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x1. IntroductionAn algebraic variety is a quasiprojective variety over the �eld C of complex numbers.De�nition 1.1. An algebraic group G is a set which is both a group and an algebraicvariety such that the two structures are compatible in the sense that the mapG�G! G(x; y) 7! xy�1is an algebraic morphism.In the category of algebraic groups the morphisms are algebraic maps that are grouphomomorphisms.Basic example. G = GL(n) is the algebraic group of nonsingular n � n matrices withcomplex coe�cients. GL(n) is a�ne via the embeddingGL(n)! GL(n+ 1) � C(n+1)2g 7!  g 00 det g�1!Hence GL(n) is described in C(n+1)2 by 2n linear equations plus the equation det = 1.A closed (algebraic) subgroup of GL(n) is called linear. In particular a linear groupis a�ne. Also the converse is true (see [Borel]).De�nition 1.2. An algebraic group G acts over an algebraic variety X if there is analgebraic morphism G�X ! X(g; x) 7! gxsatisfying the two conditions 1x = x 8x 2 Xg1(g2x) = (g1g2)x 8x 2 X 8g1; g2 2 GDe�nition 1.3. An algebraic variety is called homogeneous if there is an algebraic groupacting transitively on it.Remark. Every algebraic group is homogeneous by acting on itself. Every homogeneousvariety is smooth.Examples.� GL(n+ 1) acts transitively on Cn+1 n f0g and on Pn.� X = Cn=� with � discrete subgroup of rank 2n satisfying the Riemann conditions isan algebraic group which is projective and is called an abelian variety.We are interested mainly in projective varieties. We state now the basic results aboutthese topics. 1



Theorem 1.4. (Chevalley). A projective variety which is an algebraic group is anabelian variety (in particular it is an abelian group).Theorem 1.5. (Borel-Remmert, 1962). A projective variety which is homogeneous isisomorphic to a product A �Xwhere A is an abelian variety and X is rational homogeneous.Rational homogeneous varieties are the main subject of this course. They can becompletely classi�ed. There are only �nitely many rational homogeneous varieties (up toisomorphism) of �xed dimension n. The �rst result isTheorem 1.6. (Borel-Remmert). A rational homogeneous variety X is isomorphic toa product X = G1=P1 � : : :�Gk=Pkwhere Gi are simple groups and Pi are subgroups called parabolic.Here simple means that there are no nontrivial (closed) normal connected subgroups.Examples. Projective spaces, grassmannians and smooth quadric hypersurfaces are themost known examples of rational homogeneous varieties. In the �rst two cases G is iso-morphic to some SL(n), while in the last case G is isomorphic to some SO(n).Caution. Pi's are not normal, so Gi=Pi is not a group but only a set of cosets.It is not di�cult to prove the theorem 1.4 by using complex analytic techniques (seeexercises : : :), anyway it is worth to notice that it is a corollary of the following deeptheorem.Structure theorem for algebraic groups 1.7. Let G be an algebraic group. Thenthere exists a (unique) normal connected a�ne subgroup N such that G=N is an abelianvariety.The above structure theorem is commonly attributed to Chevalley. Anyway the �rsttwo complete proofs were published independently in 1956 by Barsotti and by Rosenlicht.The importance of the theorem is that every algebraic group can be obtained as an ex-tension of two algebraic groups at the two "extremes", that is one a�ne and the otherprojective.Remark. Borel and Remmert proved something more than the theorem 1.5. In fact theyproved that a compact K�ahler manifold which is homogeneous is isomorphic to a productT �Xwhere T ' Cn=� is a complex torus and X is rational homogeneous.The theorems 1.5 and 1.6 open the way to the classi�cation of projective homogeneousvarieties. In fact Cartan in 1913 terminated the complete description of simple algebraicgroups. 2



In this description it is useful an intermediate step, that is the study of semisimplegroups and their Lie algebras.De�nition 1.8. An algebraic group is called semisimple if it has no nontrivial (closed)normal connected solvable subgroups.Example. SL(n) is simple. SL(n)� SL(m) is semisimple but not simple (why?).Our �rst aim will be to show that the parabolic subgroups of a simple group can becompletely described in terms of the Dynkin diagram of its Lie algebra.We recall that after choosing a nondegenerate symmetric (resp. skewsymmetric) ma-trix Q (resp. J) we have the following de�nitionsSO(n) := fA 2 SL(n)jAQAt = QgSp(n) := fA 2 SL(n)jAJAt = Jg(in the second one n must be even).The list of simple Lie groups consists in 4 families An, Bn, Cn, Dn and only 5 excep-tional cases that are called E6, E7, E8, F4, G2. The groups in the 4 families are calledclassical. An corresponds to SL(n+1), Bn to SO(2n+1), Cn to Sp(2n) andDn to SO(2n).The Dynkin diagrams are the following:An (n � 1) : ������������������������� : : : ��������������1 2 3 n�1 nBn (n � 2) : ������������� : : : ��������������====>====�1 2 n�2 n�1 nCn (n � 3) : ������������� : : : ��������������====<====�1 2 n�2 n�1 n�n�1Dn (n � 4) : ������������� : : : ��������������1 2 n�3 n�2 �n3



�2jjjE6 : ������������������������ � ������������������������1 3 4 5 6�2jjjE7 : ������������������������ � ������������������������������������1 3 4 5 6 7�2jjjE8 : ������������������������� ������������������������������������������������1 3 4 5 6 7 8F4 : �������������====>====�������������1 2 3 4G2 : �����<�����1 2Our next job is to look at homogeneous bundles over a rational homogeneous varietyG=P . They can be described in terms of representations �:P ! GL(r). Call E� the homo-geneous bundle obtained by taking the quotient of G�Cr via the relation (g; v) � (g0; v0)if there exists p 2 P such that g = g0p and v = �(p�1)v0. G acts on E�, then it acts onthe cohomology groups Hi(G=P;E�) too. The theorems of Borel-Weil and Bott describe(among other things) these last representations. In particular it follows that all the rep-resentations of a simple algebraic group G can be obtained as a space of sections H0 ofsome line bundle, so we can look at representation theory from a geometric point of view.4



x2. Grassmannians and 
ag manifoldsLet V be a vector space of dimension n+ 1 and consider v 2 V , v 6= 0. De�ne�i:^iV ! ^i+1Vby �i(!) := ! ^ vLemma 2.1 (Koszul complex of a vector). The following sequence is exact0�!^0 V = C �0�!^1 V �1�!^2 V �2�! : : : �n�!^n+1 V�!0Proof It is evident that the above sequence is a complex. Choose a basis of Vgiven by e1; : : : ; en; en+1 = v. Choose ! 2 ^kV such that �k(!) = ! ^ v = 0. If! = Pi1<:::<ik ai1:::ikei1 ^ : : : ^ eik then each nonzero coe�cient ai1:::ik has ik = n + 1.Hence  =Pi1<:::<ik�1 ai1:::ikei1 ^ : : : ^ eik�1 satis�es �k�1( ) =  ^ v = !.The theorem 2.1 admits the following generalization [Serre, Alg�ebre locale, multiplicit�es, LNM 11,Springer]. Let E be a vector bundle of rank n over X and consider s 2 H0(X;E) such that Z =fxjs(x) = 0g has pure codimension n. De�ne �i:^iE ! ^i+1E by �i(!) = ! ^ s and the dual�ti:^i+1E� ! ^iE�. Then the following sequence is exact0�!^n E��tn�1�! ^n�1 E��tn�2�! : : : �t1�!E� �t0�!OX�!OZ�!0and it is called the Koszul sequence associated to s.The GrassmannianLet Pn = P(V ). Grassmannians parametrize the set of linear subspaces of dimensionk in Pn. The best way to give to this set the structure of a algebraic variety is the followingde�nition.De�nition 2.2. Gr(k; n) = Gr(Pk ;Pn) is de�ned as the subset of P(^k+1V ) consistingof decomposable tensors.Theorem 2.3. Gr(k,n) is a projective variety of dimension (k + 1)(n� k).In order to prove the theorem we have the followingLemma 2.4.i) If ! 2 ^k+1V then dimfv 2 V j! ^ v = 0g � k + 1.ii) ! 2 ^k+1V is decomposable if and only if dimfv 2 V j! ^ v = 0g = k + 1.Proof of lemma 2.4. By the theorem 2.1! ^ v = 0 , 9 such that ! =  ^ v5



Hence if v1; : : : ; vj are independent elements in fv 2 V j! ^ v = 0g it follows that! =  0 ^ v1 ^ : : : ^ vj(choose a basis containing v1; : : : ; vj !) and the result is obvious.Proof of the theorem 2.3 Consider the morphism�(!):V ! ^k+2Vv 7! ! ^ vBy the lemma ! 2 Gr(k; n) if and only if rk �(!) = n� k. rk �(!) is always � n� kby the lemma 2.4 i), so the last condition is satis�ed if and only if rk �(!) � n� k. Themap ^k+1V ! Hom(V;^k+2V )! 7! �(!)is linear, hence the entries of the matrix �(!) are homogeneous coordinates on P(^k+1V )and Gr(k; n) is de�ned by the vanishing of the (n � k + 1) � (n � k + 1) minors of thismatrix.The map i:Gr(k; n) ! P(^k+1V ) is called the Pl�ucker embedding. The equationsthat we have found de�ne the Grassmannian as scheme but they do not generate thehomogeneous ideal of G = Gr(k; n). The ideal IG;P is generated by quadrics that arecalled Pl�ucker quadrics (see [Harris]).It is useful to have a coordinate description of the Pl�ucker embedding. A linearPk � Pn is determined by k + 1 independent points P0; : : : ; Pk 2 Pk. We can write downa (k + 1) � (n + 1) matrix A containing in the i-th row the coordinates of Pi�1. We getA = 0BB@ x00 : : : x0n... ...xk0 : : : xkn1CCA (2:1)It is clear that this matrix has maximum rank k + 1 and that two matrices A, A0determine the same subspace Pk if and only if there is B 2 GL(k+1) such that A = BA0.The point in P(^k+1V ) given by the maximal minors of A is independent on the choice ofP 0i s 2 Pk but depends only on the subspace Pk. Conversely if v0 ^ : : :^ vk is proportionalto w0 ^ : : : ^wk then Span < v0; : : : ; vk >= Span < w0; : : : ; wk > (express fvig in termsof a basis containing fwjg : : :).In conclusion we have a biunivoc correspondence between points in Gr(k; n) and linearsubspaces Pk � Pn. The following construction shows that this correspondence is muchmore rich than a set correspondence. 6



De�ne the incidence variety U � Gr(k; n) � Pn given by f(g; x)jx 2 gg (really Uis the projective bundle P(U) where U is the universal bundle on the Grassmannian).U ! Gr(k; n) satis�es the following universal property: for every subscheme F � S �Pnsuch that the projection F ! S is 
at (F with this property is called a 
at family) andFs is a linear Pk for every s 2 S then there exists a unique morphism �:S ! Gr(k; n)such that ��U = F . This property says that the Grassmannians are Hilbert schemes (infact they are the simplest Hilbert schemes). For an introduction to Hilbert schemes see([Eis-Har]). It is interesting to remark that in order to construct the Hilbert schemes, theGrassmannians are needed as �rst step. We will see in connections with vector bundlesother examples of the ubiquity of Grassmannians in modern geometry.When k = 0 or n�1, Gr(k; n) is isomorphic to the projective space Pn. The simplestGrassmannian which is not a projective space is Gr(1; 3).Exercise. Let pij = �����xi xjyi yj ����� for 0 � i < j � 3 be Pl�ucker coordinates in the embeddingGr(1; 3) ! P5. Prove that Gr(1; 3) is given by the smooth quadric with equationp01p23 � p02p13 + p03p12 = 0First hint: write a 4� 4 matrix repeating twice the matrix  x0 : : : x3y0 : : : y3 !.Second hint: write a 4 � 4 skew-symmetric matrix with entries pij and computes itspfa�an.Theorem 2.5. Gr(k; n) is a rational variety of dimension (k + 1)(n � k)Proof The points in the open a�ne subset where p01 6= 0 correspond to matrices0BB@ 1 x0;k+1 : : : x0;n. . . ... ...1 xk;k+1 : : : xk;n1CCAIt is easy to check that the above xij 's are exactly the maximal minors with k columnschosen among the �rst k + 1. Hence Gr(k; n) \ fp01 6= 0g is isomorphic to C(k+1)(n�k)Theorem 2.6. Gr(k; n) is a homogeneous variety, in particular it is smooth.Proof GL(n+1) acts transitively on the set of bases of any vector space of dimensionn+ 1. In particular it acts transitively over Gr(k; n)It is convenient to write explicitly the action of GL(n + 1) over Gr(k; n) as the leftmatrix multiplication g � At where g 2 GL(n + 1) and At is the transpose of the matrix(2.1) representing a point in the Grassmannian. If P k0 2 Gr(k; n) is spanned by the7



k + 1 points (1; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 1; 0; : : : ; 0) then the isotropy subgroupP = fg 2 GL(n+ 1)jg � P k0 = P k0 g has the block formP = fg 2 GL(n+ 1)jg =  M �0 N ! ;M 2 GL(k + 1);N 2 GL(n� k)gGr(k; n) is so identi�ed with the set of left lateral classes of P � GL(n + 1) which isdenoted by GL(n + 1)=P (P is not normal!). It is su�cient to consider the action ofSL(n+ 1) = fg 2 GL(n + 1)jdet g = 1g over Gr(k; n) which is still transitive. Hence wecan write also Gr(k; n) = SL(n+ 1)=P 0 whereP 0 = fg 2 SL(n+ 1)jg =  M �0 N ! ;M 2 GL(k + 1);N 2 GL(n � k)gP 0 is called a parabolic subgroup, we will see that the correct notation for P 0 isP (�k+1) where �k+1 is the k + 1-th simple root of SL(n+ 1).Schubert cycles [GH]Fix a complete 
ag P = P0o � P1o � P2o � : : : � PnFor any sequence of integers such thatn� k � a0 � a1 � : : : � akdenoteWa0;:::;ak = fPkjdim (Pk \Pjo) = i for n� k + i� ai � j < n� k + i + 1� ai+1gThese subsets are isomorphic to C(k+1)(n�k)�Pai and their closure are the subvari-eties fPk 2 Gr(k; n)jdim (Pk \ Pn�k+i�aio ) � ig that are called Schubert cycles.Theorem. Wa0;:::;ak give a cell decomposition of Gr(k; n).Theorem. The Schubert cycles generate freely H�(Gr(k; n);Z) which has no torsion.Special care has to be reserved to W1;:::;1 (p times, the last k � p entries are zero andare omitted). We getW1;:::;1 (p times ) = fPkjdim (Pk \ Pn�k+i�1o ) � i for i = 0; : : : ; p� 1g == fPkjdim (Pk \Pn�k+p�2o ) � p � 1g (2:2)Flag ManifoldsThe 
ag manifold F = F (k1; : : : ; ks; n) parametrizes all chains of linear subspacesPk1 ; : : : ;Pks in Pn. We construct it as the incidence varietyF �G = Gr(k1; n) � : : : Gr(ks; n)de�ned by F := f(V1; : : : ; Vs) 2 GjV1 � : : : � VsgIt is easy to prove that F is a variety. 8



Lemma 2.7. The dimension of F (k1; : : : ; ks; n) is Psj=1(kj+1 � kj)(kj + 1)Proof The �bers of the projection F (k1; : : : ; kr; n) ! F (k2; : : : ; kr; n) are isomorphicto Gr(k1; k2).Examples. F (0; 1; 2) ' P(TP2) is a 3-fold. In general F (0; n � 1; n) ' P(TPn)De�nition 2.8. The 
ag manifold F (0; 1; : : : ; n) is called a complete 
ag manifold. Ithas a special role. Its dimension is n(n+1)2 .Theorem 2.9. Every 
ag manifold is a rational variety.Proof As in the proof of lemma 2.7 every 
ag manifold can be expressed as a repeatedlocally trivial �bration with �bers Grassmannians. The result follows from the rationalityof the Grassmannian (theorem 2.5).Theorem 2.10. Flag manifolds are homogeneous, in particular they are smooth.Proof The same proof of theor. 2.6 adapts to this case.In particular the isotropy subgroup of a point in a complete 
ag manifold is given(in a convenient system of coordinates) by the subgroup B of upper-triangular matrices.Observe that B is solvable.x3. Lie algebras and Lie groupsIn this section it is more convenient to consider algebraic groups in the larger category ofcomplex manifolds. The �rst two results are included mainly to motivate the de�nition ofa Lie algebra.De�nition 3.1. A complex manifold G which is also a group and such that the mapG�G! G(x; y) 7! xy�1is holomorphic is called a complex Lie group.In the category of (complex) Lie groups the morphisms are holomorphic maps thatare group homomorphisms. The reader can supply easily the notion of real Lie group.On a complex Lie group G one can consider holomorphic vector �elds. Among them itis convenient to consider the subclass of �elds invariant by left translation (the left trans-lation Lg:G! G is de�ned by Lg(g0) = gg0). A left invariant vector �eld is characterizedby the value that it assumes at the identity e 2 G (or at any other prescribed point). Thenthe vector space of left invariant vector �elds is naturally isomorphic to TeG.9



A Lie group morphism F :C! G is called a (complex) one-parameter subgroup. _F (t)is a left invariant vector �eld along Im F . In particular the one-parameter subgroup Fis uniquely characterized by v = _F (0) (because of the uniqueness of the solution of thedi�erential equation _X(t) = LX(t)v).Theorem 3.2. There exists a unique holomorphic mapexp:TeG! Gtaking 0 to e with the property that for every v 2 TeG the map�:C! Gt 7! exp(tv)is the only Lie group morphism such that �0(0) = v. In particular the di�erential of expat the origin is the identity.Sketch of proof The solutions of di�erential equations of the �rst order depend wellon the initial conditions.Remark. The reason for the terminology exp is that whenG = GL(n) then TeG =Mn(C)and F (t) = etA =Xk tkAkk!is the one-parameter subgroup such that _F (0) = ARemark. It holds det eA = etr Aso that TeSL(n) = fA 2Mn(C)jtr A = 0g.Corollary 3.3. Let G, H be (connected) Lie groups and consider two Lie group mor-phisms f1, f2:G! H. Then consider (df1)e, (df2)e:TeG! TeH. The following is true:(df1)e = (df2)e , f1 = f2Sketch of proof( obvious) Consider the following diagram for i = 1; 2TeG (dfi)e�! T 0eH??yexp ??yexpG fi�! H10



The diagram commutes because 8v 2 TeG the Lie group morphisms :C! Ht 7! fi(exp(tv))�:C! Ht 7! exp(dfi)e(tv)satisfy  0(0) = (dfi)e(v) = �0(0). It follows  (t) = �(t), i.e. the diagram commutes. Bythe inverse function theorem the image of exp contains a neighborhood U of the identitywhere exp is invertible. Hence f1(v) = f2(v) for v 2 U . f1 and f2 are holomorphic, so thatf1 = f2.The previous corollary is a hint that TeG encodes much information about G. In factit encodes "everything" if we consider an additional structure on TeG, that is the structureof Lie algebra. The correspondenceLie groups $ Lie algebraswill be clear after the cor. 3.14 and the prop. 3.15.It is well known that if X, Y are vector �elds (i.e. derivations satisfying the Leibnizrule) then XY is no more a vector �eld but [X;Y ] := XY � Y X is still a vector �eld.Moreover if X, Y are left invariant, then [X;Y ] is still left invariant.We equip TeG with the bracket [ ; ] which satis�es the three conditionsi) Bilinearityii) Skew-symmetry [X;Y ] = �[Y;X] 8X;Y 2 TeGiii) Jacobi identity[X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y ]] = 0 8X;Y;Z 2 TeGDe�nition 3.4. A vector space V with a map[ ; ]:V � V ! Vsatisfying i), ii) and iii) above is called a Lie algebra. In the category of Lie algebras themorphisms are vector space morphisms which preserve the bracket.De�nition 3.5. Let G be a Lie group. The Lie algebra TeG is called the Lie algebraassociated to G and it is denoted by Lie G (it is common to use gothic letters for Liealgebras).Example. The Lie algebra ofGL(n) is denoted GL(n) and consists of all the n�nmatriceswith bracket de�ned by [X;Y ] = X �Y �Y �X where � is the ordinary row-column product.This can be proved easily by using the theorem 3.11.Let V be a Lia algebra. A subalgebra I � V is called a ideal if 8v 2 V , i 2 I we have[v; i] 2 I. The quotient space V=I inherits a natural structure of quotient Lie algebra.11



Exercise. Check that the centerZ(V ) := fx 2 V j[x; y] = 0 8y 2 V gis an ideal of V .A Lie algebra V is called solvable if the derived seriesV1 := [V; V ] V2 := [V1; V1] : : : Vi := [Vi�1; Vi�1]terminates to zero.A Lie group G is solvable if and only if Lie G is solvable.A �rst result is the followingTheorem 3.6. Let G be a Lie group and let H � Lie G be a subalgebra. Then thereexists a connected Lie subgroup H � G such that Lie H = H.Proof In [Warner] there is a proof using Frobenius theorem. Another proof is in [FuHa]prop. 8.41.By using the exponential map it is not di�cult to prove thatProposition 3.7. Let H � G be a closed subgroup. Then H is normal if and only ifthe subalgebra Lie H is an ideal.Proof [NS] IX x3.A Lie algebra V is simple if dim V > 1 and it contains no nontrivial ideals. A Liealgebra is semisimple if it has no nonzero solvable ideals.Lie G is semisimple if and only if G is semisimple. The same is true for simple Liealgebras if dim G > 1. If I1 and I2 are solvable ideals then it is easy to check that I1 + I2is a solvable ideal. It follows that there exists a unique maximal solvable ideal of a Liealgebra V which is called the radical and denoted by rad V . Hence V is semisimple if andonly if rad V = 0It is important to remark that there exists a purely algebraic de�nition of [ ; ] inLie G. In order to see this, we have to de�ne the adjoint representation.De�nition 3.8. The inner automorphism de�ned by an element g 2 G is called �g, thatis �g(h) := ghg�1. We get a morphismG! Aut(G)g 7! �gDe�nition of Ad 3.9. Consider the derivative at the identity of�g:G ! G12



that is (d�g)e:Lie G! Lie GWe de�ne Ad:G! GL(Lie G)g ! (d�g)eDe�nition of ad 3.10. ad is the derivative at the identity of Ad, that isad := (d Ad)e:Lie G! GL(Lie G)Ad is a representation of the group G, while ad is a representation of the Lie algebraLie G.Theorem 3.11. ad(X)(Y ) = [X;Y ] 8X;Y 2 Lie GThe theorem 3.11 gives a purely algebraic de�nition of the bracket [ ; ]. Remark thatad is a Lie algebra morphism because of the Jacobi identity.Remark. (here char K = 0 is important!).Ker Ad = Z(G) center of the group [NS] IX x3Ker ad = Z(Lie G) center of the Lie algebraAdo's Theorem 3.12. Let G be a (�nite-dimensional) Lie algebra. Then G � GL(N)as subalgebra for some N 2 N.Proof [FuHa] appendix ELemma 3.13. Let G be a Lie group. The universal covering ~G ��!G has a structure ofLie group such that � is a Lie group morphism.Sketch of proof Lift the map �0 := � � (� � �) where � is the multiplication map as inthe following diagram ~G � ~G �� ! ~G??y��� & �0 ??y�G �G ��! GThe lifting exists by elementary topological arguments. You get ~�: ~G � ~G ! ~G. Bychoosing e0 2 ��1(e) we may suppose ~�(e0; e0) = e0. It is straightforward to check that ~Gveri�es the group axioms with e0 as identity.13



Remark. If ~G! G is a covering then Lie ~G ' Lie G.Corollary 3.14. Every Lie algebra is isomorphic to Lie G for some simply connectedLie group G.Proof By applying the theorems 3.12 and 3.6 there exists G � GL(N) such thatLie G = GNow consider the universal covering ~G ��!Gand get Lie ~G = Lie G = G.Proposition 3.15. Let G, H be Lie groups with G simply connected. Let�: Lie G! Lie Hbe a linear map. The following are equivalent:i) There exists �:G! H Lie group morphism such that � = (d�)eii) � is a Lie algebra morphism.Proofi) ) ii) It is standard (e.g. [Boothby, An introduction to di�. manifolds: : :] cor. IV 7.10)ii) ) i) Consider Lie (G �H) = Lie G� Lie Hand J := graph(�) � Lie G� Lie Hwhich is a subalgebra by the assumption. By the theorem 3.6 there exists a Liesubgroup J � G�H such that Lie J = J . Considerp1:J ! GIts di�erential at the identity (dp1)e:J ! Lie Gis an isomorphism. To check this claim it is enough to look at the two compositionsJ ! G�H ! GJ ! Lie G� Lie H ! Lie GIt follows that p1:J ! G is a di�eomorphism in a neighborhood of the identity. SinceG is generated by any neighborhood of the identity (because G is connected) it followsthat p1 is surjective and hence it is a covering.Since G is simply connected it follows that p1 is an isomorphism. HenceG ' J p2�!His the morphism � we looked for. 14



Corollary 3.16. Let G1, G2 be simply connected. ThenG1 ' G2 , Lie G1 ' Lie G2ABC about representationsDe�nition 3.17. A representation of a Lie group G in a vector space V is a Lie groupmorphism �:G! GL(V )Sometimes it is convenient to consider V as a G-module (which is equivalent!) by the ruleg � v = �(g)v. We will frequently interchange between the two languages.De�nition 3.18. A representation of a Lie algebra L in a vector space V is a Lie algebramorphism �0:L ! GL(V )If � is a representation of G then (d�)e is a representation of Lie G in the same vectorspace.In the sequel we consider some properties of group representations, the reader cansupply the analogous properties for Lie algebra representations.De�nition 3.19. A morphism between two representations�1:G! GL(V1)and �2:G! GL(V2)is a linear morphism �:V1 ! V2 such that�(�1(g)(v)) = �2(g)(�(v)) 8g 2 G; v 2 V1Equivalently in terms of G-modules�(g � v) = g � (�(v))that is � is G-equivariant.De�nition 3.20. Let be given a G-module V . A subspaceW � V is called invariant ifG �W �W .De�nition 3.21. A G-module V is called irreducible if its invariant subspaces are only0 and V .De�nition 3.22. A G-module V is called completely reducible if it is the direct sum ofirreducible submodules.Example. C! GL(2)t 7!  1 t0 1!15



is reducible but not completely reducible.Schur Lemma 3.23. If V1 and V2 are irreducible G-modules than any morphism�:V1 ! V2 is zero or it is a isomorphism.Proof ker � and Im � are both invariant subspaces. Then if � 6= 0 we have ker� = 0and Im � = V2Corollary 3.24. If V is a G-module irreducible then any endomorphism �:V ! V isequal to �I for some � 2 CProof Let � be an eigenvalue for �. Then � � �I is not a isomorphism and by theSchur lemma it must be zero.Corollary 3.25. If G is an abelian group, every irreducible G-module V has dimension1. Proof Let g0 2 G be �xed. Then g � (g0 � v) = g0 � (g � v). This means thatV ! Vv 7! g0vis G-equivariant and by the corollary 3.24 there exists �(g0) 2 C such that g0(v) = �(g0)vfor every v 2 V . This holds for every g0, then every one-dimensional subspace is invariant.Corollary 3.26. Let �:G! GL(V ) be an irreducible representation. Let Z(G) be thecenter of G. Then �(Z(G)) consists of the scalar matrices �Id.Proof The morphism V ! Vv 7! zvis G-equivariant 8z 2 Z(G). Then apply the corollary 3.24.Remark. The corollary 3.26 in the case G = GL(V ) shows that Z(GL(V )) = C�.Action on Hom(V;W ).Let V , W be G-modules. The induced action of G over Hom(V;W ) ' V � 
W isg � f(v) = g[f(g�1v)]Proposition 3.27. Let �, �0 be two irreducible representations of G. Theni) � ' �0 if and only if �� 
 �0 contains with multiplicity one the one-dimensional trivialrepresentation.ii) � 6' �0 if and only if ��
�0 does not contain the one-dimensional trivial representation.Proof Let � act on V and let �0 act on W . Then ��
�0 act on Hom(V;W ) ' V �
Was above. We have that f 2 Hom(V;W ) is G-equivariant if and only if g �f = f . Hence thesubspace HomG(V;W ) � Hom(V;W ) of G-equivariant morphisms is exactly the subspacewhere G acts trivially. The thesis follows from the Schur lemma and the corollary 3.24.16



Proposition 3.28. Let G simply connected and let�:Lie G! GL(V )be a representation. Then there exists a representation�0:G ! GL(V )such that � = (d�0)e.Proof Apply the prop. 3.15.Proposition 3.29. Let G be a Lie group and let �:G ! GL(V ) be a representation.Consider d�:Lie G! GL(V ). Then the following are equivalent:i) W � V is invariant with respect to �ii) W � V is invariant with respect to (d�)e.Proof Let Stab(W ) � GL(V ) = fg 2 GL(V )jgW � Wg and in the same way de�neStab(W ) � GL(V)It is easy to check that Lie Stab�(W ) = Stab(W ) (write down a basis of V containinga basis of W ).i)) ii) By assumption � factors in the following diagramG ��! GL(V )& x??Stab(W )Taking the derivatives we get Lie G (d�)e�! GL(V )& x??Stab(W )ii)) i) Let ~G be the universal covering of G. By assumption we have a commutative diagramLie G (d�)e�! GL(V )& x??Lie Stab(W )We get the following diagram ~G ����! GL(V )& � x??Stab(W )where � exists by the prop. 3.15 and the diagram commutes by the corollary 3.3.Then �(G) = � � �( ~G) � Stab(W )which means that W is invariant with respect to �.17



x4. The Borel �xed point theoremRemark. Let Pn = P(V ), then Aut(Pn) = PGL(V ) (see [Harris]). Of course PGL(V )does not act over V .Theorem 4.1 (Blanchard). Let G be an algebraic (connected) group acting over a pro-jective variety X with H1(X;O) = 0. Then there exists a representation �: G! PGL(V )and an embedding X � P(V ) such that the original action is induced by �. In particularthe action is given by projective linear transformations.Proof By the assumption applied to the exponential sequence0! Z! O exp�!O� ! 0we get that H1(X;O�) injects in H2(X;Z) and then it is discrete. It follows thatg�O(1) ' O(1) 8g 2 GIn particular G acts over the hyperplane sections of X, then it acts over P(H0(X;O(1))�).Then in the embedding given by the complete linear system the condition of the theoremis satis�ed.Remark. The assumptionH1(X;O) = 0 is necessary in the theorem 4.1 as it is shown bythe example of plane cubic curves (e.g. every element of PGL(3) acting on a plane cubiccurve must preserve the 
exes).Remark. In the theorem 4.1 let ~G be the universal covering of G acting on X. We getthat the action is induced by a morphism ~G! GL(V ) where V = H0(X;O(1))� .There are two powerful results that we will use in the sequel. They are the theoremof Lie and the Borel �xed point theorem. The proof of both of them will be completedafter the lemma 4.10.Theorem of Lie 4.2. Let G ��!GL(V ) be a representation of a solvable linear algebraicgroup G. Then there exists a basis of V such that �(g) is in upper triangular form forevery g 2 G.Corollary 4.3. Let G ��!GL(V ) be a representation of a solvable Lie algebra G. Thenthere exists a basis of V such that �(X) is in upper triangular form for every X 2 G.Remark. The statement of the theorem of Lie is equivalent to the existence of an eigen-vector v for � (in fact consider the quotient representation V= < v > and make induction).Borel �xed point theorem 4.4. Let G be a solvable linear algebraic group. Then anyaction of G on a projective variety X has a �xed point.The following particular case is more elementary18



Exercise. Prove that any action of a torus on a projective variety has a �xed point (seeFulton, Young tableaux 10.1)The theorems 4.2 and 4.4 are linked in the sense that each one implies (almost) theother via a simple (and instructive) proof.Lie ) Borel �xed point (in weaker version) We will prove a slightly weakerstatement, in fact we make the additional assumptions that X � P(V ) and that theaction is induced by a linear action over V . By the theorem 4.1 this is not restrictive whenH1(X;O) = 0 (considering eventually the universal covering ~G). If V0 � V1 � : : : � V isthe 
ag �xed by the Lie theorem then there exists i such that dim X \ Vi = 0 and all the�nitely many points in the intersection have to be �xed.Borel �xed point ) Lie � induces a natural action on the complete 
ag manifoldF of subspaces of V which is projective (x2). Then by the Borel �xed point theorem thereis a complete 
ag �xed by � and in an adapted basis �(g) is in upper triangular form.The theorem of Lie can be proved by purely algebraic techniques (see for example[FuHa]).We sketch now the proof of the Borel �xed point theorem. We recall the followingbasic theorem of algebraic geometry.Theorem 4.5 (Chevalley). Let f :V !W be a morphism between algebraic varieties.Then f(V ) contains a dense open set of f(V ).Proof [Harris] 3.16Remark. The algebraic setting is necessary in the theorem 4.5 (think at the irrationalline on the torus).Closed orbit lemma 4.6. Let G be a algebraic irreducible group acting over a algebraicvariety X. Then each orbit is a smooth variety which is open in its closure. Its boundaryis a union of orbits of smaller dimension. In particular the orbits of minimal dimensionare closed.Proof Let M = G(x) be a orbit which we consider as the image of the morphismG! Xg 7! gxBy the theorem 4.5M contains a dense open set ofM . Furthermore G leavesM invariant.Since the action over M is transitive, each point of M must be contained in a open set ofM . Hence M is open in M . M nM is left invariant too and the other statements followeasily.Proposition 4.7. Let G be a a�ne group and H � G be a closed subgroup. Thenthere exists an injective homomorphism �:G ! GL(E) and a line D � E such thatH = fg 2 Gj�(g)D = DgProof [Borel] II 5.1 19



Remark 4.8. The proposition 4.7 and the closed orbit lemma show that the set ofcosets G=H has the structure of quasi-projective variety in P(E). This construction hasnice properties ([Borel]) and G=H is called a homogeneous space.Proposition 4.9. Let G be a a�ne group and N � G be a normal closed subgroup.Then G=N is a a�ne group.Proof Apply the proposition 4.7 and �nd �:G ! GL(E) and a line D � E such thatN = fg 2 Gj�(g)D = Dg. Let O be the orbit of [D] in P(E). As N is normal we get thatit acts trivially over O. Then G=N embeds in the isotropy subgroup of O in PGL(E) andthen it is a�ne.Another approach to the prop. 4.9 is the following. Let G = Spec A and consider thenatural action of N over A. Then the natural candidate for G=N is Spec AN where ANconsists of the elements of A �xed by N . The problem here is to show that AN is a �nitelygenerated C-algebra. This fact is proved in [Hochster] II.4Lemma 4.10. The set of �xed points of an action is closed.Proof Consider G�X ��!X �X(g; x) 7! (gx; x)Let � � X �X be the diagonal. If x is not �xed then 9g 2 G such that (g; x) =2 ��1(�).Then there exists a neighborhood Ux such that �(g; Ux) is in the complement of �.Proof of the Borel �xed point theorem We argue by induction on d = dim G.If d = 0 then G = feg, so assume d > 0. Then N = DG (derived subgroup) is connected(exercise) and of smaller dimension, so that the set F of �nite points of N in X is nonempty and closed, hence it is a projective subvariety. As N is normal in G we claim thatF is G-invariant. In fact let n 2 N , g 2 G, f 2 F . There exists n0 2 N such that ng = gn0so that ng � f = gn0 � f = g � fand this implies that g � f 2 F . By the closed orbit lemma there exists x 2 F such thatthe orbit G(x) is closed. Let Gx be the isotropy subgroup of x.We have N � Gx so that Gx is normal and there is a bijective G-equivariant morphismG=Gx ! G(x) that is an isomorphism.G=Gx embeds in a a�ne space by the prop. 4.9, and it is projective because it isisomorphic to G(x). This shows that G=Gx is a point, hence G = Gx and x is the �xedpoint we looked for. The automorphism groupIf X is a algebraic variety then the group Aut(X) of the automorphisms of X is analgebraic scheme. This is a general fact in algebraic geometry, in fact the set of morphismsbetween two algebraic varieties can be endowed with a structure of scheme.20



It can happen that Aut(X) has in�nitely many components, anyway the connectedcomponent of the identity Aut0(X) is always a variety. In the complex analytic setting the factthat Aut0(X) is a Lie group is a deep theorem of Bochner and Montgomery.De�nition 4.11. We say that G acts e�ectively on X if the morphism G! Aut(X) isinjective. Taking the quotient by the kernel of the above map every action can be supposede�ective.Remark 4.12. The theorem of Blanchard 4.1 says that if X is a projective variety withH1(X;O) = 0 then Aut0(X) is linear algebraic.Remark. The de�nition of homogeneous at page 1 can be reformulated by saying that X(irreduc.) is homogeneous if Aut0(X) acts transitively over X.The following theorem is simple but it is crucial for the classi�cation of rationalhomogeneous varieties.Theorem 4.13. Let G be a linear group acting transitively and e�ectively over a varietyX. Then G is semisimple.Proof Let H be a connected normal solvable subgroup H � G. By the Borel �xedpoint theorem there exists x0 2 X such that hx0 = x0 8h 2 H. Let x 2 X, then thereexists g 2 G such that x = gx0. Consider that for every h 2 Hhx = gg�1hx = g(g�1hg)x0 = (because H is normal)= gx0 = xThen H �xes every point, so that H = feg as we wanted.Remark 4.14. By the remark 4.12 if H1(X;O) = 0 the assumption that G is linear canbe dropped from the theorem 4.13.Corollary 4.15. Let X be a projective variety with H1(X;O) = 0. Then Aut0(X) islinear and semisimple.From the theorem 4.13 it follows that every rational homogeneous variety is isomorphicto G=P where G is semisimple. Two things remain to be understood.First we want to know what are the possibilities of G. At the end of section 6 we willdescribe the Cartan classi�cation of semisimple groups.Given a semisimple group G, we want to know what subgroups P � G de�ne aprojective variety G=P . At the end of the section 7 we will give the classi�cation of thepossible P 's too. In particular it will follow from the theorem 10.1 that every varietyisomorphic to G=P with G semisimple is rational.21



x5. SL(2) Complete reducibility for �nite and compact groupsWe will not use the following proposition, but we include it because its proof is useful.Proposition 5.1. Let G be a �nite group. Let V be a G module and W � V be asubmodule. Then there exists W 0 � V submodule such that V =W �W 0.Proof We show that we can reduce V to be a unitary representation for a suitableHermitian metric. Let H0 be any Hermitian metric on the vector space V and de�neH(v;w) := 1jGjXg2GH0(gv; gw) 8v;w 2 VIt is easy to check that H(gv; gw) = H(v;w) 8g 2 G and that H is still a Hermitianmetric.Then the orthogonal subspaceW 0 :=W? = fvjH(v;w) = 0 8w 2Wgsatis�es our request.Corollary 5.2. Every (�nite dimensional) representation of a �nite group G is com-pletely reducible.The proposition 5.1 can be generalized to all compact groups G by replacing1jGjXg2G f(g)with ZG f(g)d�where the volume form d� is chosen to be translation invariant and such that RG d� = 1Proposition 5.3. Let G be a compact (real) group. Let V be a G module and W � Vbe a submodule. Then there exists W 0 � V submodule such that V =W �W 0.Proof As in the proof of prop. 5.1 let H0 be any Hermitian metric on the vector spaceV and de�ne H(v;w) := ZGH0(gv; gw)d�Then the orthogonal subspaceW 0 := fvjH(v;w) = 0 8w 2Wgsatis�es our request. 22



Example. If G = S1 parametrized by (cos �; sin �) the integral in the proof of prop. 5.3is 12� R 2�0 H(�v; �w)d� The unitary trickThe unitary trick of H.Weyl consists in restricting representations of a complex Liegroup to a "big" real compact Lie subgroup. For exampleC� contains S1 with the propertythat Lie S1 
R C = Lie C� (why?).De�nition 5.4. A complex Lie group G with the property that exists a compact realLie group K such that Lie K 
R C = Lie G is called reductive.In particular a semisimple group is reductive (this is easy to verify for the classicalgroups, see the lemma 5.7 for SL(n)) and the unitary trick applies to this class of groups.Theorem 5.5. (Unitary trick). Let G be a reductive Lie group. Let V be a G-moduleandW � V be a submodule. Then there existsW 0 � V submodule such that V =W�W 0.Proof Restrict �:G ! GL(V ) to �0:K ! GL(V ). By the prop. 5.3 there exists W 0complementary subspace which is K-invariant. Then W 0 is Lie K-invariant for d�0, sothat it is Lie G invariant because G is reductive. By the prop. 3.29 we have the result.Corollary 5.6. Every representation of a reductive Lie group is completely reducible.We are interested in to the following special case. Let SU(n) be the (real) Lie groupof unitary matrices A (i.e. A �AH = I) with determinant 1. Its Lie algebra SU(n) consistsof skew-hermitian matrices of trace zero.Lemma 5.7.i) SL(n) = SU(n) 
R Cii) GL(n) = U(n)
R CIn particular SL(n) and GL(n) are reductive.Proof A = �A �AH2 �+ i��iA � iAH2 �Corollary 5.8. Every representation of SL(n) or GL(n) is completely reducible.De�nition 5.9. The Lie group G = C� � : : : � C� (k-times) is called a torus. Thereason for this terminology is that G is the complexi�cation of a real torus. G should notbe confused with the complex torus Cn=�.Corollary 5.10.i) Every representation of a torus is isomorphic to the direct sum of representation ofdimension one.ii) Every representation of dimension 1 of a torus C� � : : :�C� (k-times) has the formC� � : : :�C� ! C�(t1; : : : ; tk) 7! tn11 : : : tnkk23



where ni are integers.Proof i) follows from the corollary 5.6 and the fact that tori are commutative (seecor. 3.25). ii) follows from the fact that every algebraic (or holomorphic) group morphismbetween C� and C� has the form t 7! tn for some integer n.Remark. Note that the complex analytic setting is necessary in the coroll. 5.10. In factthe map f :C� ! C� given by f(�ei�) = �2e3i� is a real analytic group homomorphism.The corollary 5.10. states that representations of tori are "discrete". The same resultis true for representations of general reductive groups. In the next section we will analyzethe case of SL(2) (see ther. 5.13 and coroll. 5.14) and then the case of a general semisimplegroup (through its Lie algebra). Description of SL(2)SL(2) is important in its own and also because it is a "building block" that allowsto construct all other semisimple Lie algebras. We will see that its Dynkin diagram is assimple as possible, in fact it consists of only one dot.Fix the following basis of SL(2)H =  1 00 �1! X =  0 10 0! Y =  0 01 0! (5:1)Check that [H;X] = 2X [H;Y ] = �2Y [X;Y ] = HLet V be a SL(2)-module. By the corollary 5.6 it is completely reducible.H :=< H > is an (abelian) subalgebra of dim 1.De�nition 5.11. V� := fvjH � v = �vgWhen V� 6= 0 then � is called a weight of V .Lemma 5.12. Let v 2 V�.i) H(X(v)) = (� + 2)X(v)ii) H(Y (v)) = (�� 2)Y (v)ProofH(X(v)) = X(H(v)) + [H;X](v) = because the representation preserves the bracket= X(�v) + 2X(v) = (� + 2)X(v)This proves i). The proof of ii) is analogous.The following theorem is fundamental: 24



Theorem 5.13. Integrality of weights If V is a irreducible SL(2)-module then in(5.2) all the � are distinct integers that �ll a sequence symmetric with respect to the origin(i.e. �t;�t+ 2; : : : ; t). Moreover dim V� = 1.Proof It follows from the lemma 5.12 that for every �X:V� ! V�+2Y :V� ! V��2H:V� ! V�If V�0 6= 0 then Xn2ZV�0+2n � Vis a submodule, hence we have equality (V is irreducible). It is a well-known fact in linearalgebra that the sum in the left side is direct, so thatV = �nV�0+2n (5:2)Of course in (5.2) all terms are zero except �nitely many. Letm = maxf�0 + 2njV�0+2n 6= 0gWe want to prove that m is a nonnegative integer. In fact let v 2 VmX(Y (v)) = [X;Y ](v) + Y (X(v)) = H(v) + 0 =mvX(Y 2(v)) = [X;Y ]Y (v) + Y (X(Y (v))) = H(Y (v)) + Y (mv) = ((m� 2) +m)Y (v)and it is easy to prove by induction thatX(Y k(v)) = ((m � 2k + 2) + (m� 2k + 4) + : : :+m) Y k�1(v) = k(m� k + 1)Y k�1(v)(5:3)It follows that when Y k(v) = 0 for minimal k then m = k�1 2 Z�0. By (5.3) it is evidentthat v; Y (v); : : : ; Y k(v); : : :span an invariant subspace of V and so they span V . This proves the theorem.The above proof gives also a basis of V and we know exactly where each of H, X andY takes each basis vector. Hence V is determined by the collection of weights, in particularit is determined by the m we started with (called maximal weight or highest weight).We getCorollary 5.14. Every irreducible representation of SL(2) is a symmetric power SmVof the standard representation V ' C2.SmV has dimension m+ 1 and weights �m;�m+ 2; : : : ;m� 2;m.m is called the highest weight.�m is called the lowest weight.Exercise. Prove that the irreducible representations of PGL(2) are exactly the even pow-ers S2nV 25



x6. The Cartan decompositionLet G be a semisimple Lie group, that is G does not contain nontrivial normal solvablesubgroups. In this section we study the structure of Lie G, in order to have preciseinformations on G. It will follow that Lie G is a direct sum of simple Lie algebras Gi (i.e.dim Gi > 1 and Gi does not contain nontrivial ideals). Moreover there is a complete listof all simple Lie algebras (as sketched in the introduction).De�nition 6.1. A subalgebra H � G is called abelian if[h1; h2] = 0 8h1; h2 2 HDe�nition 6.2. A subalgebra H � G is called a Cartan subalgebra ifi) H is abelian and adjH:H ! GL(G) acts diagonallyii) H is maximal with respect to i)We will see in a while that it is easy to check if a subalgebra satisfying i) satis�es alsoii). The �rst nontrivial fact is the following existence theoremTheorem 6.3. In any semisimple Lie algebra G there exist Cartan subalgebras H.Sketch of proof If G = SL(n) then the subalgebra of diagonal matrices is a Cartansubalgebra. The same fact is true if G is a classical group. In general Cartan subalgebrascan be found as the centralizer fX 2 Gj[X;Y ] = 0g for a su�ciently general Y . For detailssee the appendix D of [FuHa].Let now a Cartan subalgebra H � G be �xed.De�nition 6.4. For any � 2 H� (dual of H) denoteG� := fX 2 Gjad(H)(X) = �(H)X 8H 2 HgAccording to i) of the de�nition we get that G is decomposed as direct sum of theeigenspaces G�Theorem 6.5. [G�;G�] � G�+�Proof Let X 2 G�, Y 2 G�, H 2 H. By the Jacobi identity[H; [X;Y ]] = �[X; [Y;H]]� [Y; [H;X]] = [X;�(H)Y ]� [Y;�(H)X] = (�(H)+�(H))[X;Y ]Lemma 6.6. H = G0Proof The inclusion � is evident and if 0 appears among the �'s then H could beenlarged still satisfying property i) by the theorem 6.5.26



We get the decomposition G = HM(��2H�G�) (6:1)which is called the Cartan decomposition. The reader should notice the analogy withthe case of SL(2).De�nition 6.7. Any � 2 H� such that G� 6= 0 is called a root (except for 0 that it isnot considered as a root). The set of roots is denoted by � � H�. G�'s are called the rootspaces.Theorem 6.8. If � is a root then �� is also a root.Proof [FuHa] D.13, in the exercises we will check directly this fact if G = SL(n).Now choose a direction in H� irrational with respect to the lattice generated by theroots. This gives a decomposition � = �+ [ ��which is called an ordering of the roots. By the theorem 6.8 ��+ = ��.De�nition of the Killing form 6.9.B:G � G ! C(X;Y ) 7! tr(ad(X) � ad(Y ):G ! G)is called the Killing form. It is obviously bilinear and symmetric.Exercise. Check that for G = SL(n) then B(X;Y ) = 2ntr(XY ). Verify from this ex-pression that B is nondegenerate.Lemma 6.10.i) If X 2 G�; Y 2 G� then ad(X) � ad(Y )(G
) � G�+�+
ii) Let Q� := G� � G��. Then the decompositionG = HM(��2�+Q�)is orthogonal with respect to the Killing form.Proof i) is immediate from the theorem 6.5. ii) follows by i) because if � 6= �� thenad(X) � ad(Y )(G
) has zero component with respect to G
 so the contribute to the traceis zero. 27



Lemma 6.11.i) B([X;Y ]; Z) = B(X; [Y;Z]) 8X;Y;Z 2 Gii) For any ideal I � G the orthogonal subspaceI? := fX 2 GjB(X;Y ) = 0 8Y 2 Igis an ideal.Proof i) is straightforward ([FuHa] 14.23). ii) is immediate from i).The importance of the Killing form is stressed by the following theoremTheorem 6.12.i) Cartan's criterion If B(X;Y ) = 0 8X;Y 2 G then G is solvable.ii) G is semisimple if and only if B is nondegenerate.Proof [FuHa] appendix C.Remark. The theorem 6.8 follows from the theorem 6.12 ii). In fact from Lemma 6.10 i)if �� is not a root then G� is orthogonal to all G.Theorem 6.13. A semisimple Lie algebra G is a direct sum of simple Lie algebras.Proof For every ideal I, I \ I? is an ideal by the lemma 6.11 ii) and it is solvable bythe Cartan criterion. Hence G = I � I? and the result follows by induction.Lemma 6.14. The roots � span H�Proof Otherwise there is a nonzero X 2 H such that �(X) = 0 for all roots �. Itfollows [X;G�] = 0 for any root �. Hence X is in the center of G which is zero because Gis solvable.Lemma 6.15 (�nd SL(2) inside G). Let X 2 G�, Y 2 G�� such that B(X;Y ) 6= 0(they have to exist thanks to the lemma 6.10 and the theorem 6.12 ii)). Then [X;Y ], Xand Y span a subalgebra S of G isomorphic to SL(2).Proof First we see that [X;Y ] 6= 0 (6:2)In fact 8H 2 H by the lemma 6.11B(H; [X;Y ]) = B([H;X]; Y ) = �(H)B(X;Y )We have the relations [[X;Y ];X] = �([X;Y ])X[[X;Y ]; Y ] = ��([X;Y ])Y28



Note that [X;Y ] 2 G0 = H by the theorem 6.5 and the theorem 6.4. The crucial fact isthat �([X;Y ]) 6= 0 (6:3)Otherwise S ' ad S � GL(G) is a solvable subalgebra. By the Lie theorem there is a basisof G such that the elements of ad S are in upper triangular form, then ad ([X;Y ]) is instrictly upper triangular form. But the elements of ad H are diagonalizable and this implyad [X;Y ] = 0 in contradiction with (6.2). Now adjusting by scalars we can �nd the samemultiplication table of SL(2), in particular �([X;Y ]) = 2Lemma 6.16. Let � a root.i) For k 2 Z, k 6= 1;�1 then k� is not a root.ii) dim G� = 1Proof Pick up a Lie algebra S as in the lemma 6.15. Consider the adjoint action of Son V := HL(�k2ZGk�) Now S acts trivially on ker � and it acts irreducibly on S itself.By (6.3) H = G0 � V 0 := ker � � S � V and by the cor. 5.8 there exists a complementof V 0 as S-module, but this complement has to be empty because we know by the cor.5.14 that all the SL(2)-modules have 0 among their weights. Hence Gk� = ; for k 6= 1;�1which is i). Furthermore V 0 = V which is ii).De�nition 6.17. From the lemma 6.16 it follows that the subalgebra S de�ned in thelemma 6.15 is uniquely determined by � and we denote it by S�. The element H 2 S�such that �(H) = 2 is denoted by H�. X�, Y� and H� have the multiplication table of X,Y and H in (5.1).Corollary 6.18. Every one-dimensional representation of a semisimple Lie algebra G istrivial.Proof Restrict to the subalgebras S� and use the cor. 5.14.We study now a arbitrary representation of G. We will �nd a structure similar to theone obtained in the case of the adjoint representation. Let a Cartan subalgebra H � G be�xed.De�nition 6.19. Let �:G ! GL(V ) be a representation of G. For any � 2 H� denoteV� := fv 2 V j�(H)(v) = �(H)v 8H 2 HgTheorem 6.20. �(G�)V� � V�+�Proof Let X 2 G�, v 2 V�, H 2 H.�(H)�(X)v = �([H;X])v + �(X)�(H)v = �(H)�(X)v + �(H)�(X)vhence �(X)v 2 V�+�. 29



De�nition 6.21. An element � 2 H� such thatV� 6= 0is called a weight of �. V�'s are called the weight spaces.Theorem 6.22. V is the direct sum of its weight spacesV = �V�Proof This is in the de�nition of Cartan subalgebras, so it is hidden in the existencetheorem 6.3. If we know that representations of G are completely reducible we may supposethat V is irreducible and argue as follows. The sum V 0 =P� V� is direct from elementarylinear algebra. V 0 is a submodule of V by the theorem 6.20, hence V = V 0.Corollary 6.23 (Integrality of the weights). Let �:G ! GL(V ) be a representationof G. Let � be a weight of �. Then �(H�) 2 Zfor every root �Proof Restrict � to S� and apply the theorem 5.13.De�nition 6.24. �W := f� 2 H�j�(H�) 2 Zgis called the weight lattice of GThe corollary 6.23 can be reformulated by saying that all weights � lie in the weightlattice.De�nition 6.25. �W contains the sublattice �R generated by the roots. This is ingeneral a sublattice of �nite index. The Weyl groupWe want to study the geometrical structure of the lattices �W and �R with respectto the Killing form. In order to draw the pictures one can �nd convenient to consider thereal span of the roots E. It is easy to check that B is positive de�nite when restricted toE [FuHa].As B is nondegenerate it gives a isomorphism H ' H� and then B induces anothernondegenerate form on H� that we denote again by B.Proposition 6.26. The hyperplane
� := f�j�(H�) = 0g30



is the hyperplane orthogonal to �.Proof The statement is equivalent to the dual assertion that H� is orthogonal to ker �.This is proved as follows. If H 2 ker � thenB(H�;H) = B([X�; Y�];H) = by the lemma 6.11= B(X�; [Y�;H]) = B(X�; �(H)Y�) = B(X�; 0) = 0De�nition 6.27. The Weyl group is de�ned as the subgroup in GL(H�) generated bythe orthogonal re
ections w� with respect to 
�w�(�) = � � 2B(�; �)B(�;�) �Lemma 6.28. w�(�) = � � �(H�)�Proof It is enough to check that �� 12�(H�)� 2 
�. In fact �(H�)� 12�(H�)�(H�) = 0because �(H�) = 2 (see def. 6.17).Corollary 6.29. �(H�) = 2B(�; �)B(�;�)The most important property of the Weyl group for our purposes is resumed in thefollowing theorem.Theorem 6.30.i) The set of weights of any representation of G is invariant under the action of the Weylgroup.ii) Let � be a root. If � is a weight for some G-module V then in the in�nite sequence: : : � � + �; �; � + �; � + 2�; : : : the string of weights for V is a connected set. If �0is the right extreme of this string, then the string has length �0(H�) + 1. In otherwords, after replacing � by �+ k� for convenient k the string of weights isw�(�) = �� �(H�)�; : : : ; � � �; �Proof1st step In the case G = SL(2) the Weyl group consists of only two elements and the statementis easy from the classi�cation of SL(2)-modules.2nd step Consider that �k2ZV�+k� is a S�-submodule of V by the theorem 6.20 and apply the1st step. 31



Example. The Weyl group for G = SL(n) is the symmetric group �n of order n!. ([FuHa]pag. 214)De�nition 6.31. The fundamental Weyl chamber C is the convex setC = f
 2 H�jB(
; �) � 0 8� 2 �+gTheorem 6.32. The Weyl group acts simply and transitively on the set of orderings ofroots and likewise on the set of Weyl chambers.Proof [FuHa] appendix DIn the following let be �xed an ordering of the roots.De�nition 6.33. Let �:G ! GL(V ) be a representation of G. A vector v 2 V , v 6= 0 iscalled a highest weight vector if satis�es the two properties:i) �(G�)(v) = 0 8� 2 �+ii) v is a eigenvector for the action of H. If �(H)(v) = �(H)v for � 2 H� then � is calleda highest weight (or maximal weight).Proposition 6.34. Every representation of G admits a highest weight vector.Proof Choose F 2 H� such that Ker F divides exactly �+ from �� and such that�+ � fF > 0g. Let � be the weight such that F (�) is maximal. Then 8� 2 �+ we haveF (� + �) = F (�) + F (�) > F (�) and it follows V�+� = ;. Then any nonzero v 2 V� is ahighest weight vector by the theorem 6.20.Lemma 6.35. Let V be the space of a representation of G. Let v be a highest weightvector. The vector subspace spanned by G�1 � � � G�k � v for �i 2 �� is an irreduciblesubrepresentation.Proof Let Wn be the subspace generated by < G�1 � � � G�k �v > for �i 2 �� and k � n.If X 2 G�, � 2 �+, we want to prove X �Wn �Wn (6:4)by induction on n (the case n = 0 is trivial). In fact any element in Wn can be written asa sum of elements of the form Y � w where Y 2 G�, � 2 �� and w 2Wn�1X � (Y � w) = Y � (X � w) + [X;Y ] � wAs X � w 2Wn�1 by the inductive hypothesis, then (6.4) is true. It follows thatW := [nWnis a subrepresentation (clearly irreducible) as we wanted.32



Theorem 6.36. A representation of G is irreducible, it admits a unique highest weightvector (up to scalars).( immediate from the prop. 6.34 applied to the direct summands of the representa-tion. ) In fact if w is another highest weight vector then we havew 2 < G�1 � � � G�k � v > (6:5)and v 2 < G�01 � � � G�0t � w > (6:6)Subsituting (6.5) in (6.6) we get k = t = 0.Remark 6.37. We can de�ne a lowest weight vector substituting �� at the place of �+in the de�nition 6.33. The above results still hold with obvious modi�cations.Theorem 6.38 (Uniqueness theorem). Let �:G ! GL(V ) and �0:G ! GL(V 0) betwo irreducible representations. Let � (resp. �0) be the highest weight of � (resp. �0).Then � ' �0 , � = �0Proof) trivial( Let v 2 V and v0 2 V 0 be the two highest weight vectors. Then (v; v0) 2 V � V 0is highest weight vector with weight � for � � �0. Let U � V � V 0 the irreduciblerepresentation generated by (v; v0) as in the lemma 6.35. The projections �1:U ! Vand �2:U ! V 0 are both nonzero and by Schur lemma are isomorphisms. It followsV ' U ' V 0.Hence the highest weight � determines a irreducible representation that we can denoteby V�. In particular � determines all the other weights. A careful analysis of what we haveseen shows that the weights of V are exactly the weights that are congruent to � modulo�R and that lie in the convex hull of the set w�(�) for any � 2 �+ (see [FuHa] page 204).Proposition 6.39. The highest weight � of a irreducible representation lie in the fun-damental Weyl chamber C.Proof Otherwise there exists � 2 �+ such that B(�; �) < 0. Then by the theorem6.30 �0 = w�(�) = �� �(H�)� is a weight too. By the corollary 6.29 �(H�) < 0 so that �cannot be the highest weight.It is interesting to observe that B(�; �0) = �B(�; �) > 0Theorem 6.40 (Existence theorem). 8� 2 C \ �W there exists a irreducible repre-sentation V� of G with highest weight �Proof In the setting of algebraic geometry, this theorem is a corollary of the theorem ofBorel-Weil in the next section (see rem. 10.12). For an algebraic proof see [Hum]. For theclassical groups the theorem can be checked explicitly, for example in the case G = SL(n)it relies on the construction of the Schur functors.33



De�nition 6.41. A root � 2 �+ (resp. ��)is called simple if it cannot be expressed asa sum of two positive (resp. negative) roots.Exercise. Find the simple roots in the case G = SL(n).In the lemma 6.35 we could have considered G�1 � � � G�k � v only for � simple negativeroot.Lemma 6.42. If �i, �j are two distinct positive simple roots thenB(�i; �j) � 0(i.e. the angle between them is not acute)Proof Otherwise �i(H�j ) > 0 by the corollary 6.29. Then by the corollary 6.30 ii)�i ��j is a root. If it is positive we have �i = �j + (�i ��j) and �i is not simple. If it isnegative we have �j = �i + (�j � �i) and �j is not simple.Lemma 6.43. The simple positive roots form a basis of EProof Obviously the simple roots �i span �R and also H� by the lemma 6.14. If thereis a linear relation with real coe�cients among them we can writev =Xi�k ni�i =Xj>k nj�jwith ni, nj � 0. Then B(v; v) = PninjB(�i; �j) � 0 by the lemma 6.42. HenceB(v; v) = 0 which implies v = 0 because B is positive de�nite on the real span of the roots.Hence ni = nj = 0 because the summands of v lie on the same side of the hyperplaneker F .Corollary 6.44. Let �1; : : : ; �n be the simple positive roots. Then H�i for i = 1; : : : ; ngenerate H.Proof As in the proof of the prop. 6.26 we have H�i = [X�i ; Y�i ] andB(H�i ;H) = �i(H)B(X�i ; Y�i) (6:7)for every H 2 H. The isomorphism H� !H induced by B is de�ned by� 7! T�where B(T�;H) = �(H) for every H 2 H. From (6.7) T� = H�B(X�;Y�) is a multiple of H�and this proves the result. 34



De�nition 6.45. The fundamental weights �i 2 H� are the dual basis (over R) of H�iwhere �i are simple roots. In other words the �i's are de�ned by the conditions�i(H�j ) = �ij (6:8)Remark. It can be shown that H�i are a basis of the complex vector space H so that �iare independent over C.It follows that every element in �W is an integral combination of �i and that theweights in the fundamental Weyl chamber C are exactly the integral combinationsPni�iwith ni � 0. Geometrically the �i's are the �rst weights met along the edges of C.Examples.In SL(2) we have �1 = 2�1In SL(3) we have �1 = 2�1 � �2�2 = ��1 + 2�2De�nition 6.46. Let �1; : : : ; �n be the simple positive roots of G. The n�n matrix Cwith entries cij = �i(H�j )is called the Cartan matrix of G. Note that C has integral entries.From (6.8) we have immediately that0BB@ �1...�n1CCA = C �0BB@ �1...�n1CCAIn particular det C = index(�R;�W )From the corollary 6.29 we can write alsocij = 2B(�i; �j)B(�j ; �j)Dynkin diagramsAny semisimple Lie algebra has a particular structure of the roots in H�. The set ofvectors which satisfy the properties of the roots of a semisimple Lie algebra can be classi�edand conversely from any such set of roots it is possible to recover the corresponding Liealgebra. The technical tool to describe these sets of roots is the Dynkin diagram. Dynkindiagrams turn out to be a very general subject in mathematics (e.g. they have applicationsin the singularity theory). 35



De�nition 6.47. A root system is a �nite set R spanning H� (with a inner product B)such thati) � 2 R ) k� 2 R i� k = �1ii) 8� 2 R the re
ection w� in the hyperplane �? maps R to itself.iii) 8�; � 2 R then 2B(�;�)B(�;�) 2 ZA root system is called irreducible if it is not the orthogonal direct sum of two rootsystems.Theorem 6.48. The set of roots of a semisimple Lie algebra is a root system.Proof i) is lemma 6.16. ii) is theorem 6.30. iii) is cor. 6.23 joint with cor. 6.29.The Dynkin diagram of a root system is given by assigning one dot for any simpleroot. We join two dots with a number of lines depending on the angle � between thecorresponding roots. Precisely� no lines if � = �=2� one line if � = 2�=3� two lines if � = 3�=4� three lines if � = 5�=6It turns out that no other angle is possible. When two roots are joined by one linethen they have the same length. If there are two or three lines we draw an arrow in thedirection of the shorter root.The following classi�cation is a task of pure euclidean geometryTheorem 6.49. The Dynkin diagrams of irreducible root systems are in the list givenin the introduction.Proof [FuHa] pag. 326Theorem 6.50. For each Dynkin diagram D appearing in the list of the theorem 6.49there exist a unique simple Lie algebra such that its Dynkin diagram is D.Proof [FuHa] x21.3The most important part of the theorem 6.50 is the uniqueness, in fact in the classicalcases the existence can be shown directly.Corollary 6.51.i) Semisimple Lie algebras are all classi�ed.ii) Semisimple Lie groups are all classi�ed. In particular the simply connected ones areall algebraic.Proof The semisimple Lie algebras are all obtained as direct sum of simple Lie albegrasby the theorem 6.13 and each summand correspond to SL(n), SO(m), : : : as in the listof Dynkin diagrams. For each of these SL(n)�SO(m)� : : : there is a unique semisimplesimply connected Lie group SL(n)�Spin(m)� : : : which is algebraic by construction. Allother semisimple Lie groups are obtained by covering. It is easy to show that the kernel of36



a covering morphism must be in the center. Note that we can get products G1 �G2 whereG1; G2 are simple but with �nite intersection !Irreducible representations of classical groupsWe mention the irreducible representations of the classical groups that have the fun-damental weights as highest weights. (see exercises: : :).Complete tables can be found in [Tits, LNM 40].SL(n + 1) = SL(V ) has fundamental weights �1; : : : ; �n. The representation withhighest weight �1 is the standard representation on V itself. �i corresponds to the wedgepower ^iV = V�i. k�1 corresponds to SkV = Vk�1 . All the other representations can beconstructed by means of the Young diagrams (exercises: : :).Sp(n) = Sp(V ) has more representations (here dim V = 2n). We denote always by�1; : : : ; �n the fundamental weights. We have always V�1 = V , but for example ^2V =C� V�2 and in general ^kV = ^k�2V � V�kWe have always SkV = Vk�1.In the case of Spin(2n+ 1) the picture is similar to the one just given for SL(n+ 1)with the remarkable exception of the last fundamental weight that de�nes the so calledspin representation (see exercises: : :).Spin(2n) has even two half-spin representations. The geometrical interpretation ofthis fact relies on the study of linear subspaces in quadrics, that have a di�erent behaviourif the dimension is even or odd (see [Ot]).x7. Borel and parabolic subgroupsConsider a semisimple Lie algebra G with its Cartan decomposition (6.1). In thefollowing has been �xed a Cartan subalgebra H and an ordering of the roots.Proposition-De�nition 7.1. B := HM(��2�+G�)is a maximal solvable Lie subalgebra. A maximal solvable Lie subalgebra is called a Borelsubalgebra.Proof B is solvable by the theor. 6.5. If B0 � B is another solvable subalgebra then B0contains some G�� with � 2 �+ (check this fact by using that B0 must be adjH-invariant).Hence B0 � S� ' SL(2) (see def. 6.17) which is simple and satis�es[S�;S�] = S�It follows that B0 cannot be solvable. 37



Remark. (��2�+G�) is a maximal nilpotent subalgebra of G.De�nition 7.2. Let G such that Lie G = G. A subgroup B such that Lie B is aBorel subalgebra is called a Borel subgroup. In equivalent way B is a maximal connectedsolvable subgroup.Proposition 7.3. Let B � G be a Borel subgroup. Then B is closed and G=B is aprojective variety. Moreover all Borel subgroups are conjugate.First proof B is closed by the maximality (in fact DG = DG , see [Borel]). By theprop. 4.7 we may choose �:G ! GL(V ) with a subspace V1 � V such that dim V1 = 1and Stab(V1) = B. Then we apply Lie theorem to the action of B over V=V1. We get acomplete 
ag 0 � V1 � V2 : : : � Vwhich has stabilizer again equal to B. Then G=B is the orbit of this 
ag in the complete
ag manifold F of V . We want to prove that G=B is an orbit of minimal dimension,then it is closed (hence projective!) by applying the closed orbit lemma. First let thedimension of B be maximal among all the Borel subgroups. Consider an orbit G=R of apoint P 2 F . Since R leaves invariant the 
ag corresponding to P , it can be put in uppertriangular form and it is solvable. By the choice of B we get dim R � dim B so thatdim G=B � dim G=R and we have done. Now let B0 be any other Borel subgroup andconsider the natural action of B0 over G=B. By the Borel �xed point theorem there existsa �xed point, that is 9g 2 G such that B0gB � gBwhich implies g�1B0gB � B. It follows g�1B0g � B and by the maximality of B0 we getthe equality. So all Borel subgroups are conjugate, and in particular they have the samedimension. Then G=B is projective for any Borel subgroup B.In particular, up to choose a Cartan subalgebra (conjugate toH), every Borel subgroupB satis�es Lie B = HM(��2�+G�)Remark. The projective embedding of G=B which is described in the proof of the propo-sition 7.3 lie in a space of too large dimension and it is not the natural one. A naturalembedding can be found by considering Ad as a G-action over P(G). Let � be the highestweight of Ad. Then G=B is the orbit of the point [G�] 2 P(G) (for details see [FuHa page383).Exercise. If H and H 0 are conjugate subgroups of G, prove that G=H ' G=H 0.De�nition 7.4. A closed subgroup P � G is called parabolic if it contains some Borelsubgroup B. 38



Theorem 7.5. Let P � G be a closed subgroup. P is parabolic i� G=P is a projectivevariety.Proof( Let B be a Borel subgroup. B acts naturally (by left translation) over G=P and bythe Borel �xed point theorem there exists a �xed point, that is 9g 2 G such thatBgP � gPThen g�1BgP � P . This implies g�1Bg � P .) By the remark 4.8 G=P is quasiprojective, hence it is su�cient to check that it iscompact. This follows from the projection G=B ��!G=P and the prop. 7.3.De�nition 7.6. Let � = f�1; : : : ; �ng be the set of simple (positive) roots of G. Let� � �. Let ��(�) := f� 2 ��j� = X�i =2� pi�igProposition-De�nition 7.7.P(�) := HM(��2�+G�)M(��2��(�)G�)is a subalgebra. P (�) is the subgroup such that Lie P (�) = P(�) (see the theorem 3.6)Proof The statement is obvious from the theorem 6.5Theorem 7.8 (Classi�cation of parabolic subgroups). Let G be semisimple andsimply connected. Let P be a parabolic subgroup of G. There exist g 2 G and � � �such that g�1Pg = P (�)Proof By the theorem 7.3 we may choose g 2 G such thatP 0 := g�1Pg � Bwhere Lie B = B := HL(��2�+G�).Lie P 0 is a subspace of G containing B � H and invariant under adjH. HenceLie P 0 = HM(��2TG�)for some subset T � �.We know that T contains all the positive roots. Moreover if � is a negative root in Tand � = � + 
 with �, 
 negative roots too we have ��, �
 2 T . By 6.5 it follows that� � � = 
 2 T and � � 
 = � 2 T . Then � := � n (�T ) satis�es the condition of thetheorem. 39



Corollary 7.9. Let G be semisimple and simply connected. Let G = G1 � : : : � Gkbe the decomposition of G as the direct product of simple simply connected Lie groups(see the theorem 6.13). Let P � G be a parabolic subgroup. Then there are parabolicsubgroups Pi � Gi such that P = P1 � : : :� Pk. In particularG=P ' G1=P1 � : : : �Gk=PkProof The root system of G is the orthogonal sum of the root systems of the Gi's.Corollary 7.10. Rational homogeneous varieties are classi�ed. They are isomorphic toproducts of varieties G=P (�) where G is simple and simply connected (and then in thelist od Dynkin diagram) and � is a subset of the set of the simple roots of G.Corollary 7.11. For each semisimple simply connected Lie group G, there are only�nitely many projective varieties isomorphic to G=P for some P � G.x8. ABC about bundlesA vector bundleE of rank r over an algebraic variety X is by de�nition an algebraic varietyE with a surjective morphism �:E ! Xsuch that there exists an open covering fU�g�2I of X satisfying the two propertiesi) there exist isomorphisms ��:��1(U�)�!U� �Cr making commutative the diagram��1(U�) ���! U� �Cr??y� ??yp1U� id�! U�ii) 8�; � 2 I the composition (restricted)(U� \ U�) �Cr ��1��!��1(U� \ U�) ���!(U� \ U�)�Crhas the form �� � ��1� (x; v) = (x; g��(x)v)where g��: (U� \ U�)! GL(r)are algebraic. 40



i) means that the �bration is locally trivial and that each �ber ��1(x) is isomorphicto Cr.ii) means that the structure group of the bundle is linear.g�� are called the transition functions and satisfy the propertiesg�1�� = g�� (8:1)g�� � g�
 = g�
 (8:2)In equivalent way, given a covering fU�g�2I with a set of transition functions g��(x)satisfying (8.1) and (8.2) we can construct a vector bundle E as the quotient of the disjointunion a� (U� �Cr)by the relation � de�ned in the following way:8(x; v) 2 U� �Cr (x0; v0) 2 U� �Crwe have (x; v) � (x0; v0) i� x = x0 v = g��(x)v0Remark 8.1. We can say synthetically that "the transition functions determine thebundle".If g�� are transition functions for E and h�� are transition functions for F then g�� h�� ! are transition functions for E � Fthis can be taken as de�nition of E � F(g�1�� )t are transition functions for E� dual bundleg�� 
 h�� are transition functions for E 
 FIf T :GL(r) ! GL(r0) is any representation we de�ne T (E) to be the bundle withtransition functions T (g��). This construction applies in particular to T = ^k and T = Sk.If f :X ! Y is a map and E is a bundle on Y with transition functions g��(y) thenf�E is the bundle on X with transition functions g��(f(x)).IfX is smooth the bundle 
1X of 1�forms can be de�ned as the bundle with transitionfunctions given by the jacobian matrices obtained by change of local coordinates. Thetangent bundle is TX = (
1X)�.A vector bundle of rank 1 is called a line bundle. The set of line bundles has a naturalstructure of abelian group isomorphic to H1(X;O�) with the multiplication given by thetensor product and the inverse given by the dual bundle.A section of E is an algebraic map s:X ! Esuch that � � s = idX 41



De�nition 8.2. A vector bundle is called spanned if there are (global) sections s1; : : : ; sksuch that 8x 2 X the vectors s1(x); : : : ; sk(x) span the �ber ��1(x).To any vector bundle E we can associate a locally free sheaf of OX-modules E de�nedby E(U) := fsections of EjUgConversely to any locally free sheaf E is associated a vector bundle with �ber Ex 'Ex=MxEx de�ned as the Spec of the symmetric algebra of E (see [Hart]).It is usual to identify a vector bundle E and the associated locally free sheaf E. Inparticular the cohomology groups Hq(X;E) are (by de�nition) the cohomology groupsHq(X; E). Note that H0(X;E) is the space of global sections of E. In particular a vectorbundle is spanned if and only if the evaluation mapH0(X;E) 
O ! Eis surjective.Example. On Pn = P(V ) with homogeneous coordinates (x0; : : : ; xn) we have the linebundles O(t) that on the standard covering given by Ui = fxjxi 6= 0g have transitionfunctions gij = ( xixj )t. In a more geometrical way, the bundle O(�1) is the "universal"bundle de�ned as the incidence varietyf(x; v) 2 Pn � V jv 2 [x]gendowed with the projection to the �rst factor. Then for t � 0 O(�t) := O(�1)
t andO(t) := (O(�1)�)
t. From the exponential sequence0�!Z�!O exp�!O��!0we get H1(Pn;O�) = Z so that all the line bundles on Pn are isomorphic to O(t) for someinteger t.If F is a coherent sheaf, it is usual to denote F 
 O(t) by F (t). For t � 0 the spaceH0(Pn;O(t)) consists of all homogeneous polynomials in (x0; : : : ; xn) of degree t, or inequivalent way H0(Pn;O(t)) ' StV (the Borel-Weil theorem is a generalization of thislast isomorphism). All the intermediate cohomology of O(t) is zero, that isHi(Pn;O(t)) = 0 for 0 < i < n 8t 2 ZThe zero loci of sections of O(t) are exactly the hypersurfaces of degree t. The zero loci ofa general section of O(n1)� : : :�O(nk) is called a complete intersection.The geometrical de�nition of the universal bundle O(�1) gives immediately the exactsequence 0�!O(�1)�!O
 V ��!Q�!0 (8:3)It is easy to identify the quotient bundle Q with the twisted tangent bundle TPn(�1).(8.3) is called the Euler sequence. 42



Example. Also on Gr(k; n) we can de�ne the universal bundle. Consider the incidencevariety f(x; v) 2 Gr(k; n) �Cn+1jv 2 [x]gendowed with the projection to the �rst factor. We get a vector bundle U on Gr(k; n) ofrank k + 1 and an exact sequence0�!U�!O
 V ��!Q�!0where Q is a vector bundle of rank n� k called the quotient bundle.The computation of cohomology groups Hi(Gr(k; n); U(t)) and Hi(Gr(k; n); Q(t)) ismore subtle and will be seen as a corollary of the Bott theorem.Anyway many results can be seen geometrically. It is evident that U has no globalsections (there is no point common to all Pk !) while a section of U� is given by a linearfunctional F :V � ! C which restricts to any k+1-dimensional subspaceCk+1 � V �. Thenthe zero locus of this section is given byfCk+1 � V �jCk+1 � Ker Fgwhich is isomorphic to Gr(k; n � 1).Exercise. Show that U� is spanned.Exercise. Show that the choice of a point in V � gives a section of Q. The zero locus ofthis section is isomorphic to Gr(k � 1; n� 1).Line bundles and embeddings in projective spaces(see [GH] for more details)A spanned line bundle L de�ne a morphism�L:X ! P(H0(X;L)�)x 7! fs 2 H0(X;L)js(x) = 0gIn coordinates if < s0; : : : ; sN >= H0(X;L) then �L(x) = (s0(x); : : : ; sN (x)) 2 PN .The projective embeddings de�ned by subspaces V � H0(X;L)� correspond to pro-jections of X from linear subspaces contained in P(H0(X;L)�) into projective spaces ofsmaller dimension.A line bundle L is called very ample if �L is an embedding and is called ample if L
kis very ample for some k 2 N.Example. On Pn the bundle O(t) is ample i� is very ample i� t < 0. O(t) is spanned i�t � 0.We have obviously ��LO(1) ' L43



Vector bundles and embeddings in grassmanniansA spanned vector bundle E of rank r de�nes a morphism�E:X ! Gr(Pr�1;P(H0(X;E)�)x 7! fs 2 H0(X;E)js(x) = 0gWe have E = ��EU�where U is the universal bundle on the grassmannian.In equivalent way, if h0(X;E) = N we have a map to the dual grassmannianX �0E�!Gr(PN�r�1;P(H0(X;E)))and in this case E = �0�EQ0where Q0 is the quotient bundle on Gr(PN�r�1;P(H0(X;E)))One is tempted to de�ne E to be very ample if �E is an embedding but this de�nition is too weakto have good properties. For example the bundle U� on a grassmannian satis�es this de�nition (��U isthe identity!) but its restriction to a line has a trivial summand.The correct way is to de�ne E (very) ample if OP(E)(1) is (very) ample on the projective bundleP(E) (see [Har66]).Let J be a nondegenerate skew symmetric matrix of order 2n. The symplectic groupSp(n) consists of the matrices A 2 GL(2r) such that AJAt = J . Another J 0 de�nes aconjugate subgroup. Its Lie algebra is given bySP(n) = fA 2 GL(2r)jAJ + JAt = 0gWhen we consider a symmetric matrix Q of order n at the place of J we de�ne in the sameway O(n) orthogonal group which has two connected components depending on det = �1.The connected component of the identity contains matrices with det = 1 and it is denotedby SO(n). Its Lie algebra is SO(n)De�nition 8.3. A vector bundle E of rank r (even) is called symplectic if there is anatlas such that the transition functions take values in Sp(r=2).Proposition 8.4. E is symplectic if and only if there is an isomorphism�:E ! E�such that � = ��t.The reader can supply the analogous de�nition of orthogonal bundle.44



Remark. If E is symplectic then ^2E contains O as direct summand. It is important toobserve that if T is a representation of the symplectic group, then it is de�ned the bundleT (E). Geometrical de�nition of Chern classesThere are several equivalent de�nitions of the Chern classes of a vector bundle E. Theanalytic de�nitions via the curvature is the more useful to prove formulas about the Chernclasses. In the spirit of this course we sketch the geometrical de�nition of Chern classes ofdegeneracy loci that involves the map �E in the grassmannian.Let E be a spanned vector bundle of rank r over X. We denote by s1; : : : ; sr�p+1r � p+ 1 generic sections of E. The subvarietyfx 2 Xjs1(x); : : : ; sr�p+1 are lin. dep.g (8:4)has codimension p and its homology class in H2n�2p(X;Z) does not depend on the sections(it is easy to check that even the rational equivalence class in the Chow ring is well de�ned).The Chern class cp(E) 2 H2p(X;Z) can be de�ned as the Poincar�e dual of the class in(8.4).If p = r in (8.4) we get the zero locus of a generic section of E.If p = 1 in (8.4) we get that c1(E) = c1(det E), furthermore c1 of a line bundleassociated to a divisor D is the class of D itself.Proposition 8.5. Let U be the universal bundle on Gr(k; n). Then cp(U�) is Poincar�edual to the Schubert cycle W1;:::;1 (p times) (see (2.2)).Proof The Poincar�e dual of cp(U�) is the degeneracy locus of k� p+2 sections of U�.These sections are given by k � p + 2 linear functional whose common kernel correspondto a linear Pn�k+p�2o . Then the result follows by (2.2).Remark. In the same way the Poincar�e dual of cq(Q) (where Q is the quotient bundle)is W q. These are called special Schubert cycles.Corollary 8.6. Consider the map X �E�!Gr(k; n)We have ��Ecp(U�) = cp(��EU�) = cp(E)The corollary 8.6 is important because in order to show the equivalence of the geo-metrical de�nition of cp with the analytic one it is su�cient to perform some standardcurvature computations on Gr(k; n) (see [GH] or [Kobayashi, Di�erential geometry ofcomplex vector bundles]).When E is not spanned there are two ways to supply the de�nition of Chern classes.The �rst one (as in [GH]) is to consider convenient C1 sections, in fact the Chern classes45



are C1-invariant. The second one is to tensor E with some ample line bundle L in orderto get E 
L spanned and then use the formulack(E 
 L) = kXi=0�r � ik � i�ci(E)c1(L)k�i(of course one has to check that this de�nition is well posed!)The Chern polynomial is the formal expressioncE(t) := c0(E) + c1(E)t + c2(E)t2 + : : :If 0! E ! F ! G! 0is an exact sequence of vector bundles, the Whitney formula iscE(t)cG(t) = cF (t)Sketch on principal bundlesWe want to underline that the importance of transition functions stated in the remark8.1 is a deep fact. The transition functions do not involve the �ber Cr but only the groupGL(r) acting on the �bers. This leads to the following generalization.Let us consider an open covering fU�g�2I ofX, a Lie groupG and a set of holomorphictransition functions g��(x): (U� \ U�)! Gsatisfying (8.1) and (8.2). Suppose moreover that we have a variety F and a representation�:G! Aut(F )We can construct a bundle B over X with �ber F as the quotient of the disjoint uniona� (U� � F )by the relation � de�ned in the following way8(x; f) 2 U� � F (x0; f 0) 2 U� � Fwe have (x; f) � (x0; f 0) i� x = x0 f = � (g��) (x)f 0In particular we can take F = G and � to be the left multiplication. The bundleP that we get is called a principal bundle. We say that the bundle B comes from theprincipal bundle P via �. 46



x9. Homogeneous bundlesWe turn to the case of bundles over rational homogeneous varieties G=P (here G is asimply connected semisimple group and P is a parabolic subgroup).It is natural to de�ne a homogeneous bundle E if the action of G over G=P can belifted to E. More preciselyDe�nition 9.1. Let E be a bundle over G=P . E is called G-homogeneous (or sim-ply homogeneous) if there exists an action of G over E such that the following diagramcommutes G�E �! E??y ??yG�G=P �! G=PIt is evident from this de�nition that the tangent bundles T (G=P ) are homogeneous.Remark 9.2. If T :GL(r) ! GL(r0) is any representation and E is a homogeneousbundle of rank r then T (E) is a homogeneous bundle of rank r0. For example on Pn manyhomogeneous bundles can be constructed in this way beginning from the tangent bundle.We will se that in this way we get the so called irreducible bundles. There exist manyother homogeneous bundles. An example is the following.Example 9.3. Consider on Pn the evaluation mapH0(Pn;O(t)) 
O ev�!O(t)The kernel En;t := ker ev is a homogeneous bundle. Its �ber over x 2 Pn can be identi�edwith the space of hypersurfaces of degree t containing x. The simplest nontrivial case isthe rank 5-bundle E2;2 on P2 = P(V �) obtained in the sequence0�!E2;2�!S2V 
O�!O(2)�!0This bundle is exceptional ,i.e. it has no deformations. The exceptional bundles on P2(that are of course homogeneous) have been all classi�ed in a beautiful paper of Drezetand LePotier [Ann. Sc. ENS 18, 193-243 (1985)]. The numerical invariants of exceptionalbundles on P2 �ll up a region with "fractal" boundary. Coming back by earth we want toshow that E2;2 appears in a sequence0�!S2Q��!E2;2�!Q�!0 (9:1)This is clear geometrically, looking at S2Q�x as the space of conics with a singularity at x.Otherwise, taking the second symmetric power of the dual Euler sequence0�!Q��!V 
O�!O(1)�!047



we get the exact sequence 0�!S2Q��!E2;2�!Q�!0Then the result follows by applying the snake lemma in the diagramS2Q�??y0 �! E2;2 �! S2V 
O �! O(2) �! 0??y ??y0 �! Q �! V 
O(1) �! O(2) �! 0(9.1) is interesting because it gives a �ltration of E2;2 in irreducible homogneous bundles.En;t are all stable bundles (see [Pa]).We will see in this section other two equivalent de�nitions of homogeneous bundlethat are useful and more easy to handle.Lemma 9.4. G ��!G=P is a principal bundle with �ber P .Proof The only nontrivial statement is that � is a locally trivial �bration. In order tosee this consider the derivative at the identityLie G d��!T[P ]G=PLie P is a subalgebra of Lie G that goes to zero under d�. Hence by dimensional rea-sons Ker d� can be identi�ed with Lie P . Choose any trasversal subspace such thatLie G = Lie P � V (direct sum of vector spaces only!) and consider exp:V ! G.There exists a neighborhood V 0 := exp(U) � G where exp is invertible. In particular� := �jV 0 :V 0�!�(V 0) is a di�eomorphism, so that 8x 2 V 0 we havexP = ��1(�(x))Pand we de�ne the local trivialization��1(�(V 0))! �(V 0) � Px 7! (�(x); x � [��1(�(x))]�1)This local trivialization can be extended to all G=P by using the action of G.De�nition 9.5. Let �:P ! GL(r) be a representation. We can construct a vector bundleE� on G=P as the bundle with �ber Cr coming from the principal bundle G ��!G=P via�.Remark 9.6. In equivalent way, E� can be de�ned as the quotient G�� Cr of G�Crvia the equivalence relation � where (g; v) � (g0; v0) i� there exists p 2 P such that g = g0pand v = �(p�1)v0.Remark. The following are true E�1 �E�2 ' E�1��248



^kE� ' E^k�E�1 
E�2 ' E�1
�2and so on.Theorem 9.7 (Matsushima). A vector bundle E of rank r over G=P is homogeneousif and only if there exists a representation �:P ! GL(r) such that E ' E�.Proof The proof is an exercise of running through the de�nitions. Given a homoge-neous bundle E ��!G=P then the action of G restricted to P takes ��1(P ) to ��1(P ) andthis is �. We can construct an isomorphismE�!E�that takes e 2 ��1(gP ) into [g; g�1 � e].Conversely given [(g; v)] 2 E� de�ne the action of G over E� as g0 � [(g; v)] := (g0g; v)Lemma 9.8.i) The space of sections H0(G=P;E�) of E� over G=P can be identi�ed withff :G ! Cr jf(gp) = �(p�1)f(g) 8g 2 G; 8p 2 Pgii) The action of G over H0(G=P;E�) is given by(g � f)(g1) := f(g�1g1)Proof Straightforward check by using the remark 9.6.Remark. The tangent bundle comes from the representation of P with derivativead:P ! GL(G=P)(recall that G=P ' T[P ]G=P ).Example. On P1 = SL(2)=P the bundles O(t) are obtained from the representationsP ! C� a b0 1=a! 7! a�tA basis for H0(P1;O(t)) (for t � 0) is given byfi a bc d! := a�ic�t+ifor i = 0; : : : ; t.Let us denote the natural morphism G ! Aut(G=P ) by g 7! �g. The followingtheorem shows that our de�nition of homogeneous bundle is equivalent to the one givenin [C.Okonek, M.Schneider, H.Spindler, Vector bundles over complex projective spaces].49



Theorem 9.9. Let G semisimple and simply connected. A vector bundle E over X =G=P is homogeneous if and only if ��gE ' E 8g 2 GProof (A. Huckleberry) Let Aut(E) be the connected component containing the iden-tity of the algebraic group of automorphisms of E (considered as variety) and let AutX(E)be the subgroup of automorphisms preserving each �ber and acting linearly on them.AutX(E) is the group of invertible elements in H0(X;End E). Consider the algebraicgroup F := fg 2 Aut(E)jg is linear on the �bers and induces on X an element of GgF can be obtained as an extension0�!AutX(E)�!F�!G�!0It is induced a surjective morphismLie F ��!Lie GIt is easy to check that the image of a solvable algebra is still a solvable algebra. It follows�(rad F ) = 0. By a theorem of Levi ([FuHa] theor. E.1 ) there exists a semisimple Liealgebra S � Lie F such that S ��!Lie G is surjective. By the theor. 6.13 S is a sum ofsimple Lie algebras S ' �ki=1Si, hence there exists j < k such thatker � ' �ji=1Si Lie G ' �ji=j+1SiIt follows by 3.6 that there exists G0 � F such that Lie G0 ' Lie G. Hence G0 actsover E, G is a covering of G0 by the prop. 3.15 and also G acts over E as we wanted.Remark. It can be shown with the same tecnique that if G0 is a reductive subgroup of Gsuch that ��g0E ' E 8g0 2 G0 then there exists ~G0 covering of G0 that acts over E.Remark. The theorem 9.9 does not hold if G is not simply connected. For examplePSL(2) = Aut(P1) acts on P1 = PSL(2)=P 0 but O(t) has a PSL(2)-action (or equiva-lently is de�ned by a representation of P 0) if and only if t is even.Note that KP1 = O(�2) so that all the multiples of the canonical bundle are Aut(P1)-homogeneous. 50



x10. The theorem of Borel-WeilTheorem 10.1.i) A homogeneous projective variety X with b1(X) = 0 is rational.ii) Every homogeneous variety G=P (�) is rational.Proof Let X as in i). By the theor. 4.13 and the remark 4.14 X is isomorphic to G=Pwhere G := Aut0(X) is semisimple. By the theorem 7.5 P is parabolic. By the theor. 7.8there exists a subset � of the set of simple roots such thatLie P = H� (��>0G�)� (��2��(�)G�)where ��(�) = f� =X pi 2 ���ijpi = 0 if �i 2 �gSo it is su�cient to prove ii). Let U� := (��=2��(�)G�)It is easy to check that U� is a solvable subalgebra (it is even nilpotent). Consider theembedding G ad�!GL(G)(The kernel of ad is given by the center which is zero because G is semisimple.)Considering that adk(X)(Y ) = [X; [X; [X; : : : ; [X;Y ]]]]and by the theorem 6.5 ad(G�)(G�) � G�+�it follows that ad(U�) consists of nilpotent endomorphisms. By the Lie theorem in aconvenient basis of G we have that U� is immersed in the subalgebra of strictly lower-triangular matrices. Then at level of Lie groups we haveU� � G � GL(N)such that the U� is immersed in the subgroup of unipotent matrices. In particularU� exp�!U�has inverse given by log:U� ! U�A 7! 1Xk=0(�1)k (A � I)kkbecause the unipotency implies that this last sum is �nite (and so it converges!). It followsthat U� is isomorphic to U�. Moreover from the matrix description we have U�\P = e, sothat the morphism U� ! G=P is injective and it is dominant too by dimensional reasons.Hence G=P is rational. 51



Remark. The Bruhat decomposition generalize the description of the open cell N � G=Pthat we have seen in the proof of the theorem 10.1. See [FuHa] x23.4.Corollary 10.2 (Ise). Let G be semisimple and simply connected. Every line bundleon G=P is homogeneous.Proof By the rationality we haveHi(G=P;O) = 0 for i > 0Then the cohomology sequence associated to the exponential sequence0�!Z�!O�!O��!0implies H1(G=P;O�) ' H2(G=P;Z)so that H1(G=P;O�) is discrete and the G-action on it given byL 7! g�Lis trivial.From the previous corollary it follows that the topological group H2(G=P;Z) isisomorphic to the group of one-dimensional representations of P . This group can becomputed as in the prop. 10.4.Lemma 10.3. We have the decompositionLie P = HM(��>0G�)M(��2��(�)G�) == Lie SP M(�ki=1[G�i ;G��i ])M(��=2�+(�)G�)where SP is semisimple and it is called the semisimple part of P .Proposition 10.4. Let � = f�1; : : : ; �kg be a subset of the set of simple roots. ThenH2(G=P (�);Z) ' Pic(G=P (�)) ' Z�kProof Let V = V� be a one-dimensional Lie P -module, where � is the correspondingweight in H�. Looking at the decomposition of the lemma 10.3 we have that V restrictedto Lie SP is trivial because it is trivial for every SL(2) inside (recall that the only one-dimensional representation of SL(2) is trivial).By the theorem 6.20 G�V� � V�+�52



and we get that the representation is trivial when restricted to (��=2�+(�)G�). Hence thisrepresentation is obtained from the abelian k-dimensional piece �ki=1[G�i ;G��i ] which isthe Lie algebra of a torus (C�)k. The result follows from the cor. 5.10.We want now to classify all the irreducible representations of a parabolic subgroup P .Let U � P be the subgroup such thatLie U = (��=2�+(�)G�)(see the lemma 10.3). U is called the unipotent part of P . The subgroup R such thatLie P = Lie U �Lie R is reductive.Proposition 10.5 (Ise). A representation�:P ! GL(V )is completely reducible if and only if �jU is trivial.Proof LieU is contained in the subalgebraLieY := (�ki=1[G�i ;G��i ])M(��=2�+(�)G�)which is solvable. From the Theorem of Lie4.2 there exists a basis in V such that �(y) isupper triangular for every y 2 Y .Since LieU = [LieY;LieY ] we get that d�(u) is strictly upper triangular for everyu 2 LieU .It follows that there exists a nonzero v 2 V such that 8u 2 U�(u)v = vLet F := fv 2 V j�(u)v = v 8u 2 UgBy the above argument 0 6= F . As U is normal, it is easy to check that F is P -invariantso that by the assumption F = V . This means that �jU is trivial.Conversely, any representation of P which is trivial over U at the level of Lie algebrascomes from a representation of Lie SP MZwhere Z = (�ki=1[G�i;G��i ]), which is a direct sum of two Lie algebras (in the sense thatare both ideals). Any such representation is the tensor product of a representation of Z(abelian Lie algebra of (C�)k) and a representation of Lie SP which are both completelyreducible. 53



Lemma 10.6. �1(SL(n)) = �2(SL(n)) = 0Proof By induction on n (n = 1 is trivial). Consider the natural SL(n)-action overCnn0. The isotropy subgroup isH ' SL(n�1)�Cn�1. Hence consider the long homotopysequence associated to the �bration SL(n)! Cn n 0 and get�2(H) ! �2(SL(n))! �2(Cn n 0)! �1(H) ! �1(SL(n))! �1(Cn n 0)By the inductive assumption �1(H) = �2(H) = 0, hence the result.Proposition 10.7. Let G be a semisimple group. We have�2(G) = 0Proof For the classical groups the proof is similar to the one of lemma 10.6. In generalwe refer to [Brocker-tomDieck, Representations of compact Lie groups, GTM 98, Springer],pag. 153 8.3, pag. 223 7.1.Proposition 10.8. Let G be semisimple and simply connected. Let P � G be aparabolic subgroup. Then �1(SP ) = 0(see the lemma 10.3)Proof Consider the long homotopy sequence associated to the �brationG! G=PBy the assumption and the prop. 10.7 it follows �1(P ) ' �2(G=P ). By the prop. 10.4 andHurewicz theorem it follows�1(P ) ' �2(G=P ) ' H2(G=P;Z) ' Z�kThere is a Levi decomposition P = U >/(SP � (C�)k) (� means that a �nite intersectionis allowed ). In a way similar to the proof of the theorem 10.1 we can show that U isisomorphic to a vector space, then it has the homotopy type of a point. Hence�1(SP � (C�)k) ' Z�k. Let j be the covering map SP � (C�)k ! SP � (C�)k, then at the level of �1's j� isinjective and the thesis follows. 54



Proposition 10.9 (Classi�cation of irreducible bundles over G=P ). Let � =f�1; : : : ; �kg be a subset of simple roots. Let �1; : : : ; �k be the corresponding set of fun-damental weights (see the def. 6.45). Then all the irreducible representations of P (�)are V 
 Ln1�1 
 : : :
 Lnk�kwhere V is a representation of SP and ni 2 Z (by the prop. 10.8 �i de�ne representationsof SP ).Proof It follows from propositions 10.5, 10.8 and corollary 3.28.Remark 10.10. With the notations of the prop. 10.9, consider that the weight latticeof SP is embedded in the weight lattice of G. If � is the highest weight of a irreduciblerepresentation V� of SP we will say that �+Pni�i is the highest weight of the irreduciblerepresentation V 
Ln1�1
: : :
Lnk�k of P (�). We underline that now the ni's can be negative.The tensor product Ln1�1 
 : : :
 Lnk�k corresponds to the twist by line bundles.When k = 1 (parabolic subgroups corresponding to only one simple root) we gethomogeneous rational varieties with Pic = Z. For example grassmannians belong to thisclass. At the other extreme the parabolic subgroup corresponding to all the simple rootsis the Borel subgroup B. Complete 
ag manifolds belong to this class. We have SB = 0(because B is solvable), hence all the irreducible representations of B have dimension 1and de�ne all line bundles.Remark. It is interesting to look at the projectionsG=B ��!G=Pwhich are �brations with �ber isomorphic to P=B ' SP=(B\SP ) which is again a rationalhomogeneous variety. � is 
at. We will see that the irreducible homogeneous bundles onG=P are all isomorphic to ��L� where L� is a line bundle on G=B.Chern classes of homogeneous bundlesLet E� be a homogeneous bundle over G=P . The projection G=B ��!G=P is a �berbundle, in particular ��:Hi(G=P;Z) ! Hi(G=B;Z) (10:1)is injective. This allows to compute the Chern classes cp(E�) in the following way.If �i for i = 1; : : : ; r are all the weights of � then ��E� admits a �ltration withsuccessive quotients given by the line bundles L�i and by the Withney formulac��E�(t) = rYi=1 cL�i (t) = rYi=1(1 + �it)by identifying �i with the corresponding class in H2(G=B;Z). By (10.1) after eventualcancellations cp(E) must involve only the weights that are fundamental for P .55



For example c1(E) = rXi=1 �ic2(E) =Xi<j �i�jand so on.Let P = P (�1; : : : ; �k) and let �1; : : : ; �n be all the roots (in some order). When � isirreducible c1(E�) can be computed easily from the highest weight �1 of �. In fact all theother weights �i are obtained summing to �1 some roots in SP . If �i = Pnj=1 qij�j fori = 1; : : : ; r (here qij 2 Q) then for j = 1 to k qij does not depend on i so thatc1(E�) = rXi=1 �i = rq11�1 + rq12�2 + : : : + rq1k�k + nXj=k+1xj�j = kXi=1 yi�iwhere �i are the fundamental weights and yi are the unknowns that can be determined bythe square system rq1j = kXi=1 yicij j = 1; : : : ; kwhere cij are the coe�cients of the inverse of the Cartan matrix. C�1 is computed in[Hu1] pag. 69, table 1Example. Let E�2 the bundle de�ned over Gr(k; n) = SL(n+1)=P (�k+1) by the repre-sentation with highest weight �2. We want to compute c1(E�2) with the above technique(of course this could be done directly after observing that E�2 = ^2U� !).We identify �k+1 with the positive generator of H2(Gr(k; n);Z) = ZWe have r = rank E�2 = �k + 12 �coe�cient of �k+1 in the expression of �2 = 2(n� k)=(n+ 1)coe�cient of �k+1 in the expression of �k+1 = (n� k)(k + 1)=(n+ 1)so that c1 = 2�k+12 �=(n+ 1)(k + 1)=(n + 1) = kThe following theorem was already known to Cartan in 1913, but the modern trans-lation in the language of bundles is known as Borel-Weil theorem.56



Theorem 10.11 (Cartan, Borel-Weil). Let G be semisimple and simply connected.Let P � G be a parabolic subgroup. Let E� be the homogeneous bundle de�ned by theirreducible representation � of P with highest weight � (see the remark 10.10). ThenH0(G=P;E�) ' G�where G� is the irreducible representation of G with maximal weight �.Proof By the lemma 9.8 we haveH0(G=P;E�) ' ff :G ! Cr jf(gp) = �(p�1)f(g) 8p 2 P; g 2 Gg (10:2)Denote the corresponding representation by�:G ! GL(H0(G=P;E�))(d�)e:G ! GL(H0(G=P;E�))We prove �rst that � is irreducible. Let � 2 H0(G=P;E�) be a lowest weight vectorfor � (see remark 6.37). Let U� � G such that Lie U� = ��<0G�.We get (d�)e(Lie U�)� = 0hence �(U�)� = �that is (see the lemma 9.8) �(ug) = �(g) 8u 2 U�; g 2 G (10:3)By (10.2) �(gp) = �(p�1)�(g) 8p 2 P; g 2 G (10:4)We claim that U� �P is dense in G. It is su�cient to check that U� �B is dense whereB is a Borel subgroup.In fact U� �B ! G(u; b) 7! ubis an injective map (not a group morphism!) of algebraic varieties of the same dimensionover C, hence it is dominant.We get by using (10.3) and (10.4)�(up) = �(p) = �(p�1)�(1) 8u 2 U�; p 2 Pand this shows that � is determined by �(1). Then there exists a unique lowest weightvector (up to constant) and by the theor. 6.36 � is a irreducible representation.57



To conclude the proof, call �low the lowest weight of � and �low the lowest weight of�. It is su�cient to show that �low = �low. By the de�nition of lowest weight (applied tothe Lie groups) �(h)� = �low(h)� 8h 2 Hthat is �(h�1g) = �low(h)�(g)8h 2 H; g 2 G (10:5)By using (10.4) and (10.5)�(h�1)�(1) = �(1 � h) = �(h � 1) = �low(h�1)�(1)This means that �low is a weight for � with eigenvector �(1). Moreover if p 2 SP wehave �(p)�(1) = �(p�1) = �(p)�(1)In particular if p 2 U� \ SP we get �(p)�(1) = �(1)so that d�(Lie (U� \ SP ))�(1) = 0 and �(1) is a lowest weight vector for �. It follows�low = �low as we wanted.Remark 10.12. In order to show the existence of a irreducible representation of Gwith prescribed highest weight n1�1 + : : : + nk�k (see the theor. 6.40) we can simplyconsider H0(G=B;Ln1�1 
 : : :
Lnk�k ). Of course one have to de�ne �rst L�i but this can bedone by considering the associated divisor which comes from the cellular decompositionof G=B. Conversely the Borel-Weil theorem 10.11 gives a interpretation of the fact thatG=P (�1; : : : ; �k) can be constructed as the unique closed orbit in the G-module withhighest weight �1 + : : : + �k. By the Borel �xed point theorem any closed orbit containsa �xed point for the action of B. The point in P(G�1+:::+�k) corresponding to the highestweight vector can be the only point �xed by B. Then there is a unique closed orbit.This gives a geometrical interpretation of G=P as generalized 
ag manifolds. For exampleSpin(2n+1)=P (�k) is the variety of linear Pk�1 contained in the smooth quadric Q2n�1 �P2n because the irreducible representation of the semisimple part of P (�k) (which isSpin(2n�1) with highest weight �k is the k-exterior power of the standard representation.More generally the unique closed orbit in P(VPki=1 ni�i) is G=P (�1; : : : ; �k) embeddedwith the line bundle Ln1�1 
 : : :
 Lnk�k .Proposition 10.13. Let G be semisimple and simply connected. Let �:B ! C�. LetP � G be a parabolic subgroup and let � the representation of P with highest weight �(see the remark 10.10). Denote by � the projection G=B ! G=P . The following is true��L� ' E�58



Proof Let P = P (�1; : : : ; �k). Let� = kXj=1 nj�j + Xj 6=f1;:::;kg nj�j =: �0 + �00Then we have L� ' L�0 
 L�00L�0 is the pullback ��L0�0 of a line bundle on G=P . By the projection formula it follows��L� = L0�0 
 ��L�00The �ber of the bundle ��L�00 is naturally isomorphic toH0(P=B;L�00 ) = H0(SP =(SP \B); L�00)which is by the theorem 10.11 the representation �00 of SP with highest weight �00. Itfollows ��L� = L0�0 
E�00 = E�Remark 10.14. The prop. 10.13 allows to describe geometrically homogeneous bundlestoo. For example consider the bundle E�1 over the grassmannian SL(n+1)=P (�k+1). Thesemisimple part of P (�k+1) is S ' SL(k+1)�SL(n� k) = SL(W �)�SL(V �=W �). The�ber of E�1 is isomorphic to H0(S=(S \ B); V�1 ) ' W � and then it is isomorphic to thedual of the universal bundle. The weights are �1;��1+�2; : : : ;��k+�k+1 (lowest weight).Correspondingly E�k��k+1 is the universal bundle. In analogous way E�n is isomorphic tothe quotient bundle.Lemma 10.15.i) The bundle L = Ln1�1 
 : : :
 Lnp�p over G=B is spanned if and only if ni � 0 8i.ii) Let E� be the homogeneous bundle de�ned over G=P by the irreducible representation� of P with highest weightPni�i (see the remark 10.10). Then E� is spanned if andonly if ni � 0 8i.Proof i) follows from the theorem 10.11 because L is spanned if and only ifH0(X;L) 6=0 (because of homogeneity).ii) follows from i) and the prop. 10.13.Theorem 10.16 (Borel-Weil). Let �1; : : : ; �p be all the simple roots of G.i) The bundle L = Ln1�1 
 : : : 
 Lnp�p over G=B is very ample if and only if it is ample ifand only if ni > 0 8i.ii) The line bundle L = Ln1�1 
 : : : 
 Lnk�k over G=P (�1; : : : ; �k) is very ample if and onlyif it is ample if and only if ni > 0 8i = 1; : : : ; k.Proof We prove �rst ii) for the case P = P (�i) (maximal parabolic). If ni < 0 thenthe bundle has no sections, if ni = 0 it is the trivial bundle. If ni > 0 then by the lemma59



10.15 the bundle is spanned and �Lni�i (G=P (�i)) is again a G-homogeneous variety G= ~Pwith P � ~P , hence P = ~P because P is maximal.The general case of ii) (and then also i)) follows by using the standard projections. Ifsome ni = 0 then the bundle comes as a pullback from another G=P and cannot be ample(it is trivial on the �bers). If all ni > 0 then the image of the associated map is G= ~P and~P = P (�0) with �0 a subset of f�1; : : : ; �kg. If �i is missing this would imply �i = 0.Remark 10.17. In the papers [Snow1] and [Snow2] D. Snow computes the k-ampleness(in the sense of Sommese) and gives necessary and su�cient conditions for the spannednessof a (possibly reducible) homogeneous bundle over G=P .Remark 10.18. A classical formula of H.Weyl expresses the dimension of the irreduciblerepresentation G� of G with highest weight �. In the setting of algebraic geometry thisformula can be deduced from the Hirzebruch-Riemann-Roch formula and the theorem10.11, in fact we will see in the next section that if E is a homogeneous irreducible spannedbundle then Hi(E) = 0 for i > 0. Set � =P�i (sum of all the fundamental weights) and( ; ) be the Killing form. Then Weyl's formula isdim G� = Y�2�+ (�+ �; �)(�; �) (10:6)It is a useful exercise to verify (10.6) for SL(2) and respectively SL(3) by applyingHRR over P1 and resp. over F (0; 1; 2).Note that by the theorem 10.11 the formula (10.6) allows to compute not only thespace of sections but also the rank of a homogeneous irreducible bundle (consider the prop.10.13 and apply the theorem 10.11 on the �bers).Exercises.i) Compute H0(P2; S2TP2).ii) Compute rank and h0 of E�1 over Gr(1; 3).We will soon give a geometrical interpretation of homogeneous irreducible bundles, atleast in the classical cases.Remark. We cannot avoid to mention an identi�cation due to Borel of the cohomologyring H�(G=P;Z) with the quotient of the ring of polynomials on the Lie algebra H by theideal generated by the polynomials invariant under the action of the Weyl group. WhenG = SL(n) this identi�cation reduces Schubert calculus on Grassmannians to computa-tions with symmetric polynomials. For an account see [I.N. Bernstein, I.M. Gelfand, S.I.Gelfand, Schubert cells and cohomology of the spaces G=P Russian Math. Surveys 28(1973)]. 60



x11. The theorem of BottThe theorem of Bott generalizes the theorem of Borel-Weil, in the sense that it describesall higher cohomology groups Hi(G=P;E�)where E� is homogeneous irreducible.Let G be a semisimple simply connected group and let P � G be a parabolic subgroup.Let � be the set of roots of G. Let � be a weight. Let E� be the homogeneous bundlearising from the irreducible representation of P with highest weight � (see the rem. 10.10).In this section let us denote by ( ; ) the Killing form B.De�nition 11.1. � is called singular if there exists � 2 �+ such that (�;�) = 0De�nition 11.2. � is called regular of index p if it is not singular and if there exactlyp roots �1; : : : ; �p 2 �+ such that (�;�) < 0.De�nition 11.3. � = nXi=1 �i(sum of all the fundamental weights).Theorem 11.4 (Bott).i) If � + � is singular then Hi(G=P;E�) = 0 8iii) If � + � is regular of index p thenHi(G=P;E�) = 0 for i 6= pMoreover Hp(G=P;E�) = Gw(�+�)��where w(� + �) is the unique element of the fundamental Weyl chamber of G whichis congruent to �+ � under the action of the Weyl group.Corollary 11.5. hi(G=P;E�) is nonzero for at most one value of i. In particular thedimension of the nonzero value can be computed from �(E) =P(�1)ihi(E).Remark 11.6. In order to prove the theorem of Bott we may suppose P = B. Lookat the prop. 10.13 and the obvious vanishing Ri��O = 0 for i > 0, in fact � is 
at withrational �bers so that by the Leray sequenceHi(G=B;L�) ' Hi(G=P; ��L�)61



Remark. If � 2 C then � + � is regular of index 0 and we get the Borel-Weil theorem10.11. Proof of the theorem of BottThe original proof has been simpli�ed in several times. We present here the proof ofM. Demazure [Dem2] which relies on a nice inductive argument assuming only the followingvanishing on P1 Hi(P1;O(�1)) = 0 8i (11:1)Let us consider for i = 1; : : : ; n the parabolic subgroupsP�i := P (�1; : : : ; �̂i; : : : ; �n)so that the projection G=B ��!G=P�ihas �bers isomorphic toP�i=B ' SP�i=(B \ SP�i ) ' SL(2)=(B \ SP�i ) ' P1For simplicity in the rest of the proof we call �i = �.Denote by V�;� the irreducible representation of P� with highest weight �. As H-module V�;� is the direct sum of one-dimensional eigenspaces with weights (see theor. 5.13and theor. 6.30 ii) ) �; �� �; : : : ; �� �(H�)� = w�(�)Here w� is the re
ection with respect to the hyperplane orthogonal to �.As B-module, V�;� has L� as quotient and Lw�(�) as submodule. Both L� and Lw�(�)correspond to line bundles.More precisely we have the exact sequence0�!K�!V�;��!L��!0 (11:2)where K = 0 if �(H�) = 0, K = Lw�(�) if �(H�) = 1 and if �(H�) � 2 we have also thesequence 0�!Lw�(�)�!K�!V���;��!0 (11:3)Lemma 11.7. Let � :B! GL(V ) be a representation and let �:B ! C� be a morphism(i.e. � 2 �W ). If � can be extended to ~� :P� ! GL(V ) and if �(H�) = �1 thenHi(G=B;E� 
 L�) = 0 8iProof Consider the projection �:G=B ! G=P�. By the assumptions E� is trivial oneach �ber of � and L� is a line bundle of degree �1. By (11.1) and the fact that � is 
atwe get Ri��(E� 
 L�) = 0 8iHence the result follows. 62



Proposition 11.8. Let � be a simple root such that (�; � + �) � 0. We have theisomorphisms of G-modulesHi(G=B;L�) ' Hi+1(G=B;Lw�(�+�)��) 8iProof Write down (11.2) and (11.3) with � + � at the place of �0�!K�!V�+�;��!L�+��!0 (11:4a)0�!Lw�(�+�)�!K�!V�+���;��!0 (11:4b)with obvious modi�cations if (� + �)(H�) = 0 or 1. By tensoring (11.4) by L�� = L�� weget 0�!M�!V�+�;� 
 L���!L��!0 (11:5a)0�!Lw�(�+�)���!M�!V�+���;� 
 L���!0 (11:5b)By the lemma 11.7 we have Hi(G=B;V�+�;� 
 L��) = 0 8iIn fact ��(H�) = �1. In the same wayHi(G=B;V�+���;� 
 L��) = 0 8iThen the result follows from the cohomology sequences associated to (11.5).Lemma 11.9. The Weyl group is generated by re
ection with respect to simple roots.Proof [FuHa] D.27 pag. 493De�nition 11.10. If w 2W denote by l(w) the minimum length of an expression of was product of re
ections with respect to simple roots.Corollary 11.11. Let � 2 �W , �+ � 2 C (fundamental Weyl chamber). ThenHi(G=B;L�) ' Hi+l(w)(G=B;Lw(�+�)��)Proof Let w = w�1 � : : : � w�kApply inductively the proposition 11.8. The only thing to observe is that the condition(�; �+�) � 0 is true at each step. In fact at the �rst step (�k; �+�) � 0 because �+� 2 C.At the second step we have to check that(�k�1; w�k(�+ �)) � 0 (11:6)As the Killing form is invariant under the action of the Weyl group (11.6) is equivalentto (w�k(�k�1); � + �) � 0which it is true because w�k permutes all the positive roots di�erent from �k. By continuingin this way the corollary is proved. 63



Lemma 11.12. If �+ � 2 C thenHi(G=B;L�) = 0 for i > 0Proof By the Bruhat decomposition there exists an element w 2W such that l(w) =dim G=B (see [FuHa] pag. 397). Then apply the corollary 11.11We conclude now the proof of the theorem of Bott 11.4. In order to prove i) considerthat by assumption (�; �+ �) = 0 for any root �. There exists w 2W such thatw(� + �) 2 CIt follows (w(�); w(� + �)) = 0for any root �, then there exists a simple root � such that(�;w(�+ �)) = 0It follows (�;w(� + �) � �) = �1By the lemma 11.7 (with � trivial) we getHi(G=B;Lw(�+�)��) = 0 8iApply the corollary 11.11 with w(� + �) � � at the place of � and w�1 at the place of w,then w�1[w(� + �)� � + �]� � = �and it follows Hi(G=B;L�) = 0 8ias we wanted.In order to prove ii) consider that by the lemma 11.12 we haveHi(G=B;Lw(�+�)��) = 0 8i > 0Applying again the corollary 11.11 with w(� + �) � � at the place of � and w�1 at theplace of w, then Hi(G=B;L�) = 0 8i 6= l(w�1) = l(w)and H l(w)(G=B;L�) ' H0(G=B;Lw(�+�)��) ' Gw(�+�)��(the last isomorphism by the Borel-Weil theorem).The proof of the theorem of Bott is so concluded, up to the check that l(w) is exactlythe index of regularity of �+ �. This form allows more handy computations. This fact canbe checked by analyzing the euclidean structure of the space of the roots (e.g. the case ofG = SL(n) is a simple exercise) and we leave it to the reader.64



Exercise. If Pic(G=P ) = Z we have a well de�ned line bundle O(1). Prove thatHi(G=P;O(t)) = 0 8t 2 Z 8i : 0 < i < dim G=PVarieties with this property are called arithmetically Cohen-Macaulay (this is equivalentto the homogeneous coordinate ring being Cohen-Macaulay)x12. Stability of homogeneous bundlesLet �1; : : : ; �n be a fundamental system of roots of a simple simply connected Lie groupG and let �1; : : : ; �n be the fundamental weights. Let P = P (�) � G be a parabolicsubgroup.Lemma 12.1. Let �i =Xj cij�j(cij are the entries of the inverse of the Cartan matrix). Thencij > 0 8i; j > 0Proof The inverse of C is computed explicitly in [Hum] page 69 but the computationis long. A direct proof is as follows.Let Si1 = fj 2 [1; n]jcij < 0gSi2 = fj 2 [1; n]jcij > 0gSi3 = fj 2 [1; n]jcij = 0g�1 = �Xj2Si1 cij�j�2 = Xj2Si2 cij�jThen �i = �2 ��1By the lemma 6.42 we have (�1;�2) � 0. It follows0 � (�i;�1) = (�2;�1) � (�1;�1) � 065



Then 0 � (�2;�1) = (�1;�1) � 0These inequalities imply that (�1;�1) = 0. It follows �1 = 0 so that Si1 = ;.If k 2 Si3 we get 0 � (�i; �k) = Xj2Si2 cij(�j ; �k) � 0Therefore (�j ; �k) = 0 8j 2 Si2; k 2 Si3As G is simple we get Si3 = ;.Theorem 12.2. Let � be a irreducible representation of P with maximal weight �. Itfollows � = 0, E� = O , H0(G=P;E�) = C� =X pi�i with pi > 0, h0(G=P;E�) � 2Proof Immediate from the Borel-Weil theorem and the lemma 12.1.The reductive part of P = P (�) isH� X�2�+(�)(g� � g��)Denote by Z the center of the reductive part, then we haveLie Z = fh 2 Hj�(h) = 0 8� 2 �+(�)g = ��=2�+(�)[G�;G��] (12:1)Theorem 12.3(Ramanan). Let � be a irreducible representation of P . Then E� is asimple bundle.Proof Observe that E�
E�� ' E�
�� . By the coroll. 3.26 �
 �� is trivial over Z. Bythe prop. 10.5 �
 �� is completely reducible. Let � be the highest weight of a irreduciblesummand of d(�
 ��)e. We have �jLie Z = 0By (12.1) � is a linear combination of the simple roots in the complement of �. By thetheorem 12.2 and the lemma 12.1 h0(E�) = 0 only if � = 0. Hence H0(E� 
 E��) = Ckwhere k is the number of times that the trivial representation appears as a direct summandin �
 ��. The result follows by applying the prop. 3.27.Theorem 12.4. Let �1, �2 be two completely reducible representations of P . ThenE�1 ' E�2 , �1 ' �2Proof As in the proof of the theorem 12.3 H0(G=P;E�1 
 E��2) = Cr where r is thenumber of times that the trivial representation appears as a direct summand in �1 
 ��2.By the prop. 3.27 and the theorem 12.3 it follows the result.66



De�nition 12.5. Let H be an ample divisor over a variety X of dimension d. We set�H(E) := c1(E) �Hd�1rk E�H is called the slope with respect to H.The main property of the slope that we will use is the following. If0�!A�!B�!C�!0is an exact sequence of sheaves theni) if �H(A) 6= �H(C) then �H(B) is contained in the open interval with extremes �H(A)and �H(C).ii) if �H(A) = �H(C) then �H(A) = �H(B) = �H(C).De�nition 12.6. A bundle E over X is called H-(semi)stable if for every subsheaf Fsuch that 0 �6= F �6= E we have�H(F ) < (�) �H(E)Theorem 12.7 (Rohmfeld).i) If a homogeneous bundle E = E� is not H-semistable then there exists a homogeneoussubbundle F induced by a subrepresentation of � such that�H(F ) > �H(E)Hence in order to check the semistability it is su�cient to check a �nite number ofinequalities involving the possible invariant subbundles for the given representation.ii) Moreover F can be chosen to be a direct sum �Fi where all Fi are homogeneousH-stable bundles with the same slope and the same rank (not necessarily invariantfor the given representation).The theorem 12.7 can be reformulated in the following formCriterion of stability 12.8.i) If �H(F ) � �H(E�) for any homogeneous subbundle invariant for � then E� is H-semistable.ii) If E� is indecomposable and �H(F ) < �H(E�) for any homogeneous subbundle in-variant for � then E� is H-stable.Corollary 12.9 (Ramanan). If � is irreducible then E� is stable.Proof By the theorem 12.3 E� is simple, then indecomposable. Then apply 12.8 ii).In order to prove the theorem 12.7 we need some preliminary results.67



Lemma 12.10. Let Hi = L�i for i = 1; : : : r be the ample generators of Pic(G=P ). LetE be a bundle over G=P . There exists N 2 Z such that if H0(E 
Hn11 
 : : : 
Hnrr ) 6= 0then ni � N 8i.Proof By the theorem A of Serre there exists m such that E 
Hm1 
 : : : 
Hmr is asubbundle of the trivial bundle O 
Ck for some k. Then the statement is trivial.Lemma 12.11. Let E be a bundle over G=P . The set f�H(F )jF is a subsheaf of Egadmits a maximum �0.Proof If F � E is a subsheaf of rank f then (^fF )�� is a line subbundle of ^fE and^fE(�c1(F )) has a section. The result follows by the lemma 12.10 applied to ^fE for1 � f � rk E.Lemma 12.12. Let E� be a homogeneous bundle over G=P . Let A = fF � E�j�(F ) =�0 and the rank of F is minimumg. Then the elements of A are �nitely many and homo-geneous and we get �F2AF � EThe bundle �F2AF is invariant for �.Proof Let F1 2 A and F2 � E� such that �(F2) = �0. We claim that F1 \ F2 = 0 orF1 � F2. In fact if 0 6= F1 \ F2 6= F1 then�H(F1 \ F2) < �H(F1) < �H((F1 + F2)=F2) (12:2)Moreover �H(F2) � �H(F1 + F2) so that from the sequence0�!F2�!F1 + F2�!(F1 + F2)=F2�!0it follows �H(F2) � �H(F1 + F2) � �H((F1 + F2)=F2) (12:3)Putting together (12.2) and (12.3) it follows�H(F1) < �H(F2)which is a contradiction.In particular if F1; F2 2 A then F1 \ F2 = 0 or F1 = F2. Therefore �F2AF isreally a �nite direct sum and has to be �-invariant by its de�nition. Hence �F2AF is avector bundle so that any F 2 A is a vector bundle. In order to prove that every F 2 A ishomogeneous divide A into classes of isomorphic bundles. G is connected and acts triviallyon the set of these classes. It follows the lemma.End of the proof of the theorem 12.7If E is not semistable then �0 > �H(E). The bundle �F2AF de�ned in the lemma12.12 has slope �0. 68
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