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These notes have been written for distribution to the participants to the summer school
in Algebraic Geometry organized by the Scuola Matematica Universitaria in Cortona in
the period 13-26 August 1995.

The aim was to describe the classification of rational homogeneous varieties and to
provide the theorems of Borel-Weil and Bott.

Lie algebras are introduced starting from the definition and they are studied as far as
it is necessary for the aim. At the other side, the knowledge of basic techniques of algebraic
geometry (as sheaf cohomology) and algebraic topology was assumed.

I learned most of the material of these notes from many lectures and discussions with
Vincenzo Ancona and Alan Huckleberry. T am sincerely grateful to both of them and also
to all the participants to the course in Cortona, especially to Raffaella Paoletti and Anke

Simon for careful proofreading and for their suggestions.



61. Introduction

An algebraic variety is a quasiprojective variety over the field C of complex numbers.

Definition 1.1. An algebraic group G is a set which is both a group and an algebraic
variety such that the two structures are compatible in the sense that the map

GxG—=G

(z,y) — ay™!

is an algebraic morphism.

In the category of algebraic groups the morphisms are algebraic maps that are group
homomorphisms.

Basic example. G = GL(n) is the algebraic group of nonsingular n x n matrices with
complex coefficients. GL(n) is affine via the embedding

GL(n) = GL(n+ 1) c ¢+’

g 0
g =
0 det gt

Hence GL(n) is described in Cc(n+)? by 2n linear equations plus the equation det = 1.

A closed (algebraic) subgroup of GL(n) is called linear. In particular a linear group

is affine. Also the converse is true (see [Borel]).

Definition 1.2. An algebraic group G acts over an algebraic variety X if there is an

algebraic morphism
GxX =X
(g, 2) = g
satisfying the two conditions

lr=a2 VerelX
91(927) = (g1g2)r Ve € X Vgi,92 € G
Definition 1.3. An algebraic variety is called homogeneous if there is an algebraic group

acting transitively on it.

Remark. Every algebraic group is homogeneous by acting on itself. Every homogeneous

variety is smooth.

Examples.

— GL(n + 1) acts transitively on C"*t!\ {0} and on P™.

— X = C"/T with T discrete subgroup of rank 2n satisfying the Riemann conditions is
an algebraic group which is projective and is called an abelian variety.

We are interested mainly in projective varieties. We state now the basic results about

these topics.



Theorem  1.4. (Chevalley). A projective variety which is an algebraic group is an
abelian variety (in particular it is an abelian group).

Theorem 1.5. (Borel-Remmert, 1962). A projective variety which is homogeneous is
isomorphic to a product

AxX
where A is an abelian variety and X is rational homogeneous.

Rational homogeneous varieties are the main subject of this course. They can be
completely classified. There are only finitely many rational homogeneous varieties (up to
isomorphism) of fixed dimension n. The first result is

Theorem 1.6. (Borel-Remmert). A rational homogeneous variety X is isomorphic to
a product

X:Gl/Pl X .. XGk/Pk
where GG; are simple groups and P; are subgroups called parabolic.

Here simple means that there are no nontrivial (closed) normal connected subgroups.

Examples. Projective spaces, grassmannians and smooth quadric hypersurfaces are the
most known examples of rational homogeneous varieties. In the first two cases G 1s iso-
morphic to some SL(n), while in the last case G is isomorphic to some SO(n).

Caution. P;’s are not normal, so G;/P; is not a group but only a set of cosets.

It is not difficult to prove the theorem 1.4 by using complex analytic techniques (see
exercises ...), anyway it is worth to notice that it is a corollary of the following deep
theorem.

Structure theorem for algebraic groups 1.7. Let G be an algebraic group. Then
there exists a (unique) normal connected affine subgroup N such that G/N is an abelian
variety.

The above structure theorem is commonly attributed to Chevalley. Anyway the first
two complete proofs were published independently in 1956 by Barsotti and by Rosenlicht.
The importance of the theorem is that every algebraic group can be obtained as an ex-
tension of two algebraic groups at the two "extremes”, that is one affine and the other
projective.

Remark. Borel and Remmert proved something more than the theorem 1.5. In fact they
proved that a compact Kahler manifold which is homogeneous is isomorphic to a product

TxX

where T ~ C" /T is a complex torus and X is rational homogeneous.

The theorems 1.5 and 1.6 open the way to the classification of projective homogeneous
varieties. In fact Cartan in 1913 terminated the complete description of simple algebraic
groups.



In this description it is useful an intermediate step, that is the study of semisimple
groups and their Lie algebras.

Definition 1.8. An algebraic group is called semisimple if it has no nontrivial (closed)
normal connected solvable subgroups.

Example. SL(n) is simple. SL(n) x SL(m) is semisimple but not simple (why?).

Our first aim will be to show that the parabolic subgroups of a simple group can be
completely described in terms of the Dynkin diagram of its Lie algebra.

We recall that after choosing a nondegenerate symmetric (resp. skewsymmetric) ma-
trix @ (resp. J) we have the following definitions

SO(n):={A e SL(n)|AQA" = Q}

Sp(n):={A € SL(n)|AJA" = J}

(in the second one n must be even).
The list of simple Lie groups consists in 4 families A4,,, B,,, Cy, D, and only 5 excep-
tional cases that are called Eg, E7, Fs, Fy, G3. The groups in the 4 families are called

classical. A, correspondsto SL(n+1), B, to SO(2n+1), Cy, to Sp(2n) and D,, to SO(2n).
The Dynkin diagrams are the following:

A,(n>1) o o o— o
1 2 3 n—1 n
B, (n>2) o— 0o . o o =0
1 2 n—2 n—1 n
Cn (n > 3) o0—0 o) o——=—>o
1 2 n—2 n—1 n
(0]
n—1
D, (n>4) o—o0 o o
1 2 n—3 n—2
(0]



Og

E6 . 0
1 3 4 5 6
)
E-: o ) o
1 3 4 5 6 7
)
Eg . 0
1 3 4 5 6 7 8
F4 : O— 0
1 2 3 4
Go : =
1 2

Our next job is to look at homogeneous bundles over a rational homogeneous variety
G/P. They can be described in terms of representations p: P — GL(r). Call E, the homo-
geneous bundle obtained by taking the quotient of G x C” via the relation (g,v) ~ (¢’,v")
if there exists p € P such that ¢ = ¢'p and v = p(p~')v'. G acts on E,, then it acts on
the cohomology groups H'(G/P, E,) too. The theorems of Borel-Weil and Bott describe
(among other things) these last representations. In particular it follows that all the rep-
resentations of a simple algebraic group G can be obtained as a space of sections H® of
some line bundle, so we can look at representation theory from a geometric point of view.
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§2. Grassmannians and flag manifolds

Let V' be a vector space of dimension n + 1 and consider v € V', v £ (. Define
Gis NV — ATV
by
di(w) ==wAv
Lemma 2.1 (Koszul complex of a vector). The following sequence is exact

0— A0V = C2% AL V2 A2y 92 O antl g

Proof 1t is evident that the above sequence is a complex. Choose a basis of V
given by e1,...,€n,6pe1 = v. Choose w € AFV such that ¢p(w) = w Av = 0. If
w = Ei1<...<ik @iy i €ip N ... N\ e, then each nonzero coefficient a;,. ;, has ix = n + 1.
Hence ¢ = Ei1<...<ik_1 @iy . ip€iy N oo N ey, satisties ¢p_1 () =Y Ao = w.

The theorem 2.1 admits the following generalization [Serre, Algebre locale, multiplicités, LNM 11,
Springer]. Let F be a vector bundle of rank n over X and consider s € H° (X, E) such that Z =
{z|s(x) = 0} has pure codimension n. Define ¢;: NE — NTLE by ¢i(w) = w A s and the dual
qbf AFLE* — A'E*. Then the following sequence is exact

¢;_ _ ¢;_ t t
0—s A" B* 25 AL g ﬂ>E*ﬁ>(’)x—>(’)z—>0

and it is called the Koszul sequence associated to S.
The Grassmannian
Let P™" = P(V). Grassmannians parametrize the set of linear subspaces of dimension
kin P". The best way to give to this set the structure of a algebraic variety is the following
definition.

Definition 2.2. Gr(k,n) = Gr(P* P") is defined as the subset of P(A*T1V) consisting
of decomposable tensors.

Theorem 2.3. Gr(k,n) is a projective variety of dimension (k + 1)(n — k).
In order to prove the theorem we have the following

Lemma 2.4.
i) Ifw € AV then dim{v € Vjw Av =0} < k + 1.
ii) w € A*FV is decomposable if and only if dim{v € V|w Av =0} = k + 1.

Proof of lemma 2.4. By the theorem 2.1

wAv=0 <& JYsuchthatw=v Av

S



Hence if vy,...,v; are independent elements in {v € V|w A v = 0} it follows that
w=1"Avi A A

(choose a basis containing vy,...,v; !) and the result is obvious.

Proof of the theorem 2.3 Consider the morphism

P(w): V — ARV

v wAv

By the lemma w € Gr(k,n) if and only if rk ¢(w) =n —k. rk ¢(w) is always > n —k
by the lemma 2.4 i), so the last condition is satisfied if and only if rk ¢(w) < n — k. The
map

ATV — Hom(V, AFT2V)

w = o(w)

is linear, hence the entries of the matrix ¢(w) are homogeneous coordinates on P(A*F1V)
and Gr(k,n) is defined by the vanishing of the (n — k + 1) x (n — k + 1) minors of this

matrix.

The map i: Gr(k,n) — P(A*1V) is called the Pliicker embedding. The equations
that we have found define the Grassmannian as scheme but they do not generate the
homogeneous ideal of G = Gr(k,n). The ideal I; p is generated by quadrics that are
called Pliicker quadrics (see [Harris]).

It is useful to have a coordinate description of the Plicker embedding. A linear
P* C P" is determined by k 4 1 independent points Py, ..., P, € P*. We can write down
a (k4 1) x (n + 1) matrix A containing in the i-th row the coordinates of P;_;. We get

200 Ton
A= : : (2.1)
ko Tlkn

It is clear that this matrix has maximum rank k& + 1 and that two matrices A, A’
determine the same subspace P¥ if and only if there is B € GL(k + 1) such that A = BA'.
The point in P(A**1V) given by the maximal minors of A is independent on the choice of
P!s € P* but depends only on the subspace P*. Conversely if vg A ... A vy is proportional
to wo A ... A wyg then Span < vg,...,vy >= Span < wg,...,wy > (express {v;} in terms
of a basis containing {w;}...).

In conclusion we have a biunivoc correspondence between points in Gr(k, n) and linear
subspaces P¥ C P". The following construction shows that this correspondence is much
more rich than a set correspondence.



Define the incidence variety U C Gr(k,n) x P™ given by {(g,2)|z € g} (really U
is the projective bundle P(U) where U is the universal bundle on the Grassmannian).
U — Gr(k,n) satisfies the following universal property: for every subscheme F C S x P”
such that the projection F — S is flat (F with this property is called a flat family) and
F, is a linear P* for every s € S then there exists a unique morphism ¢: S — Gr(k,n)
such that ¢*U = F. This property says that the Grassmannians are Hilbert schemes (in
fact they are the simplest Hilbert schemes). For an introduction to Hilbert schemes see
([Eis-Har]). It is interesting to remark that in order to construct the Hilbert schemes, the
Grassmannians are needed as first step. We will see in connections with vector bundles
other examples of the ubiquity of Grassmannians in modern geometry.

When k& = 0 or n—1, Gr(k,n) is isomorphic to the projective space P™. The simplest
Grassmannian which is not a projective space is Gr(1, 3).

T T

Exercise. Let p;; = for 0 <1 < j < 3 be Phicker coordinates in the embedding

Yo Yj
Gr(1,3) — P®. Prove that Gr(1,3) is given by the smooth quadric with equation

Po1P23 — Po2pP13 + pozpiz =0

o Ce T3
First hant: write a 4 X 4 matrix repeating twice the matrix ( )
Yo .- Y3

Second hint: write a 4 x 4 skew-symmetric matrix with entries p;; and computes its
pfatfian.
Theorem 2.5. Gr(k,n) is a rational variety of dimension (k + 1)(n — k)

Proof The points in the open affine subset where pg; # 0 correspond to matrices

1 L0,k+1 Ce Zo,n

1 Tk k+1 - Tk

It is easy to check that the above z;;’s are exactly the maximal minors with k& columns
chosen among the first k& 4+ 1. Hence Gr(k,n) N {po1 # 0} is isomorphic to CF+D(n—=Fk)

Theorem 2.6. Gr(k,n) is a homogeneous variety, in particular it is smooth.

Proof GL(n + 1) acts transitively on the set of bases of any vector space of dimension
n 4 1. In particular it acts transitively over Gr(k,n)

It is convenient to write explicitly the action of GL(n + 1) over Gr(k,n) as the left
matrix multiplication g - A* where ¢ € GL(n + 1) and A’ is the transpose of the matrix
(2.1) representing a point in the Grassmannian. If P¥ € Gr(k,n) is spanned by the
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kE + 1 points (1,0,...,0),(0,1,0,...,0),...,(0,...,1,0,...,0) then the isotropy subgroup
P ={g € GL(n+1)|g- P§¥ = PF} has the block form

M

Pz{gEGL(n—I—l)qu( N),MEGL(k—I—l),NEGL(n—k)}

0

Gr(k,n) is so identified with the set of left lateral classes of P C GL(n + 1) which is
denoted by GL(n + 1)/P (P is not normal!). It is sufficient to consider the action of
SL(n+1)={g9 € GL(n+1)|det g =1} over Gr(k,n) which is still transitive. Hence we
can write also Gr(k,n) = SL(n + 1)/P’" where

M
P'={ge SLn+1)|g= ( . N) M e GL(k+1),N € GL(n —k)}

P’ is called a parabolic subgroup, we will see that the correct notation for P’ is
P(ag41) where agyq is the k + 1-th simple root of SL(n 4+ 1).
Schubert cycles [GH]
Fix a complete flag
P=P)CP,cP:c...CcP”
For any sequence of integers such that
n—k>ayg>a >...> ay

denote

W,

AQy.eny

o = {P¥|dim (P* NP =iforn—k+i—a;<j<n—k+i+1—ai1}

These subsets are isomorphic to ChHD(=k=> i o1 d their closure are the subvari-
eties {P* € Gr(k,n)|dim (P* N Pr=F+i=ai) > 4} that are called Schubert cycles.

Theorem. W,

to,....ax give a cell decomposition of Gr(k,n).

Theorem. The Schubert cycles generate freely H.(Gr(k,n),Z) which has no torsion.

Special care has to be reserved to Wy 1 (p times, the last k — p entries are zero and
are omitted). We get

Wi,..1 (p times ) = {Pk| dim (Pk N Pg_k"“_l) >ifori=0,...,p—1} =

= {P*|dim (P* nPr—Ftr=2y > p 1} (2.2)
Flag Manifolds
The flag manifold F = F(kq,...,ks,n) parametrizes all chains of linear subspaces
P* ..., P* in P". We construct it as the incidence variety

FCG=Gr(k,n)x...Gr(ks,n)

defined by
F::{(Vlv"-vvs)€G|V1 CCVS}

It is easy to prove that F is a variety.



Lemma 2.7. The dimension of F(kq,...,ks,n) is > (kjq1 —k;)(kj +1)

) is 20
Proof The fibers of the projection F(k1,...,kr,n) = F(kz,...,kr,n) are isomorphic
to Gr(kl 5 kz)
Examples. F(0,1,2) ~ P(TP?) is a 3-fold. In general F(0,n — 1,n) ~ P(TP")

Definition 2.8. The flag manifold F(0,1,...,n) is called a complete flag manifold. It

has a special role. Its dimension is w

Theorem 2.9. Every flag manifold is a rational variety.

Proof As in the proof of lemma 2.7 every flag manifold can be expressed as a repeated
locally trivial fibration with fibers Grassmannians. The result follows from the rationality
of the Grassmannian (theorem 2.5).

Theorem 2.10. Flag manifolds are homogeneous, in particular they are smooth.
Proof The same proof of theor. 2.6 adapts to this case.

In particular the isotropy subgroup of a point in a complete flag manifold is given
(in a convenient system of coordinates) by the subgroup B of upper-triangular matrices.
Observe that B is solvable.

63. Lie algebras and Lie groups

In this section it is more convenient to consider algebraic groups in the larger category of
complex manifolds. The first two results are included mainly to motivate the definition of
a Lie algebra.

Definition 3.1. A complex manifold G which is also a group and such that the map

GxG—=G

(z,y) — ay™!

is holomorphic is called a complex Lie group.

In the category of (complex) Lie groups the morphisms are holomorphic maps that
are group homomorphisms. The reader can supply easily the notion of real Lie group.

On a complex Lie group G one can consider holomorphic vector fields. Among them it
is convenient to consider the subclass of fields invariant by left translation (the left trans-
lation L,: G — G is defined by L,(¢’) = g¢’). A left invariant vector field is characterized
by the value that it assumes at the identity e € G (or at any other prescribed point). Then
the vector space of left invariant vector fields is naturally isomorphic to T, G.

9



A Lie group morphism F: C — G is called a (complex) one-parameter subgroup. F(t)
is a left invariant vector field along I'm F. In particular the one-parameter subgroup F
is uniquely characterized by v = F(O) (because of the uniqueness of the solution of the
differential equation X(t) = Lx@yv).

Theorem 3.2. There exists a unique holomorphic map
exp: T.G — G
taking 0 to e with the property that for every v € T.G the map

0:C — G
t — exp(tv)

is the only Lie group morphism such that ¢'(0) = v. In particular the differential of exp
at the origin is the identity.

Sketch of proof The solutions of differential equations of the first order depend well
on the initial conditions.

Remark. The reason for the terminology exp is that when G = GL(n) then T.G = M, (C)

and
tk Ak
k!

F(t) = etd =

is the one-parameter subgroup such that F(O) =A

Remark. It holds
det et = el A

so that T,SL(n) ={A € M,(C)|tr A= 0}.

Corollary 3.3. Let G, H be (connected) Lie groups and consider two Lie group mor-
phisms f1, fo: G — H. Then consider (dfi)e, (dfz)e: TeG — T H. The following is true:

(dfl)e:(de)e = f1:f2

Sketch of proof
< obvious
= Counsider the following diagram for ¢ = 1,2

n.¢ ‘Y g
lexp lexp
fi
G — H



The diagram commutes because Vv € T, G the Lie group morphisms
v:C — H
t = fi(exp(tv))

NC = H

t — exp(df;)e(tv)
satisfy /(0) = (dfi)c(v) = N(0). It follows ¢(t) = A(t), i.e. the diagram commutes. By
the inverse function theorem the image of exp contains a neighborhood U of the identity
where exp is invertible. Hence fi(v) = f3(v) for v € U. f; and f; are holomorphic, so that

fi =t

The previous corollary is a hint that 7. G encodes much information about G. In fact
it encodes "everything” if we consider an additional structure on T, G, that is the structure
of Lie algebra. The correspondence

Lie groups <> Lie algebras

will be clear after the cor. 3.14 and the prop. 3.15.

It is well known that if X, Y are vector fields (i.e. derivations satisfying the Leibniz
rule) then XY is no more a vector field but [X,Y] := XY — Y X is still a vector field.
Moreover if X, Y are left invariant, then [X, Y] is still left invariant.

We equip T.G with the bracket |, | which satisfies the three conditions

i) Bilinearity
ii) Skew-symmetry [X,Y]=-[Y,X] VXY € T.G
iii) Jacobi identity
X[V 2]+ [V, [2, X]]+[Z,[X, Y]] =0 VX.Y.ZeT.G
Definition 3.4. A vector space V with a map
[, [V xV =V

satisfving 1), ii) and iii) above is called a Lie algebra. In the category of Lie algebras the
morphisms are vector space morphisms which preserve the bracket.

Definition 3.5. Let GG be a Lie group. The Lie algebra T.G is called the Lie algebra
associated to G and it is denoted by Lie G (it is common to use gothic letters for Lie
algebras).

Example. The Lie algebra of GL(n) is denoted GL(n) and consists of all the nxn matrices
with bracket defined by [X,Y] = XY —Y - X where - is the ordinary row-column product.
This can be proved easily by using the theorem 3.11.

Let V be a Lia algebra. A subalgebra I C V is called a ideal if Vo € V| ¢ € I we have

[v,1] € I. The quotient space V/I inherits a natural structure of quotient Lie algebra.

11



Exercise. Check that the center
ZV)y={xeV]z,y =0 VYyeV}

is an ideal of V.

A Lie algebra V is called solvable if the derived series
V1 = [V, V] V2 = [Vl,Vl] V; = [Vvi_l,‘/i_l]

terminates to zero.
A Lie group G is solvable if and only if Lie G is solvable.
A first result is the following

Theorem 3.6. Let G be a Lie group and let H C Lie G be a subalgebra. Then there
exists a connected Lie subgroup H C G such that Lie H = 'H.

Proof In [Warner] there is a proof using Frobenius theorem. Another proofis in [FuHa]
prop. 8.41.
By using the exponential map it is not difficult to prove that

Proposition 3.7. Let H C G be a closed subgroup. Then H is normal if and only if
the subalgebra Lie H is an ideal.

Proof [NS] IX §3.

A Lie algebra V' is simple if dim V' > 1 and it contains no nontrivial ideals. A Lie
algebra is semisimple if it has no nonzero solvable ideals.

Lie G is semisimple if and only if G is semisimple. The same is true for simple Lie
algebras if dim G > 1. If I; and I, are solvable ideals then it is easy to check that I; + I
is a solvable ideal. It follows that there exists a unique maximal solvable ideal of a Lie
algebra V which is called the radical and denoted by rad V. Hence V is semisimple if and
only if rad V. =10

It is important to remark that there exists a purely algebraic definition of [ , | in
Lie GG. In order to see this, we have to define the adjoint representation.

Definition 3.8. The inner automorphism defined by an element g € G is called p,, that
is pg(h) := ghg™'. We get a morphism

G — Aut(G)

g = Pyg
Definition of Ad 3.9. Consider the derivative at the identity of
pg: G — G

12



that is
(dpg)e: Lie G — Lie G

We define
Ad:G — GL(Lie G)

g — (d/)g)e

Definition of ad 3.10. ad is the derivative at the identity of Ad, that is
ad := (d Ad).: Lie G — GL(Lie G)
Ad is a representation of the group G, while ad is a representation of the Lie algebra

Lie G.

Theorem 3.11.
ad(X)(V)=[X,Y] VXY € LieG

The theorem 3.11 gives a purely algebraic definition of the bracket [, ]. Remark that
ad is a Lie algebra morphism because of the Jacobi identity.

Remark. (here char K = 0 is important!).

Ker Ad = Z(G) center of the group [NS] IX §3

Ker ad = Z(Lie G) center of the Lie algebra

Ado’s Theorem 3.12. Let G be a (finite-dimensional) Lie algebra. Then G C GL(N)
as subalgebra for some N € N.

Proof [FuHa] appendix E

Lemma 3.13. Let G be a Lie group. The universal covering G—@G has a structure of
Lie group such that 7 is a Lie group morphism.

Sketch of proof Lift the map p/ := po (7 x m) where 1 is the multiplication map as in
the following diagram

GxG ——— G
ln-wr \M/ ln-
GxG@ L @&

The lifting exists by elementary topological arguments. You get ji: G x G — G. By
choosing ¢’ € 71 (¢) we may suppose fi(¢/,¢') = ¢'. Tt is straightforward to check that G

verifies the group axioms with e’ as identity.

13



Remark. If G — G is a covering then Lie G ~ Lie G.

Corollary 3.14. Every Lie algebra is isomorphic to Lie G for some simply connected
Lie group G.

Proof By applying the theorems 3.12 and 3.6 there exists G C GL(N) such that
LieG=¢G

Now consider the universal covering
GG
and get Lie G = Lie G =G.
Proposition 3.15. Let G, H be Lie groups with G simply connected. Let
a: Lie G — Lie H

be a linear map. The following are equivalent:
i) There exists 3: G — H Lie group morphism such that o = (df3).

ii) « is a Lie algebra morphism.

Proof
i) = ii) It is standard (e.g. [Boothby, An introduction to diff. manifolds...] cor. IV 7.10)
ii) = i) Consider
Lie (G x H) = Lie G @ Lie H

and

J :=graph(a) C Lie G& Lie H

which is a subalgebra by the assumption. By the theorem 3.6 there exists a Lie
subgroup J C G x H such that Lie J = 7. Consider

pr:J = G
Its differential at the identity
(dp1)e: J — Lie G
is an isomorphism. To check this claim it is enough to look at the two compositions
J—=+GxH—=G

J — Lie G& Lie H — Lie G

It follows that p;: J — G is a diffeomorphism in a neighborhood of the identity. Since
G is generated by any neighborhood of the identity (because G is connected) it follows
that p; is surjective and hence it is a covering.

Since G is simply connected it follows that p; is an isomorphism. Hence

G~ J2H

is the morphism 3 we looked for.

14



Corollary 3.16. Let G1, G5 be simply connected. Then
G~ Ga A= Lie Gi ~ Lie G,
ABC about representations

Definition 3.17. A representation of a Lie group G in a vector space V is a Lie group

morphism

p:G— GL(V)

Sometimes it is convenient to consider V as a G-module (which is equivalent!) by the rule
g-v = p(g)v. We will frequently interchange between the two languages.

Definition 3.18. A representation of a Lie algebra L in a vector space V' is a Lie algebra

morphism

pli L — GL(V)

If p is a representation of G then (dp). is a representation of Lie G in the same vector
space.
In the sequel we consider some properties of group representations, the reader can

supply the analogous properties for Lie algebra representations.

Definition 3.19. A morphism between two representations
pP1: G — GL(Vl)

and

P2 G — GL(VQ)

is a linear morphism ¢:V; — V4 such that

o(p1(g)(v)) = p2(9)(¢(v)) VgeGveW

Equivalently in terms of G-modules
¢(g-v) =g-(¢(v))
that is ¢ is G-equivariant.

Definition 3.20. Let be given a G-module V. A subspace W C V is called invariant if
G-WcCWw.

Definition 3.21. A G-module V is called irreducible if its invariant subspaces are only

0 and V.

Definition 3.22. A G-module V is called completely reducible if it is the direct sum of
irreducible submodules.

Example.
C — GL(2)

1t
T
0 1
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is reducible but not completely reducible.

Schur Lemma  3.23. If V} and V, are irreducible G-modules than any morphism
¢: Vi — V4 is zero or it is a isomorphism.

Proof ker ¢ and I'm ¢ are both invariant subspaces. Then if ¢ # 0 we have ker ¢ = 0
and Im ¢ =V,

Corollary 3.24. IfV is a G-module irreducible then any endomorphism ¢:V — V is
equal to \I for some \ € C

Proof Let A\ be an eigenvalue for ¢. Then ¢ — Al is not a isomorphism and by the

Schur lemma it must be zero.

Corollary 3.25. If G is an abelian group, every irreducible G-module V' has dimension
1.

Proof Let go € G be fixed. Then g - (go - v) = go - (¢ - v). This means that
V-V

v gov

is G-equivariant and by the corollary 3.24 there exists A(go) € C such that go(v) = A(go)v
for every v € V. This holds for every go, then every one-dimensional subspace is invariant.

Corollary 3.26. Let p: G — GL(V) be an irreducible representation. Let Z(G) be the
center of G. Then p(Z(G)) consists of the scalar matrices N\Id.

Proof The morphism
V=V

U= 2V

is G-equivariant Vz € Z(G). Then apply the corollary 3.24.

Remark. The corollary 3.26 in the case G = GL(V') shows that Z(GL(V)) = C*.
Action on Hom(V,W).

Let V, W be G-modules. The induced action of G over Hom(V,W) ~ V* @ W is

g- f(v) =g[flg~ )]

Proposition 3.27. Let p, p’ be two irreducible representations of G. Then
i) p~p' if and only if p* @ p' contains with multiplicity one the one-dimensional trivial
representation.
ii) p % p' if and only if p* @ p' does not contain the one-dimensional trivial representation.

Proof Let p act on V and let p’ act on W. Then p* @ p" act on Hom(V, W) ~ V*a@W
as above. We have that f € Hom(V, W) is G-equivariant if and only if g- f = f. Hence the
subspace Homg(V, W) C Hom(V, W) of G-equivariant morphisms is exactly the subspace
where GG acts trivially. The thesis follows from the Schur lemma and the corollary 3.24.
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Proposition 3.28. Let G simply connected and let
p:Lie G — GL(V)
be a representation. Then there exists a representation
p'tG — GL(V)
such that p = (dp')..
Proof Apply the prop. 3.15.

Proposition 3.29. Let G be a Lie group and let p: G — GL(V') be a representation.
Consider dp: Lie G — GL(V'). Then the following are equivalent:

i) W C V is invariant with respect to p

ii) W C V is invariant with respect to (dp)e.

Proof Let Stab(W) C GL(V) ={g € GL(V)|gW C W} and in the same way define
Stab(W) C GL(V)

It is easy to check that Lie Stab,(W) = Stab(W') (write down a basis of V' containing
a basis of W).

i)= ii) By assumption p factors in the following diagram

G L GLwV)

o]
Stab(W)
Taking the derivatives we get

Lie G Y% gr(v)

o]
Stab(W)

ii)= 1) Let G be the universal covering of G. By assumption we have a commutative diagram

LieG % grv)

v ]
Lie Stab(W)
We get the following diagram

¢ 5 GL(V)

NER
Stab(W)
where ¢ exists by the prop. 3.15 and the diagram commutes by the corollary 3.3.

Then

p(G) = por(G) C Stab(W)

which means that W is invariant with respect to p.
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64. The Borel fixed point theorem

Remark. Let P" = P(V), then Aut(P") = PGL(V) (see [Harris]). Of course PGL(V)

does not act over V.

Theorem 4.1 (Blanchard). Let G be an algebraic (connected) group acting over a pro-
jective variety X with H'(X, Q) = 0. Then there exists a representation p: G — PGL(V)
and an embedding X C P(V') such that the original action is induced by p. In particular
the action is given by projective linear transformations.

Proof By the assumption applied to the exponential sequence
0—=2Z— 080" =0
we get that H'(X, O*) injects in H?(X,Z) and then it is discrete. It follows that
g*O(1)~0O(1) VYge G

In particular G acts over the hyperplane sections of X, then it acts over P(H%(X, O(1))*).
Then in the embedding given by the complete linear system the condition of the theorem
is satisfied.

Remark. The assumption H' (X, Q) = 0 is necessary in the theorem 4.1 as it is shown by
the example of plane cubic curves (e.g. every element of PGL(3) acting on a plane cubic
curve must preserve the flexes).

Remark. In the theorem 4.1 let G be the universal covering of G acting on X. We get
that the action is induced by a morphism G — GL(V) where V = H°(X, O(1))*.

There are two powerful results that we will use in the sequel. They are the theorem
of Lie and the Borel fixed point theorem. The proof of both of them will be completed
after the lemma 4.10.

Theorem of Lie 4.2. Let GLGL(V) be a representation of a solvable linear algebraic
group G. Then there exists a basis of V such that p(g) is in upper triangular form for
every g € G.

Corollary 4.3. Let QLQE(V) be a representation of a solvable Lie algebra G. Then
there exists a basis of V' such that p(X) is in upper triangular form for every X € G.

Remark. The statement of the theorem of Lie is equivalent to the existence of an eigen-
vector v for p (in fact consider the quotient representation V/ < v > and make induction).

Borel fixed point theorem 4.4. Let G be a solvable linear algebraic group. Then any
action of G on a projective variety X has a fixed point.

The following particular case is more elementary
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Exercise. Prove that any action of a torus on a projective variety has a fixed point (see
Fulton, Young tableaux 10.1)

The theorems 4.2 and 4.4 are linked in the sense that each one implies (almost) the
other via a simple (and instructive) proof.

Lie = Borel fixed point (in weaker version) We will prove a slightly weaker
statement, in fact we make the additional assumptions that X C P(V) and that the
action is induced by a linear action over V. By the theorem 4.1 this is not restrictive when
H'(X,0) = 0 (considering eventually the universal covering G). If Vo C Vi C ... C V is
the flag fixed by the Lie theorem then there exists ¢ such that dim X NV, = 0 and all the
finitely many points in the intersection have to be fixed.

Borel fixed point = Lie p induces a natural action on the complete flag manifold
F of subspaces of V' which is projective (§2). Then by the Borel fixed point theorem there
is a complete flag fixed by p and in an adapted basis p(g) is in upper triangular form.

The theorem of Lie can be proved by purely algebraic techniques (see for example
[FuHal).

We sketch now the proof of the Borel fixed point theorem. We recall the following
basic theorem of algebraic geometry.

Theorem 4.5 (Chevalley). Let f:V — W be a morphism between algebraic varieties.
Then f(V') contains a dense open set of f(V).

Proof [Harris] 3.16

Remark. The algebraic setting is necessary in the theorem 4.5 (think at the irrational
line on the torus).

Closed orbit lemma 4.6. Let G be a algebraic irreducible group acting over a algebraic
variety X. Then each orbit is a smooth variety which is open in its closure. Its boundary
is a union of orbits of smaller dimension. In particular the orbits of minimal dimension
are closed.

Proof Let M = G(x) be a orbit which we consider as the image of the morphism
G—X
g =gz

By the theorem 4.5 M contains a dense open set of M. Furthermore G leaves M invariant.
Since the action over M is transitive, each point of M must be contained in a open set of
M. Hence M is open in M. M \ M is left invariant too and the other statements follow
easily.

Proposition 4.7. Let G be a affine group and H C G be a closed subgroup. Then
there exists an injective homomorphism o:G — GL(E) and a line D C E such that
H ={g € Gla(g)D = D}

Proof [Borel] 11 5.1
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Remark 4.8. The proposition 4.7 and the closed orbit lemma show that the set of
cosets G/H has the structure of quasi-projective variety in P(E). This construction has
nice properties ([Borel]) and G/H is called a homogeneous space.

Proposition 4.9. Let G be a affine group and N C G be a normal closed subgroup.
Then G/N is a affine group.

Proof Apply the proposition 4.7 and find o: G — GL(E) and a line D C E such that
N ={g € Gla(g)D = D}. Let O be the orbit of [D] in P(E). As N is normal we get that
it acts trivially over O. Then G/N embeds in the isotropy subgroup of O in PGL(E) and
then it is affine.

Another approach to the prop. 4.9 is the following. Let G = Spec A and consider the
natural action of N over A. Then the natural candidate for G/N is Spec AN where AN
consists of the elements of A fixed by N. The problem here is to show that A is a finitely
generated C-algebra. This fact is proved in [Hochster| I1.4

Lemma 4.10. The set of fixed points of an action is closed.

Proof Consider
Gx X-5X x X

(9, 2) = (g2, )

Let A C X x X be the diagonal. If z is not fixed then J¢g € G such that (g,z) ¢ ¢71(A).
Then there exists a neighborhood U, such that ¢(g,U,) is in the complement of A.

Proof of the Borel fixed point theorem We argue by induction on d = dim G.
If d =0 then G = {e}, so assume d > 0. Then N = DG (derived subgroup) is connected
(exercise) and of smaller dimension, so that the set F' of finite points of N in X is non
empty and closed, hence it is a projective subvariety. As N is normal in G we claim that
F is G-invariant. In fact let n € N, g € G, f € F. There exists n’ € N such that ng = gn’
so that

ng-f=gn'-f=g-f

and this implies that g - f € F. By the closed orbit lemma there exists © € F such that
the orbit G(«) is closed. Let G, be the isotropy subgroup of x.

We have N C G so that GG, is normal and there is a bijective G-equivariant morphism
G/G, — G(x) that is an isomorphism.

G /G, embeds in a affine space by the prop. 4.9, and it is projective because it is
isomorphic to G(x). This shows that G/G, is a point, hence G = G, and « is the fixed
point we looked for.

The automorphism group

If X is a algebraic variety then the group Aut(X) of the automorphisms of X is an
algebraic scheme. This is a general fact in algebraic geometry, in fact the set of morphisms
between two algebraic varieties can be endowed with a structure of scheme.
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It can happen that Aut(X) has infinitely many components, anyway the connected
component of the identity Aut’(X) is always a variety. In the complex analytic setting the fact
that AutO(X) is a Lie group is a deep theorem of Bochner and Montgomery.

Definition 4.11. We say that G acts effectively on X if the morphism G — Aut(X) is
injective. Taking the quotient by the kernel of the above map every action can be supposed
effective.

Remark 4.12. The theorem of Blanchard 4.1 says that if X is a projective variety with
HY(X,0) =0 then Aut’(X) is linear algebraic.

Remark. The definition of homogeneous at page 1 can be reformulated by saying that X
(irreduc.) is homogeneous if Aut®(X) acts transitively over X .

The following theorem is simple but it is crucial for the classification of rational

homogeneous varieties.

Theorem 4.13. Let GG be a linear group acting transitively and effectively over a variety
X. Then G is semisimple.

Proof Let H be a connected normal solvable subgroup H C G. By the Borel fixed
point theorem there exists g € X such that heg = g Yh € H. Let * € X, then there
exists ¢ € G such that x = gxg. Consider that for every h € H

he = g9 he = (g hg)xo = (because H is normal)

=grg =21
Then H fixes every point, so that H = {¢} as we wanted.

Remark 4.14. By the remark 4.12 if H' (X, Q) = 0 the assumption that G is linear can
be dropped from the theorem 4.13.

Corollary 4.15. Let X be a projective variety with H'(X,0) = 0. Then Aut®(X) is

linear and semisimple.

From the theorem 4.13 it follows that every rational homogeneous variety is isomorphic
to G/P where G is semisimple. Two things remain to be understood.

First we want to know what are the possibilities of G. At the end of section 6 we will
describe the Cartan classification of semisimple groups.

Given a semisimple group G, we want to know what subgroups P C G define a
projective variety G/P. At the end of the section 7 we will give the classification of the
possible P’s too. In particular it will follow from the theorem 10.1 that every variety

isomorphic to G/P with G semisimple is rational.
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§5. SL(2)

Complete reducibility for finite and compact groups
We will not use the following proposition, but we include it because its proof is useful.

Proposition 5.1. Let G be a finite group. Let V be a G module and W C V be a
submodule. Then there exists W' C V submodule such that V =W ¢ W'.

Proof We show that we can reduce V to be a unitary representation for a suitable
Hermitian metric. Let Hy be any Hermitian metric on the vector space V and define

H(v,w) := é ;}Ho(gv,gw) Yo,w eV

It is easy to check that H(gv,gw) = H(v,w) V¢ € G and that H is still a Hermitian
metric.
Then the orthogonal subspace

W =Wt ={v|H(v,w)=0 YweW}

satisfies our request.

Corollary  5.2. Every (finite dimensional) representation of a finite group G is com-
pletely reducible.

The proposition 5.1 can be generalized to all compact groups G by replacing

ﬁZf(g)

geG

/Gf(g)du

where the volume form dy is chosen to be translation invariant and such that fG dp=1

with

Proposition 5.3. Let G be a compact (real) group. Let V be a G module and W C V
be a submodule. Then there exists W' C V submodule such that V =W @ W'.

Proof As in the proof of prop. 5.1 let Hy be any Hermitian metric on the vector space

V and define
Hio,w)i= [ Holgv.gu)du
G

Then the orthogonal subspace
W' :={v|H(v,w) =0 Ywe W}
satisfies our request.
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Example. If G = S! parametrized by (cos 0,sin 8) the integral in the proof of prop. 5.3
is 5= [T H(6v, 6w)db

27

The unitary trick
The unitary trick of H.Weyl consists in restricting representations of a complex Lie

group to a "big” real compact Lie subgroup. For example C* contains S! with the property
that Lie S @r C = Lie C* (why?).

Definition 5.4. A complex Lie group G with the property that exists a compact real
Lie group K such that Lie K @r C = Lie G is called reductive.

In particular a semisimple group is reductive (this is easy to verify for the classical
groups, see the lemma 5.7 for SL(n)) and the unitary trick applies to this class of groups.

Theorem 5.5. (Unitary trick). Let G be a reductive Lie group. Let V be a G-module
and W C V be a submodule. Then there exists W' C V submodule such that V = W& W',

Proof Restrict p: G — GL(V) to p": K — GL(V). By the prop. 5.3 there exists W’
complementary subspace which is K-invariant. Then W' is Lie K-invariant for dp’, so
that it is Lie G invariant because G is reductive. By the prop. 3.29 we have the result.

Corollary 5.6. Every representation of a reductive Lie group is completely reducible.

We are interested in to the following special case. Let SU(n) be the (real) Lie group
of unitary matrices A (i.e. A-Af = I) with determinant 1. Its Lie algebra SU(n) consists
of skew-hermitian matrices of trace zero.

Lemma 5.7.
i) SL(n) =SU(n) @r C
ii) GL(n) =U(n) @r C

In particular SL(n) and GL(n) are reductive.

Proof
A— Al [ —1A — AT
A= 4+ | —
2 2
Corollary 5.8. Every representation of SL(n) or GL(n) is completely reducible.

Definition  5.9. The Lie group G = C* x ... x C* (k-times) is called a torus. The
reason for this terminology is that G is the complexification of a real torus. G should not
be confused with the complex torus C"/T.

Corollary 5.10.
i) Every representation of a torus is isomorphic to the direct sum of representation of
dimension one.
ii) Every representation of dimension 1 of a torus C* x ... x C* (k-times) has the form

C'x...xCr—=C*
(B, tp) =t

23



where n; are integers.

Proof 1) follows from the corollary 5.6 and the fact that tori are commutative (see
cor. 3.25). ii) follows from the fact that every algebraic (or holomorphic) group morphism
between C* and C* has the form ¢ — ¢" for some integer n.

Remark. Note that the complex analytic setting is necessary in the coroll. 5.10. In fact
the map f: C* — C* given by f(pe'®) = p*e3? is a real analytic group homomorphism.

The corollary 5.10. states that representations of tori are ”discrete”. The same result
is true for representations of general reductive groups. In the next section we will analyze
the case of SL(2) (see ther. 5.13 and coroll. 5.14) and then the case of a general semisimple
group (through its Lie algebra).

Description of S£(2)

SL(2) is important in its own and also because it is a ”building block” that allows
to construct all other semisimple Lie algebras. We will see that its Dynkin diagram is as
simple as possible, in fact it consists of only one dot.

Fix the following basis of SL£(2)
1 0 0 1 0 0
H- X = Y = (5.1)
0 -1 0 0 1 0

[H,X]=2X [HY]=-2Y [X,Y]=H

Check that

Let V be a SL£(2)-module. By the corollary 5.6 it is completely reducible.
H :=< H > is an (abelian) subalgebra of dim 1.

Definition 5.11.
Vo :=A{v|H - v = av}

When V, # 0 then o is called a weight of V.

Lemma 5.12. Letv c V,,.
i) H(X(0)) = (o +2)X(0)
i) H(Y(0)) = (o —2)Y(v)

Proof
H(X(v)) =X(H(v)) 4+ [H,X](v) = because the representation preserves the bracket

= X(av) +2X(v) = (a +2)X(v)

This proves i). The proof of ii) is analogous.

The following theorem is fundamental:
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Theorem 5.13. Integrality of weights If V is a irreducible SL(2)-module then in
(5.2) all the « are distinct integers that fill a sequence symmetric with respect to the origin
(ie. —t,—t+2,...,t). Moreover dim V, = 1.

Proof 1t follows from the lemma 5.12 that for every o
X:Vy = Vago
Y:V, = Voo
HV, =V,
If Vo, # 0 then

Z Va0+2n cV
neZ

is a submodule, hence we have equality (V is irreducible). It is a well-known fact in linear
algebra that the sum in the left side is direct, so that

V = ®nVaot2n (5.2)
Of course in (5.2) all terms are zero except finitely many. Let
m = max{ag + 2n|Vao+2n # 0}
We want to prove that m is a nonnegative integer. In fact let v € V,
XY() =X Y](v)+Y(X(v)) = Hv)+0=mv
X(¥?(0)) = [X, VIV (0) + Y(X(Y(0))) = H(¥(0)) + Y (mo) = ((m —2) + m) V(o)
and it is easy to prove by induction that
X(Yk(v)) =((m—-2k+2)+(m—-2k+4)+...4+m) Yk_l(v) =k(m—Fk+ 1)Yk_1(v)

(5.3)
It follows that when Y*(v) = 0 for minimal k then m = k—1 € Z>o. By (5.3) it is evident

that
v, Y(v),...,Y*w),...

span an invariant subspace of V' and so they span V. This proves the theorem.

The above proof gives also a basis of V' and we know exactly where each of H, X and
Y takes each basis vector. Hence V' is determined by the collection of weights, in particular
it is determined by the m we started with (called maximal weight or highest weight).

We get

Corollary 5.14. Every irreducible representation of SL£(2) is a symmetric power S™V
of the standard representation V ~ C2.

S™V has dimension m + 1 and weights —m,—m +2,...,m — 2, m.

m is called the highest weight.
—m 1s called the lowest weight.

Exercise. Prove that the irreducible representations of PGL(2) are exactly the even pow-

ers S?"V
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§6. The Cartan decomposition

Let G be a semisimple Lie group, that is G does not contain nontrivial normal solvable
subgroups. In this section we study the structure of Lie G, in order to have precise
informations on G. It will follow that Lie G is a direct sum of simple Lie algebras G; (i.e.
dim G; > 1 and G; does not contain nontrivial ideals). Moreover there is a complete list
of all simple Lie algebras (as sketched in the introduction).

Definition 6.1. A subalgebra H C G is called abelian if
[hl,hz]:() Vhl,hz EH

Definition 6.2. A subalgebra H C G is called a Cartan subalgebra if
i) H is abelian and adjy: H — GL(G) acts diagonally

ii) ‘H is maximal with respect to i)

We will see in a while that it is easy to check if a subalgebra satisfying i) satisfies also

ii). The first nontrivial fact is the following existence theorem
Theorem 6.3. In any semisimple Lie algebra G there exist Cartan subalgebras H.

Sketeh of proof It G = SL(n) then the subalgebra of diagonal matrices is a Cartan
subalgebra. The same fact is true if G is a classical group. In general Cartan subalgebras
can be found as the centralizer {X € G|[X,Y] = 0} for a sufficiently general Y. For details
see the appendix D of [FuHa].

Let now a Cartan subalgebra H C G be fixed.
Definition 6.4. For any o € H* (dual of H) denote

Go ={X €Glad(H)X)=a(H)X VHeH}

According to i) of the definition we get that G is decomposed as direct sum of the

eigenspaces G,

Theorem 6.5.
Ga,G8) C Gatp

Proof Let X € G, Y € Gg, H € H. By the Jacobi identity
[H, [X.Y]] = -[X, [V, H]] - [Y,[H, X]] = [X, B(H)Y] - [\, a(H)X] = (a(H) + B(H))[X, Y]

Lemma 6.6.

H = Go

Proof The inclusion C is evident and if 0 appears among the «o’s then H could be
enlarged still satisfying property i) by the theorem 6.5.
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We get the decomposition

G = HED(aenGa) (6.1)

which is called the Cartan decomposition. The reader should notice the analogy with

the case of SL(2).

Definition 6.7. Any o € H* such that G, # 0 is called a root (except for 0 that it is
not considered as a root). The set of roots is denoted by ® C ‘H*. G, ’s are called the root
spaces.

Theorem 6.8. If a is a root then —a is also a root.
Proof [FuHa] D.13, in the exercises we will check directly this fact if G = SL(n).

Now choose a direction in ‘H* irrational with respect to the lattice generated by the
roots. This gives a decomposition

¢ =0TUP™
which is called an ordering of the roots. By the theorem 6.8 —®* = &,
Definition of the Killing form 6.9.

B:Gxg—C
(X,Y) = tr(ad(X)oad(Y):G — G)

is called the Killing form. It is obviously bilinear and symmetric.

Exercise. Check that for G = SL(n) then B(X,Y) = 2ntr(XY'). Verify from this ex-

pression that B is nondegenerate.

Lemma 6.10.
i) If X € Go,Y € G then

ad(X) 0 ad(Y)(G,) C Gatitn

ii) Let Qu := Go & G_o. Then the decomposition

G=H @(@a€¢+ Qa)

is orthogonal with respect to the Killing form.

Proof 1) is immediate from the theorem 6.5. ii) follows by i) because if o # —( then
ad(X) o ad(Y')(G~) has zero component with respect to G, so the contribute to the trace
1S zero.
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Lemma 6.11.

i)
B(IX.Y].Z) = B(X,[Y.Z]) VX,Y.Z€G

ii) For any ideal T C G the orthogonal subspace
T+ :={X €gG|B(X,Y)=0 VY €T}

is an ideal.

Proof 1) is straightforward ([FuHa] 14.23). ii) is immediate from i).
The importance of the Killing form is stressed by the following theorem

Theorem 6.12.
i) Cartan’s criterion If B(X,Y) =0VX,Y € G then G is solvable.

ii) G is semisimple if and only if B is nondegenerate.
Proof [FuHa] appendix C.
Remark. The theorem 6.8 follows from the theorem 6.12 ii). In fact from Lemma 6.10 i)

if —a is not a root then G, is orthogonal to all G.
Theorem 6.13. A semisimple Lie algebra G is a direct sum of simple Lie algebras.

Proof For every ideal Z, ZNZ~ is an ideal by the lemma 6.11 ii) and it is solvable by
the Cartan criterion. Hence G = T & Z+ and the result follows by induction.

Lemma 6.14. The roots a span H*

Proof Otherwise there is a nonzero X € H such that a(X) = 0 for all roots a. It
follows [X,G,] = 0 for any root a. Hence X is in the center of G which is zero because G

is solvable.

Lemma 6.15 (find S£(2) inside G). Let X € G,, Y € G_, such that B(X,Y) # 0
(they have to exist thanks to the lemma 6.10 and the theorem 6.12 ii)). Then [X,Y], X
and Y span a subalgebra S of G isomorphic to SL£(2).

Proof First we see that
(X, Y]=#£0 (6.2)

In fact VH € ‘H by the lemma 6.11
B(H,[X,Y]) = B([H,X],Y) = o(H)B(X,Y)

We have the relations

[[va]vX] = Oz([X,Y])X
[[va]vy] = —Oz([X,Y])Y
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Note that [X,Y] € Go = H by the theorem 6.5 and the theorem 6.4. The crucial fact is
that
a([X,Y]) #0 (6.3)

Otherwise S ~ ad § C GL(G) is a solvable subalgebra. By the Lie theorem there is a basis
of G such that the elements of ad S are in upper triangular form, then ad ([X,Y]) is in
strictly upper triangular form. But the elements of ad H are diagonalizable and this imply
ad [X,Y] =0 in contradiction with (6.2). Now adjusting by scalars we can find the same
multiplication table of S£(2), in particular o([X,Y]) =2

Lemma 6.16. Let «a a root.
i) Fork € Z, k # 1,—1 then ko is not a root.
i) dim Go =1

Proof Pick up a Lie algebra § as in the lemma 6.15. Consider the adjoint action of §
on V= HP(PrezGra) Now S acts trivially on ker « and it acts irreducibly on S itself.
By (6.3) H=0Go C V' :=ker a@® S C V and by the cor. 5.8 there exists a complement
of V' as S-module, but this complement has to be empty because we know by the cor.
5.14 that all the S£(2)-modules have 0 among their weights. Hence G, = 0 for k& #£ 1, —1
which is 1). Furthermore V' =V which is ii).

Definition 6.17. From the lemma 6.16 it follows that the subalgebra S defined in the
lemma 6.15 is uniquely determined by o and we denote it by S,. The element H € §,
such that o(H) = 2 is denoted by H,. X, Yo and H, have the multiplication table of X,
Y and H in (5.1).

Corollary 6.18. Every one-dimensional representation of a semisimple Lie algebra G is
trivial.

Proof Restrict to the subalgebras S, and use the cor. 5.14.
We study now a arbitrary representation of G. We will find a structure similar to the
one obtained in the case of the adjoint representation. Let a Cartan subalgebra H C G be

fixed.
Definition 6.19. Let p:G — GL(V) be a representation of G. For any A\ € H* denote

Vai={v eV|p(H)(v)=XNH)v VHeH}

Theorem 6.20.
P(ga)VA C Va—l—)\

Proof Let X € G, v e Vy, HEH.
p(H)p(X)v = p([H, X])v + p(X)p(H)v = a(H)p(X)v + AMH)p(X)v
hence p(X)v € Vg,
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Definition 6.21. An eclement A € ‘H* such that

Vy #£0

is called a weight of p. Vy\’s are called the weight spaces.

Theorem 6.22. V is the direct sum of its weight spaces
V =@V,

Proof This is in the definition of Cartan subalgebras, so it is hidden in the existence
theorem 6.3. If we know that representations of G are completely reducible we may suppose
that V is irreducible and argue as follows. The sum V' = )", V) is direct from elementary
linear algebra. V' is a submodule of V' by the theorem 6.20, hence V = V.

Corollary 6.23 (Integrality of the weights). Let p:G — GL(V) be a representation
of G. Let A\ be a weight of p. Then
MNHy) €Z

for every root «
Proof Restrict p to S, and apply the theorem 5.13.

Definition 6.24.
Aw :={8 € H*|3(H.) € Z}

is called the weight lattice of G

The corollary 6.23 can be reformulated by saying that all weights A lie in the weight
lattice.

Definition 6.25. Aw contains the sublattice Ap generated by the roots. This is in
general a sublattice of finite index.

The Weyl group
We want to study the geometrical structure of the lattices Ay and Ap with respect
to the Killing form. In order to draw the pictures one can find convenient to consider the
real span of the roots E. It is easy to check that B is positive definite when restricted to
E [FuHa).
As B is nondegenerate it gives a isomorphism H ~ H* and then B induces another
nondegenerate form on H* that we denote again by B.

Proposition 6.26. The hyperplane

Qo :={B|6(Ha) = 0}
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is the hyperplane orthogonal to o.

Proof The statement is equivalent to the dual assertion that H,, is orthogonal to ker «.
This is proved as follows. If H € ker «a then

B(H,,H)= B([X,,Y.],H) = by the lemma 6.11

= B(Xq, [Ya, H]) = B(Xq,0(H)Yy) = B(X,,0) =0

Definition 6.27. The Weyl group is defined as the subgroup in GL(H*) generated by
the orthogonal reflections w, with respect to 2,

() = - g

Lemma 6.28.
wa(B) =B — B(Ha)a

8
Proof It is enough to check that ﬁ—%ﬁ(HQ)a € Qq. Infact ﬁ(HQ)—%ﬁ(HQ)a(HQ) =0
because a(Hy ) = 2 (see def. 6.17).

Corollary 6.29.

() = )

The most important property of the Weyl group for our purposes is resumed in the
following theorem.

Theorem 6.30.

i) The set of weights of any representation of G is invariant under the action of the Weyl
group.

ii) Let a be a root. If X is a weight for some G-module V then in the infinite sequence
co—a+ MM+ a, N+ 2a,. .. the string of weights for V' is a connected set. If \'
is the right extreme of this string, then the string has length N'(H,) + 1. In other
words, after replacing A by A\ + ka for convenient k the string of weights is

Wa(A) = A= ANHy)a, ..., N —a, A

Proof

1% step In the case G = SL(2) the Weyl group consists of only two elements and the statement
is easy from the classification of SL£(2)-modules.
274 step Consider that BrezVatra is & Sq-submodule of V' by the theorem 6.20 and apply the

1%t step.
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Example. The Weyl group for G = SL(n) is the symmetric group ¥, of order n!. ([FuHa|
pag. 214)

Definition 6.31. The fundamental Weyl chamber C is the convex set
C={y€HB(v,a) >0 VYacdt}

Theorem 6.32. The Weyl group acts simply and transitively on the set of orderings of
roots and likewise on the set of Weyl chambers.

Proof [FuHa] appendix D
In the following let be fixed an ordering of the roots.

Definition 6.33. Let p:G — GL(V) be a representation of G. A vector v € V, v # 0 is
called a highest weight vector if satisfies the two properties:
i) p(Ga)(v) =0 VaedT
ii) v is a eigenvector for the action of H. If p(H)(v) = N(H)v for A € H* then \ is called
a highest weight (or maximal weight).

Proposition 6.34. Every representation of G admits a highest weight vector.

Proof Choose F' € ‘H* such that Ker F divides exactly ®* from ®~ and such that
®t C {F > 0}. Let \ be the weight such that F(\) is maximal. Then V3 € ®* we have
F(A+ ) = F(\) 4+ F(8) > F(\) and it follows Vx4 = 0. Then any nonzero v € Vy is a
highest weight vector by the theorem 6.20.

Lemma 6.35. Let V be the space of a representation of G. Let v be a highest weight
vector. The vector subspace spanned by Gg, ---Gg, - v for 3; € ®~ is an irreducible
subrepresentation.

Proof Let W, be the subspace generated by < Gg, ---Gg, -v > for ; € &~ and k < n.
If X € Gy, o € T, we want to prove

X -W,CcWw, (6.4)

by induction on n (the case n = 0 is trivial). In fact any element in W,, can be written as
a sum of elements of the form Y - w where Y € Gg, # € &~ and w € W,,_;

XV w) =Y (X -w)+[X.Y] w

As X - w € W,,_1 by the inductive hypothesis, then (6.4) is true. It follows that
W .= uU,W,

is a subrepresentation (clearly irreducible) as we wanted.

32



Theorem 6.36. A representation of G is irreducible & it admits a unique highest weight
vector (up to scalars).

< immediate from the prop. 6.34 applied to the direct summands of the representa-
tion. = In fact if w is another highest weight vector then we have

we <Gg Gg,v> (6.5)

and

U€<g51"'g5£-w> (6.6)
Subsituting (6.5) in (6.6) we get k =t = 0.
Remark 6.37. We can define a lowest weight vector substituting ®~ at the place of ®*
in the definition 6.33. The above results still hold with obvious modifications.

Theorem 6.38 (Uniqueness theorem). Let p:G — GL(V) and p':G — GL(V') be
two irreducible representations. Let A\ (resp. \') be the highest weight of p (resp. p').
Then
p~p & A=)\

Proof

trivial

Let v € V and v € V' be the two highest weight vectors. Then (v,v') € V & V'
is highest weight vector with weight A for p @ p’. Let U C V & V' the irreducible
representation generated by (v,v’) as in the lemma 6.35. The projections 71: U — V

T4

and mo: U — V' are both nonzero and by Schur lemma are isomorphisms. It follows

VU~V

Hence the highest weight A determines a irreducible representation that we can denote
by V. In particular A determines all the other weights. A careful analysis of what we have
seen shows that the weights of V' are exactly the weights that are congruent to A modulo
Ag and that lie in the convex hull of the set w,()\) for any a € @ (see [FuHa] page 204).

Proposition 6.39. The highest weight \ of a irreducible representation lie in the fun-
damental Weyl chamber C.

Proof Otherwise there exists @ € ®* such that B(a,\) < 0. Then by the theorem
6.30 ' = wa(N) = A= A(Ha)o is a weight too. By the corollary 6.29 A\(H,) < 0 so that A
cannot be the highest weight.

It is interesting to observe that B(a, \') = —B(a, \) > 0

Theorem 6.40 (Existence theorem). VA € C N Ay there exists a irreducible repre-
sentation Vy of G with highest weight \

Proof In the setting of algebraic geometry, this theorem is a corollary of the theorem of
Borel-Weil in the next section (see rem. 10.12). For an algebraic proof see [Hum]. For the
classical groups the theorem can be checked explicitly, for example in the case G = SL(n)
it relies on the construction of the Schur functors.
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Definition 6.41. A root a € % (resp. ®~ )is called simple if it cannot be expressed as
a sum of two positive (resp. negative) roots.

Exercise. Find the simple roots in the case G = SL(n).

In the lemma 6.35 we could have considered Gg, ---Gg, - v only for 3 simple negative
root.

Lemma 6.42. If o, o  are two distinct positive simple roots then
B(ai, ;) <0

(i.e. the angle between them is not acute)

Proof Otherwise «;(H,.) > 0 by the corollary 6.29. Then by the corollary 6.30 ii)

i
a; — o is a root. If it is positive we have o; = o + (a; — o) and «¢; is not simple. If it is
negative we have o; = o; + (o; — ;) and «; is not simple.

Lemma 6.43. The simple positive roots form a basis of F

Proof Obviously the simple roots «; span Ar and also H* by the lemma 6.14. If there
is a linear relation with real coefficients among them we can write

with n;, n; > 0. Then B(v,v) = > n;n;B(a;,a;) < 0 by the lemma 6.42. Hence
B(v,v) = 0 which implies v = 0 because B is positive definite on the real span of the roots.
Hence n; = n; = 0 because the summands of v lie on the same side of the hyperplane

ker F.

Corollary 6.44. Let aq,...,a, be the simple positive roots. Then H,, fori =1,...,n
generate H.

Proof As in the proof of the prop. 6.26 we have H,, = [Xa,,Ys,] and
B(H,,,H)=0;(H)B(X,,,Ys,) (6.7)
for every H € ‘H. The isomorphism ‘H* — H induced by B is defined by
a— T,

where B(Ty, H) = o(H) for every H € H. From (6.7) T, = % is a multiple of H,

and this proves the result.
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Definition 6.45. The fundamental weights \; € H* are the dual basis (over R) of H,,
where «; are simple roots. In other words the \;’s are defined by the conditions

Ai(Haj) = i (6.8)

Remark. It can be shown that H,, are a basis of the complex vector space H so that \;

are independent over C.

It follows that every element in Ay is an integral combination of \; and that the
weights in the fundamental Weyl chamber C are exactly the integral combinations > n;\;
with n; > 0. Geometrically the A;’s are the first weights met along the edges of C.

Examples.In S£(2) we have

a; = 2M

In SL£(3) we have
a1 = 2/\1 — /\2

ay = —A1 + 22X

Definition 6.46. Let ay,...,a, be the simple positive roots of G. The n x n matrix C

with entries

cij = ai(Hy,)
is called the Cartan matrix of G. Note that C has integral entries.

From (6.8) we have immediately that

aq /\1

oy An

In particular

det C =index(Ar,Aw)
From the corollary 6.29 we can write also

o QB(Oéi,Oéj)
“I7 Blaj,a,)

Dynkin diagrams
Any semisimple Lie algebra has a particular structure of the roots in H*. The set of
vectors which satisfy the properties of the roots of a semisimple Lie algebra can be classified
and conversely from any such set of roots it is possible to recover the corresponding Lie
algebra. The technical tool to describe these sets of roots is the Dynkin diagram. Dynkin
diagrams turn out to be a very general subject in mathematics (e.g. they have applications

in the singularity theory).
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Definition 6.47. A root system is a finite set R spanning H* (with a inner product B)
such that

i)aeR=kaeRifk=+l1

ii) Ya € R the reflection w,, in the hyperplane a' maps R to itself.

iii) o, € R then 2222 € 7

A root system is called irreducible if it is not the orthogonal direct sum of two root
systems.

Theorem 6.48. The set of roots of a semisimple Lie algebra is a root system.

Proof 1) is lemma 6.16. ii) is theorem 6.30. iii) is cor. 6.23 joint with cor. 6.29.

The Dynkin diagram of a root system is given by assigning one dot for any simple
root. We join two dots with a number of lines depending on the angle 6 between the
corresponding roots. Precisely

— no lines if § = 7/2

— one line if § = 2x/3

— two lines if § = 37 /4
— three lines if § = 57/6

It turns out that no other angle is possible. When two roots are joined by one line
then they have the same length. If there are two or three lines we draw an arrow in the
direction of the shorter root.

The following classification is a task of pure euclidean geometry

Theorem 6.49. The Dynkin diagrams of irreducible root systems are in the list given
in the introduction.

Proof [FuHa] pag. 326

Theorem 6.50. For each Dynkin diagram D appearing in the list of the theorem 6.49
there exist a unique simple Lie algebra such that its Dynkin diagram is D.

Proof [FuHa] §21.3
The most important part of the theorem 6.50 is the uniqueness, in fact in the classical
cases the existence can be shown directly.

Corollary 6.51.
i) Semisimple Lie algebras are all classified.
ii) Semisimple Lie groups are all classified. In particular the simply connected ones are
all algebraic.

Proof The semisimple Lie algebras are all obtained as direct sum of simple Lie albegras
by the theorem 6.13 and each summand correspond to SL£(n), SO(m), ... as in the list
of Dynkin diagrams. For each of these SL(n) & SO(m) & ... there is a unique semisimple
simply connected Lie group SL(n) x Spin(m) x ... which is algebraic by construction. All
other semisimple Lie groups are obtained by covering. It is easy to show that the kernel of
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a covering morphism must be in the center. Note that we can get products Gy - Gy where
G, Gy are simple but with finite intersection !

Irreducible representations of classical groups

We mention the irreducible representations of the classical groups that have the fun-
damental weights as highest weights. (see exercises. . .).

Complete tables can be found in [Tits, LNM 40].

SL(n + 1) = SL(V) has fundamental weights Ay,...,\,. The representation with
highest weight A\; is the standard representation on V itself. A\; corresponds to the wedge
power A'V = Vy,. kEAy corresponds to Sty = Via, . All the other representations can be
constructed by means of the Young diagrams (exercises. . .).

Sp(n) = Sp(V) has more representations (here dim V = 2n). We denote always by
A1, ..., A\, the fundamental weights. We have always V), = V, but for example A?V =
C & V), and in general

ANV = N2V g 1,

We have always S*V = Vi, -

In the case of Spin(2n + 1) the picture is similar to the one just given for SL(n + 1)
with the remarkable exception of the last fundamental weight that defines the so called
spin representation (see exercises. . .).

Spin(2n) has even two half-spin representations. The geometrical interpretation of
this fact relies on the study of linear subspaces in quadrics, that have a different behaviour
if the dimension is even or odd (see [Oft]).

§7. Borel and parabolic subgroups

Consider a semisimple Lie algebra G with its Cartan decomposition (6.1). In the
following has been fixed a Cartan subalgebra ‘H and an ordering of the roots.

Proposition-Definition 7.1.
B = H@(@aecﬁga)

is a maximal solvable Lie subalgebra. A maximal solvable Lie subalgebra is called a Borel
subalgebra.

Proof B is solvable by the theor. 6.5. If B’ D B is another solvable subalgebra then 5’
contains some G_, with o € @ (check this fact by using that B’ must be ad|y-invariant).
Hence B’ O Sy ~ SL(2) (see def. 6.17) which is simple and satisfies

[Sas Sal = Sa
It follows that B’ cannot be solvable.

37



Remark. (G,ce+0a) is a maximal nilpotent subalgebra of G.

Definition 7.2. Let G such that Lie G = G. A subgroup B such that Lie B is a
Borel subalgebra is called a Borel subgroup. In equivalent way B is a maximal connected
solvable subgroup.

Proposition 7.3. Let B C G be a Borel subgroup. Then B is closed and G/B is a
projective variety. Moreover all Borel subgroups are conjugate.

First proof B is closed by the maximality (in fact DG = DG , see [Borel]). By the
prop. 4.7 we may choose p: G — GL(V) with a subspace V4 C V such that dim V; =1
and Stab(Vy) = B. Then we apply Lie theorem to the action of B over V/Vi. We get a
complete flag

ocwvicWv,...CcV

which has stabilizer again equal to B. Then G/B is the orbit of this flag in the complete
flag manifold F of V. We want to prove that G/B is an orbit of minimal dimension,
then it is closed (hence projective!) by applying the closed orbit lemma. First let the
dimension of B be maximal among all the Borel subgroups. Consider an orbit G/R of a
point P € F. Since R leaves invariant the flag corresponding to P, it can be put in upper
triangular form and it is solvable. By the choice of B we get dim R < dim B so that
dim G/B < dim G/R and we have done. Now let B’ be any other Borel subgroup and
consider the natural action of B’ over G/B. By the Borel fixed point theorem there exists
a fixed point, that is g € G such that

B'gB C 4B

which implies g ' B’gB C B. It follows ¢ !B’g C B and by the maximality of B’ we get
the equality. So all Borel subgroups are conjugate, and in particular they have the same
dimension. Then G/B is projective for any Borel subgroup B.

In particular, up to choose a Cartan subalgebra (conjugate to H), every Borel subgroup
B satisfies

Lie B =HP(Faco+9a)

Remark. The projective embedding of G/B which is described in the proof of the propo-
sition 7.3 lie in a space of too large dimension and it is not the natural one. A natural
embedding can be found by considering Ad as a G-action over P(G). Let a be the highest
weight of Ad. Then G/B is the orbit of the point [G,] € P(G) (for details see [FuHa page
383).

Exercise. If H and H' are conjugate subgroups of G, prove that G/H ~ G/H'.

Definition 7.4. A closed subgroup P C G is called parabolic if it contains some Borel
subgroup B.
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Theorem 7.5. Let P C G be a closed subgroup. P is parabolic iff G/ P is a projective

variety.

Proof
< Let B be a Borel subgroup. B acts naturally (by left translation) over G/P and by
the Borel fixed point theorem there exists a fixed point, that is dg € G such that

BgP C gP

Then g~ '!BgP C P. This implies g 1Bg C P.
= By the remark 4.8 G/P is quasiprojective, hence it is sufficient to check that it is
compact. This follows from the projection G/B—+G/P and the prop. 7.3.

Definition 7.6. Let A = {oy,...,a,} be the set of simple (positive) roots of G. Let
Y C A. Let

7 (Y) ={ae® |a= Z pici}

a; ¢%

Proposition-Definition 7.7.

P(S) = HP)(Gaco+Go) PlTaco-(x)Ga)

is a subalgebra. P(X) is the subgroup such that Lie P(X) = P(X) (see the theorem 3.6)
Proof The statement is obvious from the theorem 6.5

Theorem 7.8 (Classification of parabolic subgroups). Let G be semisimple and
simply connected. Let P be a parabolic subgroup of G. There exist g € G and ¥ C A
such that

g~ 'Pg=P(%)

Proof By the theorem 7.3 we may choose g € G such that
P :=¢g'P¢goOB

where Lie B =B := HP(Baco+Ga)-

Lie P’ is a subspace of G containing B O H and invariant under ad|y. Hence

Lie P' = HEP(BaerFa)

for some subset T' C ®.

We know that T' contains all the positive roots. Moreover if « is a negative root in T
and a = [ 4+ v with 3, v negative roots too we have —3, —y € T. By 6.5 it follows that
a—pf=y€Tanda—~=0¢€T. Then ¥ := A\ (=T) satisfies the condition of the

theorem.

39



Corollary 7.9. Let G be semisimple and simply connected. Let G = G1 X ... X Gy,
be the decomposition of G as the direct product of simple simply connected Lie groups
(see the theorem 6.13). Let P C G be a parabolic subgroup. Then there are parabolic
subgroups P; C G; such that P = P; x ... x Py. In particular

G/PﬁGl/Pl XXGk/Pk

Proof The root system of G is the orthogonal sum of the root systems of the G;’s.

Corollary 7.10. Rational homogeneous varieties are classified. They are isomorphic to
products of varieties G/P(X) where G is simple and simply connected (and then in the
list od Dynkin diagram) and ¥ is a subset of the set of the simple roots of G.

Corollary  7.11. For each semisimple simply connected Lie group G, there are only
finitely many projective varieties isomorphic to G/P for some P C G.

8. ABC about bundles

A vector bundle E of rank r over an algebraic variety X is by definition an algebraic variety
FE with a surjective morphism

mFE — X

such that there exists an open covering {U, }oer of X satisfying the two properties
i) there exist isomorphisms ¢o: 771 (Uy)—U,s x C” making commutative the diagram

TN (Us) 25 U, xCr
B
Ua — Ua

ii) Ve, 3 € I the composition (restricted)

—1

é
(Ua NUs) x C"Ls7™ YUy N Up)22(Us N Us) x C

has the form
$a 005 (2,0) = (2, gap(z)v)

where

Jag: (Ua N Uﬁ) — GL(T)

are algebraic.
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i) means that the fibration is locally trivial and that each fiber #=!(z) is isomorphic
to C".

ii) means that the structure group of the bundle is linear.

gap are called the transition functions and satisfy the properties

-1
gaﬂ = 98a (

8.1
GJap "9~ = Jav (82

In equivalent way, given a covering {U, }aer with a set of transition functions gqs(z

= ~— e

satisfying (8.1) and (8.2) we can construct a vector bundle E as the quotient of the disjoin

union

H(Ua x C")

«

by the relation ~ defined in the following way:
V(z,v) €Uy x C" (2',0") € Ug x C”
we have
(,0) ~ (2", 0") iff 2 = 2" v =gap(x)
Remark 8.1. We can say synthetically that "the transition functions determine the
bundle”.

If gop are transition functions for F and h.g are transition functions for F' then

9ap .. )
are transition functions for £ @ F
hag

this can be taken as definition of F£ @ F

(925)"

are transition functions for E* dual bundle

gap @ hap are transition functions for £ @ F

If T:GL(r) — GL(r") is any representation we define T(E) to be the bundle with
transition functions T(ga ). This construction applies in particular to T = A*¥ and T = S*.

If /:X — Y is a map and E is a bundle on Y with transition functions g.s(y) then
f*E is the bundle on X with transition functions g.g(f(z)).

If X is smooth the bundle Q% of 1— forms can be defined as the bundle with transition
functions given by the jacobian matrices obtained by change of local coordinates. The
tangent bundle is TX = (QL)*.

A vector bundle of rank 1 is called a line bundle. The set of line bundles has a natural
structure of abelian group isomorphic to H'(X,O*) with the multiplication given by the
tensor product and the inverse given by the dual bundle.

A section of E is an algebraic map

s: X - F

such that w0 s = 1dx
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Definition 8.2. A vector bundle is called spanned if there are (global) sections s1, ..., Sk
such that Vx € X the vectors sy(z),...,s;(z) span the fiber 771 (z).

To any vector bundle E we can associate a locally free sheaf of O x-modules & defined
by

E(U) := {sections of E|;}

Conversely to any locally free sheaf £ is associated a vector bundle with fiber E, ~
Ev | MyE; defined as the Spec of the symmetric algebra of £ (see [Hart]).

It is usual to identify a vector bundle E and the associated locally free sheaf £. In
particular the cohomology groups HY(X, E) are (by definition) the cohomology groups
HY(X,E). Note that H°(X, E) is the space of global sections of E. In particular a vector

bundle is spanned if and only if the evaluation map
HX,E)® O - E
1s surjective.

Example. On P" = P(V) with homogeneous coordinates (xq,...,¥,) we have the line
bundles O(t) that on the standard covering given by U; = {x|x; # 0} have transition
functions g;; = (£)'. In a more geometrical way, the bundle O(—1) is the "universal”

bundle defined as the incidence variety
{(z,v) € P" x Vv € [z]}

endowed with the projection to the first factor. Then for t > 0 O(—t) := O(—1)®" and
O(t) := (O(=1)*)®". From the exponential sequence

0—Z—OZR0* 0

we get H'(P",0*) = Z so that all the line bundles on P" are isomorphic to O(t) for some

integer t.

If F is a coherent sheaf, it is usual to denote F' @ O(t) by F(t). For t > 0 the space
HO°(P™,O(t)) consists of all homogeneous polynomials in (xq,...,2,) of degree ¢, or in
equivalent way HO(P", O(t)) ~ S'V (the Borel-Weil theorem is a generalization of this
last isomorphism). All the intermediate cohomology of O(t) is zero, that is

H(P",0()=0 for0<i<n VteZ

The zero loci of sections of O(t) are exactly the hypersurfaces of degree t. The zero loci of
a general section of O(ny) @ ... 5 O(ny) is called a complete intersection.
The geometrical definition of the universal bundle O(—1) gives immediately the exact

sequernce

0—O(-1)— O V'—Q—0 (8.3)

It is easy to identify the quotient bundle ) with the twisted tangent bundle TP"(—1).
(8.3) is called the Euler sequence.
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Example. Also on Gr(k,n) we can define the universal bundle. Consider the incidence
variety

{(z,v) € Gr(k,n) x C" v € []}

endowed with the projection to the first factor. We get a vector bundle U on Gr(k,n) of
rank k + 1 and an exact sequence

0—U—0V*—Q—0

where () is a vector bundle of rank n — k called the quotient bundle.

The computation of cohomology groups H'(Gr(k,n),U(t)) and H'(Gr(k,n),Q(t)) is
more subtle and will be seen as a corollary of the Bott theorem.

Anyway many results can be seen geometrically. It is evident that U has no global
sections (there is no point common to all P¥ 1) while a section of U* is given by a linear
functional F:V* — C which restricts to any k + 1-dimensional subspace C**! C V*. Then
the zero locus of this section is given by

{CM cV*|CM C Ker F}

which is isomorphic to Gr(k,n — 1).
Exercise. Show that U* is spanned.

Exercise. Show that the choice of a point in V* gives a section of (). The zero locus of
this section is isomorphic to Gr(k — 1,n — 1).

Line bundles and embeddings in projective spaces
(see [GH] for more details)

A spanned line bundle L define a morphism

X — P(H°(X,L)*)
z s {s € H(X, L)|s(x) =0}

In coordinates if < sg,...,sy >= H°(X, L) then ¢1(z) = (so(z),...,sn(x)) € PV,

The projective embeddings defined by subspaces V C H°(X, L)* correspond to pro-
jections of X from linear subspaces contained in P(H?(X, L)*) into projective spaces of
smaller dimension.

A line bundle L is called very ample if ¢, is an embedding and is called ample if L©*
is very ample for some k € N.

Example. On P™ the bundle O(t) is ample iff is very ample iff t < 0. O(t) is spanned iff
£>0,

We have obviously
»10(1) ~ L
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Vector bundles and embeddings in grassmannians
A spanned vector bundle E of rank r defines a morphism

¢ X — Gr(P™ ' P(HY(X,E)")
s {s € H'(X,E)|s(z) = 0}

We have
E =9¢3U"

where U is the universal bundle on the grassmannian.

In equivalent way, if h%(X, E) = N we have a map to the dual grassmannian
X 25 GrPN -1 P(HO(X, E)))

and in this case
1% )/
E =9¢%
where Q' is the quotient bundle on Gr(PY=""! P(H°(X, E)))
One is tempted to define ' to be very ample if ¢ is an embedding but this definition is too weak
to have good properties. For example the bundle /" on a grassmannian satisfies this definition (qb;} 18

the identity!) but its restriction to a line has a trivial summand.

The correct way is to define E (very) ample if OP(E)(l) is (very) ample on the projective bundle
P(E) (see [Har66]).

Let J be a nondegenerate skew symmetric matrix of order 2n. The symplectic group

Sp(n) consists of the matrices A € GL(2r) such that AJA" = J. Another J' defines a
conjugate subgroup. Its Lie algebra is given by

SP(n)={A e GL(2r)|AJ + JA" =0}

When we consider a symmetric matrix ) of order n at the place of J we define in the same
way O(n) orthogonal group which has two connected components depending on det = +1.
The connected component of the identity contains matrices with det = 1 and it is denoted

by SO(n). Its Lie algebra is SO(n)

Definition 8.3. A vector bundle E of rank r (even) is called symplectic if there is an
atlas such that the transition functions take values in Sp(r/2).

Proposition 8.4. FE is symplectic if and only if there is an isomorphism
o E — E*

such that ¢ = —¢°.

The reader can supply the analogous definition of orthogonal bundle.
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Remark. If E is symplectic then A*E contains O as direct summand. It is important to

observe that if T' is a representation of the symplectic group, then it is defined the bundle
T(E).

Geometrical definition of Chern classes
There are several equivalent definitions of the Chern classes of a vector bundle E. The
analytic definitions via the curvature is the more useful to prove formulas about the Chern
classes. In the spirit of this course we sketch the geometrical definition of Chern classes of
degeneracy loci that involves the map ®p in the grassmannian.
Let E be a spanned vector bundle of rank r over X. We denote by si,...,5,—p41
r — p + 1 generic sections of E. The subvariety

{z € X|s1(x),...,Sp—pt1 are lin. dep.} (8.4)

has codimension p and its homology class in Ha,,—2,(X, Z) does not depend on the sections
(it is easy to check that even the rational equivalence class in the Chow ring is well defined).
The Chern class ¢,(E) € H*?(X,Z) can be defined as the Poincaré dual of the class in
(8.4).

If p=rin (8.4) we get the zero locus of a generic section of E.

If p=11in (8.4) we get that ¢1(E) = ci(det E), furthermore ¢; of a line bundle
associated to a divisor D is the class of D itself.

Proposition 8.5. Let U be the universal bundle on Gr(k,n). Then ¢,(U*) is Poincaré

dual to the Schubert cycle Wy 1 (p times) (see (2.2)).

Proof The Poincaré dual of ¢,(U*) is the degeneracy locus of k — p + 2 sections of U*.
These sections are given by k — p 4+ 2 linear functional whose common kernel correspond
to a linear P?~k*P=2 Then the result follows by (2.2).

Remark. In the same way the Poincaré dual of ¢,(Q)) (where Q) is the quotient bundle)
18 Wq. These are called special Schubert cycles.

Corollary 8.6. Consider the map

We have
pep(UT) = cp(PRUT) = ¢, (E)

The corollary 8.6 is important because in order to show the equivalence of the geo-
metrical definition of ¢, with the analytic one it is sufficient to perform some standard
curvature computations on Gr(k,n) (see [GH] or [Kobayashi, Differential geometry of
complex vector bundles]).

When FE is not spanned there are two ways to supply the definition of Chern classes.
The first one (as in [GH]) is to consider convenient C'> sections, in fact the Chern classes
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are C'*°-invariant. The second one is to tensor F with some ample line bundle L in order
to get E ® L spanned and then use the formula

wBoD)=Y (;: ] ) ci(B)er (1)

=0

(of course one has to check that this definition is well posed!)
The Chern polynomial is the formal expression

cg(t) :=co(E) + c1(E)t + CQ(E)tZ + ...

If
0 —F—-F->G—=0

is an exact sequence of vector bundles, the Whitney formula is
cg(t)eq(t) = cp(t)

Sketch on principal bundles
We want to underline that the importance of transition functions stated in the remark
8.1 is a deep fact. The transition functions do not involve the fiber C” but only the group
GL(r) acting on the fibers. This leads to the following generalization.
Let us consider an open covering {U, }oer of X, a Lie group G and a set of holomorphic

transition functions

gap(z):(Ua NUg) = G
satisfying (8.1) and (8.2). Suppose moreover that we have a variety F' and a representation
p: G — Aut(F)

We can construct a bundle B over X with fiber F' as the quotient of the disjoint union

H(Ua x F)

«

by the relation ~ defined in the following way
V(z,f)eUs x F (2',f")eUgx F

we have
(x, f) ~ (&, f)iff e =2 f=p(gap)(x)f

In particular we can take F' = G and p to be the left multiplication. The bundle
P that we get is called a principal bundle. We say that the bundle B comes from the
principal bundle P via p.
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9. Homogeneous bundles

We turn to the case of bundles over rational homogeneous varieties G/P (here G is a
simply connected semisimple group and P is a parabolic subgroup).

It is natural to define a homogeneous bundle E if the action of G over G/P can be
lifted to E. More precisely

Definition 9.1. Let E be a bundle over G/P. E is called G-homogeneous (or sim-
ply homogeneous) if there exists an action of G over E such that the following diagram
commutes

G x FE — E

l l

GxG/P — G/P
It is evident from this definition that the tangent bundles T(G/P) are homogeneous.

Remark 9.2. If T:GL(r) — GL(r") is any representation and E is a homogeneous
bundle of rank r then T(E) is a homogeneous bundle of rank r'. For example on P™ many
homogeneous bundles can be constructed in this way beginning from the tangent bundle.
We will se that in this way we get the so called irreducible bundles. There exist many
other homogeneous bundles. An example is the following.

Example 9.3. Consider on P" the evaluation map
HO(P™,0(t)) @ 0==0(t)

The kernel E,, ; := ker ev is a homogeneous bundle. Its fiber over x € P™ can be identified

with the space of hypersurfaces of degree t containing x. The simplest nontrivial case is
the rank 5-bundle E3 » on P? = P(V*) obtained in the sequence

0—Fy 0—S*V © O—0(2)—0

This bundle is exceptional ,i.e. it has no deformations. The exceptional bundles on P?
(that are of course homogeneous) have been all classified in a beautiful paper of Drezet
and LePotier [Ann. Sc. ENS 18, 193-243 (1985)]. The numerical invariants of exceptional
bundles on P? fill up a region with "fractal” boundary. Coming back by earth we want to
show that E, 5 appears in a sequence

0—S?Q* —+ F9 9—Q—0 (9.1)

This is clear geometrically, looking at S*Q* as the space of conics with a singularity at x.
Otherwise, taking the second symmetric power of the dual Euler sequence

0—Q"—V @ 0—0(1)—0
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we get the exact sequence
0—S*Q* — Fy ,—Q—0

Then the result follows by applying the snake lemma in the diagram
52 Q*

|

0 — Eys — S*WR0 — 02 — 0

l l

0 — @@ — Vol — 02 — 0
(9.1) is interesting because it gives a filtration of E, 5 in irreducible homogneous bundles.

E, ¢ are all stable bundles (see [Pa]).

We will see in this section other two equivalent definitions of homogeneous bundle
that are useful and more easy to handle.

Lemma 9.4. G—+G/P is a principal bundle with fiber P.

Proof The only nontrivial statement is that = is a locally trivial fibration. In order to

see this consider the derivative at the identity

Lic G5 Tp G/ P
Lie P is a subalgebra of Lie G that goes to zero under dr. Hence by dimensional rea-
sons Ker dr can be identified with Lie P. Choose any trasversal subspace such that
Lie G = Lie P @&V (direct sum of vector spaces only!) and consider exp:V — G.
There exists a neighborhood V' := exp(U) C G where exp is invertible. In particular
o =7y V'—r(V') is a diffeomorphism, so that Vo € V' we have

P = o (n(x))P
and we define the local trivialization

T 7(V") = x(V') x P

v (w(2), - [0 (w(2))] )

This local trivialization can be extended to all G/P by using the action of G.
Definition 9.5. Let p: P — GL(r) be a representation. We can construct a vector bundle
E, on G/P as the bundle with fiber C" coming from the principal bundle G"+G /P via
p.

Remark 9.6. In equivalent way, E, can be defined as the quotient G x, C" of G x C"

via the equivalence relation ~ where (g,v) ~ (¢',v") iff there exists p € P such that g = ¢'p
and v = p(p~ '

Remark. The following are true

Eﬂl b Epz = Em@ﬂz
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NE, ~ Epx,
Ep @Ep, ~ Epep,
and so on.

Theorem 9.7 (Matsushima). A vector bundle E of rank r over G/ P is homogeneous
if and only if there exists a representation p: P — GL(r) such that E ~ E,,.

Proof The proof is an exercise of running through the definitions. Given a homoge-
neous bundle E-"+G/P then the action of G restricted to P takes 7~ (P) to 7 ~!(P) and
this i1s p. We can construct an isomorphism

E—FE,

that takes e € 7~ 1(¢P) into [g,¢7 1 - €].
Conversely given [(g,v)] € E, define the action of G over E, as ¢’ - [(¢g,v)] := (¢'g,v)

Lemma 9.8.
i) The space of sections H°(G/P, E,) of E, over G/P can be identified with

{f:G = C"|f(gp) = p(p™")fl9) Vg€ G, VpeP}
ii) The action of G over H*(G/P, E,) is given by
(9 Flgr) = Flg™ 1)
Proof Straightforward check by using the remark 9.6,

Remark. The tangent bundle comes from the representation of P with derivative
ad: P — GL(G/P)

(recall that G/P ~ TipG/P).
Example. On P! = SL(2)/P the bundles O(t) are obtained from the representations

P—-C*

(a b )
—t
0 1/(l

A basis for H*(P1, O(t)) (for t > 0) is given by

a b 4 4
fi =g e
c d
for: =0,....,t.

Let us denote the natural morphism G — Aut(G/P) by g — 6,. The following
theorem shows that our definition of homogeneous bundle is equivalent to the one given
in [C.Okonek, M.Schneider, H.Spindler, Vector bundles over complex projective spaces].
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Theorem 9.9. Let G semisimple and simply connected. A vector bundle E over X =
G/ P is homogeneous if and only if

,E~FE VgeG

Proof (A. Huckleberry) Let Aut(E) be the connected component containing the iden-
tity of the algebraic group of automorphisms of E (considered as variety) and let Autx(E)

be the subgroup of automorphisms preserving each fiber and acting linearly on them.
Autx(FE) is the group of invertible elements in H°(X, End E). Consider the algebraic

group
F .= {g € Aut(E) |g is linear on the fibers and induces on X an element of G}
F can be obtained as an extension

0—Autx (E)— F—G—0

It is induced a surjective morphism
Lie F-%5Lic G

It is easy to check that the image of a solvable algebra is still a solvable algebra. It follows
¢(rad F) = 0. By a theorem of Levi ([FuHa| theor. E.1 ) there exists a semisimple Lie
algebra & C Lie F such that S-%sLie G is surjective. By the theor. 6.13 § is a sum of
simple Lie algebras S ~ &% | S;, hence there exists j < k such that

ker ¢ o~ @{:1& Lie G ~ @j:j+18i

7

It follows by 3.6 that there exists G' C F such that Lie G' ~ Lie G. Hence G’ acts
over E, (G is a covering of G’ by the prop. 3.15 and also G acts over E as we wanted.

Remark. It can be shown with the same tecnique that if G' is a reductive subgroup of G
such that 67, E ~ E Vg' € G' then there exists G' covering of G' that acts over E.

Remark. The theorem 9.9 does not hold if G is not simply connected. For example
PSL(2) = Aut(P') acts on P! = PSL(2)/P’ but O(t) has a PSL(2)-action (or equiva-
lently is defined by a representation of P’) if and only if't is even.

Note that Kp1 = O(—2) so that all the multiples of the canonical bundle are Aut(P1)-
homogeneous.
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§10. The theorem of Borel-Weil

Theorem 10.1.
i) A homogeneous projective variety X with b;(X) = 0 is rational.
ii) Every homogeneous variety G/P(X) is rational.

Proof Let X as ini). By the theor. 4.13 and the remark 4.14 X is isomorphic to G/ P
where G := Aut®(X) is semisimple. By the theorem 7.5 P is parabolic. By the theor. 7.8
there exists a subset ¥ of the set of simple roots such that

Lie P =H® (Ba>00a) & (Facs-(2)%a)
where
¢ (L) ={a=) pi € ® ailp; =0if a; € T}

So it is sufficient to prove ii). Let

U™ = (Dago-(m)Ya)

It is easy to check that &~ is a solvable subalgebra (it is even nilpotent). Consider the
embedding
ad

G—GL(G)

(The kernel of ad is given by the center which is zero because G is semisimple.)
Considering that
ad*(X)(YV) = [X,[X,[X,....[X, Y]]
and by the theorem 6.5
ad(Ga)(Gs) C Gatp

it follows that ad(U4™) consists of nilpotent endomorphisms. By the Lie theorem in a
convenient basis of G we have that /™ is immersed in the subalgebra of strictly lower-

triangular matrices. Then at level of Lie groups we have
U™ CGCGL(N)

such that the U~ is immersed in the subgroup of unipotent matrices. In particular

_ exXp ;,_

U —U
has inverse given by
log: U™ - U™
> A—D)F
A Y (A= De
kgo( )

because the unipotency implies that this last sum is finite (and so it converges!). It follows
that U~ is isomorphic to 4 ~. Moreover from the matrix description we have U™ NP = e, so
that the morphism U~ — G/P is injective and it is dominant too by dimensional reasons.
Hence G/P is rational.
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Remark. The Bruhat decomposition generalize the description of the open cell N C G/P
that we have seen in the proof of the theorem 10.1. See [FuHa] §23.4.

Corollary 10.2 (Ise). Let G be semisimple and simply connected. Every line bundle
on G/P is homogeneous.

Proof By the rationality we have
HY(G/P,0) =0 fori>0
Then the cohomology sequence associated to the exponential sequence
0—Z—0—0"—0

implies

HY(G/P,0%) ~ H*G/P,Z)

so that H'(G/P,O*) is discrete and the G-action on it given by
L+~ g*L

is trivial.

From the previous corollary it follows that the topological group H?(G/P,Z) is
isomorphic to the group of one-dimensional representations of P. This group can be
computed as in the prop. 10.4.

Lemma 10.3. We have the decomposition

Lie P = H@(@a>oga) @(@aeqs—(x)ga) =

= Lie Sp (121 1Gai, G-ai)) P (Fagor(2)Ga)
where Sp is semisimple and it is called the semisimple part of P.

Proposition 10.4. Let ¥ = {ay,...,ax} be a subset of the set of simple roots. Then
H*(G/P(%),Z) ~ Pic(G/P(%)) ~ ZF*

Proof Let V = V) be a one-dimensional Lie P-module, where A is the corresponding
weight in ‘H*. Looking at the decomposition of the lemma 10.3 we have that V restricted
to Lie Sp is trivial because it is trivial for every SL£(2) inside (recall that the only one-
dimensional representation of S£(2) is trivial).

By the theorem 6.20

GaVx C Vata
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and we get that the representation is trivial when restricted to (Bagg+(x)9a). Hence this
representation is obtained from the abelian k-dimensional piece & [Ga.,G_q,] which is
the Lie algebra of a torus (C*)*. The result follows from the cor. 5.10.

We want now to classify all the irreducible representations of a parabolic subgroup P.
Let U C P be the subgroup such that

Lie U= (Sags+(x)9a)

(see the lemma 10.3). U is called the unipotent part of P. The subgroup R such that
Lie P=Lie U @ Lie R is reductive.

Proposition 10.5 (Ise). A representation
p: P — GL(V)

is completely reducible if and only if p|y; is trivial.

Proof LieU is contained in the subalgebra

LieY = (@le[ga“g—ai]) @(@a¢¢+(2)ga)

which is solvable. From the Theorem of Lie4.2 there exists a basis in V' such that p(y) is
upper triangular for every y € Y.

Since LieU = [LieY, LieY] we get that dp(u) is strictly upper triangular for every
u € LieU.

It follows that there exists a nonzero v € V' such that Vu € U

plu)v =wv

Let
F={veVpur=v YuelU}

By the above argument 0 = F. As U is normal, it is easy to check that F' is P-invariant
so that by the assumption F' = V. This means that p| is trivial.

Conversely, any representation of P which is trivial over U at the level of Lie algebras

Lie SP@Z

where Z = (©5_,[Ga,,G—0,]), which is a direct sum of two Lie algebras (in the sense that
are both ideals). Any such representation is the tensor product of a representation of Z

comes from a representation of

(abelian Lie algebra of (C*)¥) and a representation of Lie Sp which are both completely
reducible.
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Lemma 10.6.
m1(SL(n)) = m2(SL(n)) =0

Proof By induction on n (n = 1 is trivial). Consider the natural SL(n)-action over
C™\ 0. The isotropy subgroup is H ~ SL(n—1)x C"~!. Hence consider the long homotopy
sequence associated to the fibration SL(n) — C™ \ 0 and get

mo(H) — 73 (SL(n)) = m(C"\0) = 71 (H) = 71 (SL(n)) — 7 (C"\ 0)

By the inductive assumption 71 (H) = m3(H) = 0, hence the result.

Proposition 10.7. Let G be a semisimple group. We have
FQ(G) = 0

Proof For the classical groups the proof is similar to the one of lemma 10.6. In general
we refer to [Brocker-tom Dieck, Representations of compact Lie groups, GTM 98, Springer],
pag. 153 8.3, pag. 223 7.1.

Proposition 10.8. Let G be semisimple and simply connected. Let P C G be a
parabolic subgroup. Then

™1 (SP) =0
(see the lemma 10.3)
Proof Consider the long homotopy sequence associated to the fibration

G—G/P

By the assumption and the prop. 10.7 it follows 71 (P) ~ 72 (G/P). By the prop. 10.4 and
Hurewicz theorem it follows

m1(P) ~ 7y(G/P) ~ H*(G/P,Z) ~ Z%*

There is a Levi decomposition P = U >a(Sp - (C*)*) (- means that a finite intersection
is allowed ). In a way similar to the proof of the theorem 10.1 we can show that U is
isomorphic to a vector space, then it has the homotopy type of a point. Hence

m1(Sp - (C*)F) ~ 25

Let j be the covering map Sp x (C*)¥ — Sp - (C*)¥, then at the level of m’s j, is

injective and the thesis follows.
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Proposition 10.9 (Classification of irreducible bundles over G/P). Let ¥ =
{a1,...,ar} be a subset of simple roots. Let \y,...,\; be the corresponding set of fun-
damental weights (see the def. 6.45). Then all the irreducible representations of P(X)
are

VLY ®... L3

where V' is a representation of Sp and n; € Z (by the prop. 10.8 \; define representations
of Sp).

Proof 1t follows from propositions 10.5, 10.8 and corollary 3.28.

Remark 10.10. With the notations of the prop. 10.9, consider that the weight lattice
of Sp is embedded in the weight lattice of G. If \ is the highest weight of a irreducible
representation Vy of Sp we will say that A+ n;\; is the highest weight of the irreducible
representation V®L§i ®.. .®L§’; of P(X). We underline that now the n;’s can be negative.

The tensor product in Q... LK: corresponds to the twist by line bundles.

When k = 1 (parabolic subgroups corresponding to only one simple root) we get
homogeneous rational varieties with Pic = Z. For example grassmannians belong to this
class. At the other extreme the parabolic subgroup corresponding to all the simple roots
is the Borel subgroup B. Complete flag manifolds belong to this class. We have Sp =0
(because B is solvable), hence all the irreducible representations of B have dimension 1

and define all line bundles.

Remark. It is interesting to look at the projections
G/B-~G/P

which are fibrations with fiber isomorphic to P/B ~ Sp/(BNSp) which is again a rational
homogeneous variety. = is flat. We will see that the irreducible homogeneous bundles on
G/ P are all isomorphic to m,Ly where Ly is a line bundle on G/B.

Chern classes of homogeneous bundles
Let E, be a homogeneous bundle over G/P. The projection G/B—+G/P is a fiber
bundle, in particular

= H'(G/P,Z) - H'(G/B,Z) (10.1)

is injective. This allows to compute the Chern classes ¢,(E,) in the following way.
If p; for © = 1,...,r are all the weights of p then n*E, admits a filtration with
successive quotients given by the line bundles L,; and by the Withney formula

r r

e, (t) = [ [ en,, () = [+ pat)

by identifying p; with the corresponding class in H*(G/B,Z). By (10.1) after eventual
cancellations ¢,(E) must involve only the weights that are fundamental for P.
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For example

ci(E) = ZM

2(E) =) gy
1<
and so on.

Let P = P(aq,...,ap) and let aq,...,a, be all the roots (in some order). When p is
irreducible ¢1(E,) can be computed easily from the highest weight p; of p. In fact all the
other weights p; are obtained summing to p; some roots in Sp. If p; = 2?21 gija; for
i =1,...,r (here ¢;; € Q) then for j =1 to k ¢;; does not depend on ¢ so that

r n k
ci(By) =) pi=rquor+rqaos+. o Frqroer+ Y wa =Y yik
=1

i=1 j=k+1

where \; are the fundamental weights and y; are the unknowns that can be determined by
the square system

k
¢ :Zyic” j=1,...k
=1

where ¢ are the coefficients of the inverse of the Cartan matrix. C'~' is computed in

[Hul] pag. 69, table 1

Example. Let Ey, the bundle defined over Gr(k,n) = SL(n + 1)/ P(ak+1) by the repre-
sentation with highest weight \y. We want to compute ¢1(E»,) with the above technique
(of course this could be done directly after observing that Ex, = N*U* !).

We identify A\r41 with the positive generator of H*(Gr(k,n),Z) = Z

We have
r =rank Ey, = (k —2|_ 1)

coefficient of a4 in the expression of A\y = 2(n — k)/(n+ 1)
coefficient of a1 in the expression of \p11 = (n —k)(k+1)/(n+ 1)
so that
2(E) f(n + 1)

(k+1)/(n+1) =k

C1 =

The following theorem was already known to Cartan in 1913, but the modern trans-
lation in the language of bundles is known as Borel-Weil theorem.
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Theorem 10.11 (Cartan, Borel-Weil). Let G be semisimple and simply connected.
Let P C G be a parabolic subgroup. Let E, be the homogeneous bundle defined by the
irreducible representation p of P with highest weight \ (see the remark 10.10). Then

H°(G/P,E,) ~ G\

where G is the irreducible representation of G with maximal weight .

Proof By the lemma 9.8 we have

H°(G/P,E,) ~ {f:G — C"|f(gp) = p(p~")f(g) Vp€EPgeG} (10.2)
Denote the corresponding representation by

0:G — GL(H(G/P,E,))
(do)e: G — g,C(HO(G/P, E,))

We prove first that o is irreducible. Let ¢ € H°(G/P, E,) be a lowest weight vector
for o (see remark 6.37). Let U™ C G such that Lie U™ = $4<0Ga.

We get
(do).(Lie UT)p =0
hence
o(U)p=1¢
that is (see the lemma 9.8)
d(ug) =olg) VuelU ,geC (10.3)
By (10.2)
o(gp) = p(p~")¢(g9) Vpe PgeG (10.4)

We claim that U~ - P is dense in G. It is sufficient to check that U~ - B is dense where
B is a Borel subgroup.

In fact
U xB—=G

(u,b) — ub

is an injective map (not a group morphism!) of algebraic varieties of the same dimension

over C, hence it is dominant.

We get by using (10.3) and (10.4)

d(up) = ¢(p) = p(p~")o(1) YueU ,peP

and this shows that ¢ is determined by ¢(1). Then there exists a unique lowest weight
vector (up to constant) and by the theor. 6.36 o is a irreducible representation.
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To conclude the proof, call oy,,, the lowest weight of o and pj,. the lowest weight of
p. It is sufficient to show that 0w = prow. By the definition of lowest weight (applied to
the Lie groups)
o(0)6 = ctou(h)é Vhe H

that is
$(h™'g) = o1ou(h)d(g)Vh € H,g € G (10.5)

By using (10.4) and (10.5)

p(h™1)o(1) = o(1-h) = d(h-1) = orpw(h™")e(1)

This means that 0., is a weight for p with eigenvector ¢(1). Moreover if p € Sp we
have

p(p)6(1) = o(p™") = a(p)o(1)
In particular if p € U~ N Sp we get

so that dp(Lie (U™ N Sp))p(l) = 0 and ¢(1) is a lowest weight vector for p. It follows

Tlow = Plow as we wanted.

Remark 10.12. In order to show the existence of a irreducible representation of G
with prescribed highest weight ni\1 + ... + ngA; (see the theor. 6.40) we can simply
consider HO(G/B, in Q... LK:) Of course one have to define first Ly, but this can be
done by considering the associated divisor which comes from the cellular decomposition
of G/B. Conversely the Borel-Weil theorem 10.11 gives a interpretation of the fact that
G/P(aq,...,a) can be constructed as the unique closed orbit in the G-module with
highest weight \y 4+ ...+ A\p. By the Borel fixed point theorem any closed orbit contains
a fixed point for the action of B. The point in P(Gx,+.. 4+, ) corresponding to the highest
weight vector can be the only point fixed by B. Then there is a unique closed orbit.
This gives a geometrical interpretation of G/ P as generalized flag manifolds. For example
Spin(2n+1)/P(ay,) is the variety of linear P*=! contained in the smooth quadric Q2,1 C
P2" because the irreducible representation of the semisimple part of P(ay) (which is
Spin(2n —1) with highest weight A is the k-exterior power of the standard representation.

More generally the unique closed orbit in P(Vzk n')\') is G/P(aq,...,ar) embedded
with the line bundle in Q... LK: =

Proposition 10.13. Let G be semisimple and simply connected. Let \: B — C*. Let
P C G be a parabolic subgroup and let p the representation of P with highest weight \
(see the remark 10.10). Denote by © the projection G/B — G/P. The following is true

7T*L)\ ~ Ep
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Proof Let P = P(ay,...,a). Let

k
A=) nph > =N
J=1 3£ {1, .k}

Then we have

Ly~ Ly @ Ly»

Ly is the pullback #*L’, of a line bundle on G/P. By the projection formula it follows
7T*L)\ = Ll)\/ ® 7T*L)\//
The fiber of the bundle 7, Ly~ is naturally isomorphic to
HO(P/B, Ly} = HO(Sp/(Sp 1 B), L)

which is by the theorem 10.11 the representation p’" of Sp with highest weight A\”. It
follows

7T*L)\ == /)\/ ®Ep// == Ep

Remark 10.14. The prop. 10.13 allows to describe geometrically homogeneous bundles
too. For example consider the bundle Ey, over the grassmannian SL(n+1)/P(ag4+1). The
semisimple part of P(oagyq) is S >~ SL(k+1)x SL(n—k) = SL(W*) x SL(V*/W*). The
fiber of E,, is isomorphic to H°(S/(S N B),Vy,) ~ W* and then it is isomorphic to the
dual of the universal bundle. The weights are A1, —A\1+ A2, ..., = g+ Ap41 (lowest weight).
Correspondingly E, ., is the universal bundle. In analogous way E\, is isomorphic to
the quotient bundle.

Lemma 10.15.
i) The bundle L = in Q... LZ” over G/B is spanned if and only if n; > 0 V.
ii) Let E, be the homogeneous bundle defined over G/ P by the irreducible representation
p of P with highest weight > n;\; (see the remark 10.10). Then E, is spanned if and
only ifn; > 0 V.

Proof i) follows from the theorem 10.11 because L is spanned if and only if H°(X, L) #
0 (because of homogeneity).
ii) follows from i) and the prop. 10.13.

Theorem 10.16 (Borel-Weil). Let aq,...,«, be all the simple roots of G.
i) The bundle L = LY! @ ... ® L\" over G/B is very ample if and only if it is ample if
and only if n; >0 V. ’
ii) The line bundle L = L' @ ... ® LY* over G/P(ay,...,ax) is very ample if and only
if it is ample if and only ifn; >0 Vi=1,... k.

Proof We prove first ii) for the case P = P(«;) (maximal parabolic). If n; < 0 then
the bundle has no sections, if n; = 0 it is the trivial bundle. If n; > 0 then by the lemma
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10.15 the bundle is spanned and qu;u: (G/P(a;)) is again a G-homogeneous variety G/P

with P C P, hence P = P because P is maximal.

The general case of ii) (and then also 1)) follows by using the standard projections. If
some n; = 0 then the bundle comes as a pullback from another G/ P and cannot be ample
(it is trivial on the fibers). If all n; > 0 then the image of the associated map is G/P and
P = P(Y) with ¥’ a subset of {a1,...,ar}. If a; is missing this would imply «; = 0.

Remark 10.17. In the papers [Snowl] and [Snow2] D. Snow computes the k-ampleness
(in the sense of Sommese) and gives necessary and sufficient conditions for the spannedness
of a (possibly reducible) homogeneous bundle over G/P.

Remark 10.18. A classical formula of H. Weyl expresses the dimension of the irreducible
representation G of G with highest weight \. In the setting of algebraic geometry this
formula can be deduced from the Hirzebruch-Riemann-Roch formula and the theorem
10.11, in fact we will see in the next section that if E is a homogeneous irreducible spanned

bundle then H'(E) =0 for i > 0. Set § = > \; (sum of all the fundamental weights) and
(, ) be the Killing form. Then Weyl’s formula is

dim Gy = H+ % (10.6)

It is a useful exercise to verify (10.6) for SL(2) and respectively SL(3) by applying
HRR over P! and resp. over F(0,1,2).

Note that by the theorem 10.11 the formula (10.6) allows to compute not only the
space of sections but also the rank of a homogeneous irreducible bundle (consider the prop.
10.13 and apply the theorem 10.11 on the fibers).

Exercises.
i) Compute H°(P?,S*TP?).
ii) Compute rank and h° of E, over Gr(1,3).

We will soon give a geometrical interpretation of homogeneous irreducible bundles, at
least in the classical cases.

Remark. We cannot avoid to mention an identification due to Borel of the cohomology
ring H*(G/P,Z) with the quotient of the ring of polynomials on the Lie algebra H by the
ideal generated by the polynomials invariant under the action of the Weyl group. When
G = SL(n) this identification reduces Schubert calculus on Grassmannians to computa-
tions with symmetric polynomials. For an account see [I.N. Bernstein, L. M. Gelfand, S.I.
Gelfand, Schubert cells and cohomology of the spaces G/P Russian Math. Surveys 28
(1973)].
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§11. The theorem of Bott

The theorem of Bott generalizes the theorem of Borel-Weil, in the sense that it describes
all higher cohomology groups
H'(G/P,E,)

where F, is homogeneous irreducible.

Let G be a semisimple simply connected group and let P C G be a parabolic subgroup.
Let @ be the set of roots of G. Let A\ be a weight. Let E) be the homogeneous bundle
arising from the irreducible representation of P with highest weight A (see the rem. 10.10).
In this section let us denote by ( , ) the Killing form B.

Definition 11.1. )\ is called singular if there exists o € @1 such that (\,a) =0

Definition 11.2. ) is called regular of index p if it is not singular and if there exactly
p roots ay,...,a, € ® such that (\,a) < 0.

Definition 11.3.
="\
=1
(sum of all the fundamental weights).

Theorem 11.4 (Bott).
i) If A+ 6 is singular then
HY(G/P,Ey)=0 Vi

ii) If A+ § is regular of index p then
H'(G/P,E\) =0 fori#p
Moreover
HP?(G/P,E\) = Gu(r+6)—s

where w(\ + 0) is the unique element of the fundamental Weyl chamber of G which
is congruent to A\ + ¢ under the action of the Weyl group.

Corollary 11.5. h(G/P, E)) is nonzero for at most one value of i. In particular the
dimension of the nonzero value can be computed from y(E) = Y,(—1)'h'(E).

Remark 11.6. In order to prove the theorem of Bott we may suppose P = B. Look
at the prop. 10.13 and the obvious vanishing R'n,© = 0 for i > 0, in fact 7 is flat with
rational fibers so that by the Leray sequence

H'(G/B,Ly) ~ H(G/P,x.L))

61



Remark. If A € C then A + 9§ is regular of index 0 and we get the Borel-Weil theorem
10.11.

Proof of the theorem of Bott
The original proof has been simplified in several times. We present here the proof of
M. Demazure [Dem?2] which relies on a nice inductive argument assuming only the following
vanishing on P!

HY(P'O(-1))=0 Vi (11.1)
Let us consider for : = 1,...,n the parabolic subgroups
Py, :=Play,...,¢i ..., 0p)
so that the projection
G/B-=+G/P,,
has fibers isomorphic to

Pa,»/B ~ Spai/(BﬂSpai) ~ SL(Q)/(BQSPC”) ~ P!

For simplicity in the rest of the proof we call a; = a.

Denote by V)  the irreducible representation of P, with highest weight A\. As H-
module V) 4 is the direct sum of one-dimensional eigenspaces with weights (see theor. 5.13
and theor. 6.30 ii) )

MA—a, . A= ANHy)a = wa(N)

Here wy, is the reflection with respect to the hyperplane orthogonal to «.

As B-module, V) 4 has Ly as quotient and L,,_ () as submodule. Both Ly and L., ()
correspond to line bundles.

More precisely we have the exact sequence

0— K —Vy o—Lx—0 (11.2)

where K = 0if \(Hy) =0, K = Ly (\) if A\(Hy) =1 and if A\(H,) > 2 we have also the
sequence
0—Ly, () —K—Vi_q,a—0 (11.3)

Lemma 11.7. Let 7: B — GL(V) be a representation and let yu: B — C* be a morphism
(i.e. p € Aw ). If T can be extended to 7: P, — GL(V') and if i(H,) = —1 then

HY (G/B,E,®L,)=0 Vi

Proof Consider the projection m: G/B — G/P,. By the assumptions E; is trivial on
each fiber of 7 and L, is a line bundle of degree —1. By (11.1) and the fact that = is flat
we get

Rn.(E, ®L,) =0 Vi

Hence the result follows.
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Proposition 11.8. Let o be a simple root such that (a,\ + ) > 0. We have the
isomorphisms of G-modules

H'(G/B,Ly) =~ HFYG/B, Ly, (xts)-5) Vi
Proof Write down (11.2) and (11.3) with A 4+ § at the place of A

0—>I&’—>VA+57Q—>LA+5—>O (11.4@)
0— Ly, (at6)— K —Vrts5-a,a—0 (11.4b)

with obvious modifications if (A 4+ §)(H,) = 0 or 1. By tensoring (11.4) by L} = L_s we
get

0—M—Viys,a @ Ls—Lx—0 (11.5a)

0—Ly, (rt5)—6——M—=Vais-a,a @ Ly—0 (11.5b)

By the lemma 11.7 we have
H'(G/B,Vaysa @ L;) =0 Vi
In fact —0(Hy) = —1. In the same way
H'(G/B,Vats—aa@Li) =0 Vi
Then the result follows from the cohomology sequences associated to (11.5).
Lemma 11.9. The Weyl group is generated by reflection with respect to simple roots.
Proof [FuHa] D.27 pag. 493

Definition 11.10. Ifw € W denote by [(w) the minimum length of an expression of w
as product of reflections with respect to simple roots.

Corollary 11.11. Let A € Aw, A+ 6 € C (fundamental Weyl chamber). Then
H'(G/B, L) ~ H*"")(G/B, Lu(rs)-s)
Proof Let
W= We, O...0 W,

Apply inductively the proposition 11.8. The only thing to observe is that the condition
(o, \+8) > 0is true at each step. In fact at the first step (ag, A+3) > 0 because A+ € C.
At the second step we have to check that

(Gpt, Wy (A +8)) >0 (11.6)

As the Killing form is invariant under the action of the Weyl group (11.6) is equivalent
to

(way, (@ -1), A +6) 2 0

which it is true because w,, permutes all the positive roots different from «a. By continuing

in this way the corollary is proved.
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Lemma 11.12. If A+ ¢ € C then
H'(G/B,Ly)=0 fori>0
Proof By the Bruhat decomposition there exists an element w € W such that I(w) =
dim G/B (see [FuHa] pag. 397). Then apply the corollary 11.11

We conclude now the proof of the theorem of Bott 11.4. In order to prove i) consider
that by assumption (o, A + ¢) = 0 for any root a. There exists w € W such that

w(A+4d) eC
It follows
(1w(a), w() +8)) = 0
for any root «, then there exists a simple root 3 such that
(8,w(A+46)) =0
It follows
(8,w(A +48) —d) = —1
By the lemma 11.7 (with 7 trivial) we get
HY(G/B.,Lyris)—5) =0 Vi

Apply the corollary 11.11 with w(\ + §) — § at the place of A and w~! at the place of w,
then
w_l[w(/\+5)—5+5]—5:/\

and it follows

H'(G/B,Ly)=0 Vi

as we wanted.

In order to prove ii) consider that by the lemma 11.12 we have
HY(G/B,Lyx+s)-5) =0 Vi>0

Applying again the corollary 11.11 with w(\ 4+ §) — § at the place of A and w™! at the
place of w, then

HY(G/B,Ly)=0 Yi#Il(w™")=I(w)

and

Hl(w)(G/BvL)\) = HO(G/Bva()\+5)—5) i Gw()\—l—é)—é

(the last isomorphism by the Borel-Weil theorem).

The proof of the theorem of Bott is so concluded, up to the check that [(w) is exactly
the index of regularity of A 4+ 4. This form allows more handy computations. This fact can
be checked by analyzing the euclidean structure of the space of the roots (e.g. the case of
G = SL(n) is a simple exercise) and we leave it to the reader.
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Exercise. If Pic(G/P) =7 we have a well defined line bundle O(1). Prove that
HY(G/P,O(t)) =0 VtcZ Vi:0<i<dim G/P

Varieties with this property are called arithmetically Cohen-Macaulay (this is equivalent
to the homogeneous coordinate ring being Cohen-Macaulay)

612. Stability of homogeneous bundles

Let aq,...,a, be a fundamental system of roots of a simple simply connected Lie group
G and let Aq,...,\, be the fundamental weights. Let P = P(X) C G be a parabolic
subgroup.

Lemma 12.1. Let

A = Z cijozj
J
(cij are the entries of the inverse of the Cartan matrix). Then

>0 Vi,j>0

Proof The inverse of C is computed explicitly in [Hum] page 69 but the computation
is long. A direct proof is as follows.

Let
St =1y €[L,n]le” <0}
Sy ={j € [1,n]lc" > 0}
Sy ={j € [1,n]lc" =0}
A =— Z cijozj
jesi
Ay = Z cijozj
jesi
Then
A=Ay — Ay

By the lemma 6.42 we have (A1, Ay) < 0. It follows
0< (A, A1) = (Ao, A1) —(A1,A) <0
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Then
0> (A2, A1) =(A1,A1) >0

These inequalities imply that (Ay, A;) = 0. It follows A; = 0 so that S! = {.

If k € St we get

0< (Aisax) = Y Y(ajar) <0
jesi
Therefore
(oj, o) =0 Vje S5.kelbS,;
As G is simple we get S% = .
Theorem 12.2. Let p be a irreducible representation of P with maximal weight \. It
tfollows
A\=0&FE,=0« H°(G/P,E,)=C
A= Zpiozi with p; >0 < h°(G/P,E,) > 2
Proof Immediate from the Borel-Weil theorem and the lemma 12.1.
The reductive part of P = P(Y) is
He > (9aBg-a)
a€dt(X)

Denote by Z the center of the reductive part, then we have
Lie Z ={h € Hla(h) =0 Vae ®"(2)} = Bage+x)GarG—a] (12.1)

Theorem 12.3(Ramanan). Let p be a irreducible representation of P. Then E, is a
simple bundle.

Proof Observe that E, @ E7 ~ E,q,«. By the coroll. 3.26 p @ p* is trivial over Z. By
the prop. 10.5 p @ p* is completely reducible. Let A\ be the highest weight of a irreducible
summand of d(p @ p*).. We have

ANLie z =0

By (12.1) A is a linear combination of the simple roots in the complement of ¥. By the
theorem 12.2 and the lemma 12.1 hO(EA) = 0 only if A = 0. Hence HO(Ep ® E;‘) = Ck
where k is the number of times that the trivial representation appears as a direct summand
in p ® p*. The result follows by applying the prop. 3.27.

Theorem 12.4. Let p1, p2 be two completely reducible representations of P. Then
EP1 = EP2 < P1 = P2

Proof As in the proof of the theorem 12.3 H°(G/P,E,, @ E7) = C" where r is the
number of times that the trivial representation appears as a direct summand in p; @ p3.
By the prop. 3.27 and the theorem 12.3 it follows the result.
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Definition 12.5. Let H be an ample divisor over a variety X of dimension d. We set

Cl(E) . Hd_l

par(B) = rk E

g 1s called the slope with respect to H.
The main property of the slope that we will use is the following. If

0—A—B—C—0

is an exact sequence of sheaves then
1) if pp(A) # pa(C) then p(B) is contained in the open interval with extremes g (A)
and pp(C).
i) if pr(A) = pa(C) then py(A) = pu(B) = pu(C).
Definition 12.6. A bundle E over X is called H-(semi)stable if for every subsheaf F
such that 0 Cx F Cx E we have

pu(F) < (S) pu(E)

Theorem 12.7 (Rohmfeld).
i) If a homogeneous bundle E = E, is not H-semistable then there exists a homogeneous
subbundle F' induced by a subrepresentation of p such that

pu(EF) > pp(E)

Hence in order to check the semistability it is sufficient to check a finite number of
inequalities involving the possible invariant subbundles for the given representation.

ii) Moreover F can be chosen to be a direct sum &F; where all F; are homogeneous
H-stable bundles with the same slope and the same rank (not necessarily invariant
for the given representation).

The theorem 12.7 can be reformulated in the following form
Criterion of stability 12.8.

1) If pg(F) < pup(E,) for any homogeneous subbundle invariant for p then E, is H-
semistable.

ii) If E, is indecomposable and py(F) < pp(E,) for any homogeneous subbundle in-
variant for p then E, is H-stable.

Corollary 12.9 (Ramanan). If p is irreducible then E, is stable.
Proof By the theorem 12.3 E, is simple, then indecomposable. Then apply 12.8 ii).

In order to prove the theorem 12.7 we need some preliminary results.
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Lemma 12.10. Let H; = Ly, fori = 1,...r be the ample generators of Pic(G/P). Let
E be a bundle over G/P. There exists N € Z such that ifHO(E QH"®...2H)#0
then n; > N Vi.

Proof By the theorem A of Serre there exists m such that E @ H" @ ... @ H is a
subbundle of the trivial bundle @ @ C* for some k. Then the statement is trivial.

Lemma 12.11. Let E be a bundle over G/P. The set {un(F)|F is a subsheaf of E}

admits a maximum [ig.

Proof If F C E is a subsheaf of rank f then (AfF)** is a line subbundle of AYE and
A E(—ci(F)) has a section. The result follows by the lemma 12.10 applied to A/ E for
1< f<rk E.

Lemma 12.12. Let E, be a homogeneous bundle over G/P. Let A={F C E,|u(F) =
to and the rank of F' is minimum}. Then the elements of A are finitely many and homo-
geneous and we get

breal CE
The bundle & pc A F is invariant for p.
Proof Let Fy € A and F, C E, such that u(F3) = po. We claim that Fy N F, =0 or
Fy C Fy. Infact if 0 # Fy N Fy # F then

pr(Fy N Fy) <pp(Fy) <pa((Fy+ F2)/F) (12.2)
Moreover g (Fy) > pmp(Fy + F») so that from the sequence
0—>F2—>F1 + F2—>(F1 + FQ)/F2—>0

it follows

pr(F) 2 pa(Fy+ F) 2 pa((Fy + Fy)/ ) (12.3)
Putting together (12.2) and (12.3) it follows

pu(F) < po(Fy)

which is a contradiction.

In particular if F;,F, € A then Fi N F, = 0 or F; = F,. Therefore GpcaF is
really a finite direct sum and has to be p-invariant by its definition. Hence @Gpc 4 F is a
vector bundle so that any F € A is a vector bundle. In order to prove that every F € A is
homogeneous divide A into classes of isomorphic bundles. G is connected and acts trivially
on the set of these classes. It follows the lemma.

End of the proof of the theorem 12.7
If E is not semistable then po > pg(E). The bundle G peca F defined in the lemma
12.12 has slope pg.
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