, since $W_H^k(r; c_1, \dots, c_s)$ is a $(\chi(E_t(D)) - k)$ -determinantal variety associated to a morphism between locally free sheaves of rank $\chi(E_t(D))$ and $\chi(E_t(D)) - \chi(E)$ respectively, any of its non-empty irreducible components has dimension greater or equal to $\dim(M_H) - k(k - \chi(E))$ and

$$W^{k+1}_H(r; extsf{c}_1, \cdots, extsf{c}_s) \subset \textit{Sing}(W^k_H(r; extsf{c}_1, \cdots, extsf{c}_s))$$

whenever $W_{H}^{k}(r; c_{1}, \cdots, c_{s}) \neq M_{X,H}(r; c_{1}, \cdots, c_{s})$

Remark: The cohomological assumptions are natural if we want a filtration of M_H by the subvarieties $W_H^k(r; c_1, \dots, c_s)$.

Any vector bundle *E* on *X* has n + 1 cohomological groups and one is forced to look for a multigraded filtration of M_H by the sets $\{E \in M_H | h^i(E) \ge k_i\}$.

Under our cohomological assumptions,

$$\dim H^0(E) - \dim H^1(E) = \chi(E) = \chi(r; c_1, \cdots, c_s).$$

Hence, it makes sense to consider only the filtration of the moduli space M_H by the dimension of the space of global sections.

Instanton bundles on \mathbb{P}^{2n+1} , Schwarzenberger and Steiner bundles on \mathbb{P}^n , Steiner and Spinor bundles on $Q_n \subset \mathbb{P}^{n+1}$ and many others satisfy these cohomological conditions.

COROLLARY:

Let X be a smooth projective surface and assume that

 $c_1 H \geq r K_X H$.

Then, for any $k \ge 0$, there exists a determinantal variety $W_H^k(r; c_1, c_2)$ such that

$$Supp(W_{H}^{k}(r; c_{1}, c_{2})) = \{E \in M_{H} | h^{0}(E) \geq k\}.$$

Moreover, each non-empty irreducible component of $W_{H}^{k}(r; c_{1}, c_{2})$ has dimension greater or equal to

$$\rho_{H}^{k}(r;c_{1},c_{2}) = \dim(M_{H}) - k(k-r(1+P_{a}(X)) + \frac{c_{1}K_{X}}{2} - \frac{c_{1}^{2}}{2} + c_{2}).$$

DEFINITION:

The variety $W^k = W^k_H(r; c_1, \cdots, c_s)$ is called the *k*-Brill-Noether locus of M_H and

$$\rho^{k} = \rho^{k}_{H}(r; c_{1}, \cdots, c_{s}) := \dim M_{H} - k(k - \chi(r; c_{1}, \cdots, c_{s}))$$

is called the generalized Brill-Noether number.

Remark: When *X* is a smooth projective curve and we consider the moduli space $Pic^{d}(X)$ of degree *d* line bundles on *X*, then we recover the classical Brill-Noether loci and the generalized Brill-Noether number is the classical Brill-Noether number $\rho = \rho(g, r, d) = g - (r + 1)(g - d + r)$

Remark:

The Brill-Noether locus W^k has dimension greater or equal to ρ^k and the number ρ^k is also called the expected dimension of the corresponding Brill-Noether locus.

QUESTION:

Whether the dimension of $W_H^k(r; c_1, \dots, c_s)$ and its expected dimension coincide provided $W_H^k(r; c_1, \dots, c_s) \neq \emptyset$

QUESTION:

• Whether
$$\rho^k < 0 \Rightarrow W^k = \emptyset$$
 ?

• Whether
$$\rho^k \ge 0 \Rightarrow W^k \neq \emptyset$$
 ?

• Whether $\rho^k \ge 0$ and $W^k \ne \emptyset$ implies

$$\rho^{k} = \rho^{k}_{H}(r; c_{1}, \cdots, c_{s}) = \dim W^{k}_{H}(r; c_{1}, \cdots, c_{s}) \quad ?$$

If we deal with varieties of higher dimension, a great number of different situations and pathologies appear and this makes this new theory and emerging field of interest.

EXAMPLE:

Let $X = \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ and denote by I_1 , I_2 the generators of Pic(X). For any $n \ge 2$ we fix the ample line bundle

 $L = l_1 + n l_2.$

For any k, $1 \le k \le n$, such that 8n - 3 < k(k - 1)

$$W_L^{\kappa}(2;(2n-1)l_2,2n) \subset M_{X,L}(2;(2n-1)l_2,2n)$$

is non-empty and the generalized Brill-Noether number,

$$\rho_L^k(2; (2n-1)l_2, 2n) = 8n - 3 - k(k-1),$$

is negative.

Brill-Noether theory on Hirzebruch surfaces

Brill-Noether theory on Hirzebruch surfaces

- For any integer $e \ge 0$, let $X_e \cong \mathbb{P}(\mathcal{E}) = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ be a non singular, Hirzebruch surface.
- We denote by C_0 and F the standard basis of $Pic(X_e) \cong \mathbb{Z}^2$ such that $C_0^2 = -e$, $F^2 = 0$ and $C_0F = 1$.
- In this basis $-K_{X_e} = 2C_0 + (e+2)F$ and a divisor $L = aC_0 + bF$ on X_e is ample if, and only if, it is very ample, if and only if, a > 0 and b > ae, and that $D = a'C_0 + b'F$ is effective if and only if $a' \ge 0$ and $b' \ge 0$.

Our plan is to explain you results concerning:

- Non-emptiness of Brill-Noether loci of stable vector bundles on X_e.
- Emptiness of Brill-Noether loci of stable vector bundles on *X_e*.

Non-emptiness of some Brill-Noether loci of stable vector bundles on X_e

We fix our attention into the following moduli space

$$M_H(r; C_0 - xF, c_2)$$

where *x*, *r*, *c*₂ are integers with x > 0, $r \ge 2$ and $c_2 \gg 0$ and we have fixed the ample divisor

$$H := C_0 + (x + e + 1)F.$$

Remark:

Under the assumptions x > 0 and $c_2 \gg 0$, we have

$$\rho_{H}^{k}(r; C_{0} - xF, c_{2}) < 0 \text{ for } k \ge r - 1.$$

So, we will study the Brill-Noether loci $W_H^k(r; C_0 - xF, c_2)$ of the Brill-Noether stratification of $M_H(r; C_0 - xF, c_2)$ for *k* in the range $1 \le k \le r-2$

THEOREM:

Let X_e be a Hirzebruch surface. Then for any integer k, $1 \le k \le r-2$, and c_2 such that $c_2 \equiv 0 \mod (r-k-1)$ there exists an irreducible component of the Brill-Noether loci

$$W_H^k(r; C_0 - xF, c_2)$$

of the moduli space $M_H(r; C_0 - xF, c_2)$ which has the expected dimension $\rho_H^k(r; C_0 - xF, c_2)$

Idea:

We will construct a family \mathcal{F} of rank r vector bundles E given by a non-trivial extension

$$0 o \mathcal{O}_{X_e}^k o E o 0$$

where *G* sits in an open subset $\mathcal{H}^0(r-k; C_0 - xF, c_2) \subset M_H(r-k; C_0 - xF, c_2).$

Then check that *E* is stable and compute the dimension of \mathcal{F} .

Definition:

Let X_e be a Hirzebruch surface. A coherent sheaf E on X_e is said to be prioritary if it is torsion free and if

 $\mathsf{Ext}^2(E, E(-F)) = 0.$

The following Lemma is the key point in order to be able to use prioritary sheaves to study moduli spaces of stable vector bundles.

Lemma:

Let X_e be a Hirzebruch surface and let H be an ample divisor on X_e . Then any H-semistable, torsion free sheaf E on X_e is prioritary.

Proposition:

Let X_e be a Hirzebruch surface and let H be an ample divisor on X_e . Fix integers α , x and c with α , x > 0 and c < 0. If $c \ll 0$, then a generic vector bundle $E \in M_H(\alpha + 1; C_0 - xF, -\alpha c)$ sits in an exact sequence of the following type

$$0 \to \mathcal{O}_{X_{\theta}}(C_0 - (x - \alpha c)F) \to E \to \mathcal{O}_{X_{\theta}}(-cF)^{\alpha} \to 0.$$
 (1)

THEOREM:

Let X_e be a Hirzebruch surface. Then for any integer k, $1 \le k \le r-2$ such that $c_2 \equiv 0 \mod (r-k-1)$ there exists an irreducible component of the Brill-Noether loci

$$W_H^k(r; C_0 - xF, c_2)$$

of the moduli space $M_H(r; C_0 - xF, c_2)$ which has the expected dimension $\rho_H^k(r; C_0 - xF, c_2)$

Sketch of the Proof.

Fix *k* an integer, $1 \le k \le r - 2$, such that (r - k - 1) divides c_2 and denote by *f* the negative integer such that $c_2 = -(r - k - 1)f$. Let \mathcal{F} be the irreducible family of rank *r* vector bundles *E* given by a non-trivial extension

$$0 o \mathcal{O}_{X_e}^k o E o G o 0$$
 (2)

where *G* sits in the open subset $\mathcal{H}^0(r-k; C_0 - xF, c_2) \subset M_H(r-k; C_0 - xF, c_2)$ given above. First of all notice that any $E \in \mathcal{F}$ is a rank *r* vector bundle with Chern classes

$$(c_1(E), c_2(E)) = (C_0 - xF, -(r - k - 1)f) = (C_0 - xF, c_2)$$

and by construction $h^0(E) \ge k$.

Claim: E is H-stable.

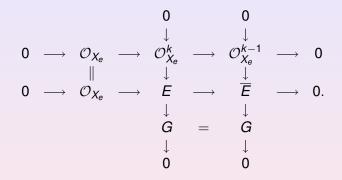
Proof of the Claim: We proceed by induction on *k*.

In case k = 1, E is given by a non-trivial extension

$$0 \to \mathcal{O}_{X_e} \to E \xrightarrow{\sigma} G \to 0$$

where G is a rank r - 1, H-stable vector bundle. Checking the definition of stability we wee that E is H stable.

Now, we fix k > 1 and we consider the following commutative diagram of vector bundles



By hypothesis of induction, \overline{E} is *H*-stable and thus by the first case k = 1, *E* is *H*-stable which concludes the proof of the Claim.

Hence, the family \mathcal{F} defines a non-empty irreducible component of the Brill-Noether loci $W_H^k(r; C_0 - xF, c_2)$.

We compute its dimension and see that

 $\dim \mathcal{F} = \dim \mathcal{H}^0(r-k; C_0 - xF, c_2) + \dim Grass(k, h)$

being $h = ext^1(G, \mathcal{O}_{X_e})$ and Grass(k, h) the Grassmann variety of *k*-dimensional linear subspaces of $Ext^1(G, \mathcal{O}_{X_e})$ coincides with $\rho_H^k(r; C_0 - xF, c_2)$

Therefore, \mathcal{F} is an irreducible component of the Brill-Noether loci $W_H^k(r; C_0 - xF, c_2)$ of the moduli space $M_H(r; C_0 - xF, c_2)$ which has the expected dimension, namely, $\rho_H^k(r; C_0 - xF, c_2)$.

mptiness of Brill-Noether loci of stable vector bundles

THEOREM:

Let *X* be a smooth algebraic surface, *H* an ample divisor s.t. $K_X H \le 0$ and *E* a semistable rank $r \ge 2$ vector bundle. Set $a := \lceil \frac{(r^2-1)H^2}{2} \rceil$ or $a = 2H^2$ if r = 2. If $0 \le c_1(E)H < arH^2 + rK_XH$, then

$$h^0(E) \leq r + \frac{ac_1(E)H}{2}.$$

COROLLARY:

Let *X* be a smooth algebraic surface, *H* an ample divisor on *X* such that $K_X H \le 0$. Let $r \ge 2$, $c_2 \gg 0$ and set $a := \lceil \frac{(r^2 - 1)H^2}{2} \rceil$ or $a = 2H^2$ if r = 2. Assume that $0 \le c_1(E)H < arH^2 + rK_XH$, then

$$W_H^k(r; c_1, c_2) = \emptyset$$

Sketch of the Proof of the Theorem.

Let $C \in |aH|$ be a general smooth connected curve. Since

$$rac{{a+2} - a - 1}{a} > deg(X) \cdot \max\{rac{r^2 - 1}{4}, 1\},$$

by Flenners restriction theorem, $E|_C$ is a rank *r* semistable vector bundle on *C* of degree equal to $ac_1(E)H$. On the other hand, by the adjunction formula

$$2g(C) - 2 = C(C + K_X) = aH(aH + K_X) = a^2H^2 + aHK_X.$$

Hence,

$$0 \le \mu(E|_{C}) = rac{ac_{1}(E)H}{r} \le a^{2}H^{2} + aHK_{X} = 2g(C) - 2$$

and therefore, applying Clifford's Theorem for semistable vector bundles on curves, we have

$$h^0(E|_C) \leq r + rac{ac_1(E)H}{2}.$$

To finish, we only need to check that

 $h^0(E) \leq h^0(E|_C).$

To this end, we tensor by E the short exact sequence

$$0
ightarrow \mathcal{O}_X(-\mathcal{C})
ightarrow \mathcal{O}_X
ightarrow \mathcal{O}_\mathcal{C}
ightarrow 0$$

and taking cohomology we get

$$0 \to H^0(E(-C)) \to H^0(E) \to H^0(E|_C) \to \cdots .$$
 (3)

If $H^0(E(-C)) \neq 0$, then $\mathcal{O}_X(C) \hookrightarrow E$ and since *E* is semistable with respect to *H* we have

$$CH = aH^2 \le \frac{c_1(E)H}{r} < aH^2 + K_XH$$

which contradict the fact that $K_X H \le 0$. Therefore, $H^0(E(-C)) = 0$ and from the exact sequence (3) we deduce $h^0(E) \le h^0(E|_C)$ and we finish the proof.

COROLLARY:

Let x, r, c_2 with $x > 0, r \ge 2$ and $c_2 \gg 0$. Let $H := C_0 + (x + e + 1)F$ be an ample divisor on X_e and set $a := \lceil \frac{(r^2 - 1)H^2}{2} \rceil$ or $a = 2H^2$ if r = 2. Then, for any $k > r + \frac{a}{2}$

$$W_H^k(r; C_0 - xF, c_2) = \emptyset.$$