
Geometry of Projective Varieties

Notes for PRAGMATIC 2006

Francesco Russo

Departamento de Matemática
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Preface

The aim of these notes is to furnish an introduction to some classical and recent
results and techniques in projective algebraic geometry. We treat the geometrical
properties of varieties embedded in projective space, their secant and tangent lines,
the behaviour of tangent linear spaces, the algebro-geometric and topological ob-
structions to their embedding into smaller projective spaces, the classification in
the extremal cases.

These are classical themes in algebraic geometry and the renewed interest at
the beginning of the ’80 of the last century came from some conjectures posed by
Hartshorne, [H2], from an important connectedness theorem of Fulton and Hansen,
[FH], and from its new and deep applications to the geometry of algebraic varieties,
as shown by Fulton, Hansen, Deligne, Lazarsfeld and Zak, [FH], [FL], [D2], [Z2].
We shall try to illustrate these themes and results during the course and with more
details through these notes.

There exists no introductory text on secant, tangent, dual varieties, Terracini
Lemma, etc, and moreover, quite surprisingly, these notions are not well known
today. Thus we were forced to recall their constructions at the beginning of the
text and to prove their first properties. A more advanced reference on some topics
presented here is [Z2], which influenced the presentation of many parts; these notes
could be thought also as a natural preparation to portions of the above referred
book.

Finally I apologize for the absence, only in the notes, of any figure as it should
be the case in a text on geometry. It depends on my well known incompatibility
with a normal use of this modern technology. I felt enough satisfied producing a
document with an (automatic) index.
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Introduction

After the period in which new and solid foundations to the principles of alge-
braic geometry were rebuilt especially by Zariski, Grothendieck and their schools, at
the beginning of the ’70 a new trend began. There was a renewed interest in solving
concrete problems and in finding applications of the new methods and ideas. One
can consult the beautiful book of Robin Hartshorne Ample subvarieties of algebraic
varieties, [H1], to have a picture of that situation. In [H1] many outstanding ques-
tions, such as the set-theoretic complete intersection of curves in P3 (still open),
the characterization of PN among the smooth varieties with ample tangent bundle
(solved by Mori in [Mo1] and which cleared the path to the foundation of Mori
theory, [Mo2]) were discussed and/or stated and a lot of other problems solved.
In related fields we only mention Deligne proof of the Weil conjectures or, later,
Faltings proof of the Mordell conjecture, which used the new machinery.

Let us quote a part of Zak’s introduction to his fascinating book [Z2]: ”Among
recent achievements in the field of multidimensional projective geometry we mention
results of Hironaka, Matsumura, Ogus, and Hartshorne on formal neighborhoods
and local cohomology, theorems of Barth, Goresky, and MacPherson on the topology
of projective varieties, classification of Fano varieties given by Iskovskih, Mori, and
others, and various versions of Schubert’s enumerative geometry. One of the most
important results of the last decade is the connectedness theorem of Fulton and
Hansen (cf. [FH], [FL])”.

The interplay between topology and algebraic geometry returned to flourish.
Lefschetz theorem and Barth-Larsen theorem, see subsection 2.1.1, also suggested
that smooth varieties, whose codimension is small with respect to their dimen-
sion, should have very strong restrictions both topological, both geometrical. For
example a codimension 2 smooth complex subvariety of PN , N ≥ 5, has to be sim-
ply connected. If N ≥ 6, there are no known examples of codimension 2 smooth
varieties with the exception of the trivial ones, the complete intersection of two
hypersurfaces, i.e. the transversal intersection of two hypersurfaces, smooth along
the subvariety. In fact, at least for the moment, one is able to construct only these
kinds of varieties whose codimension is sufficiently small with respect to dimension.

Based on these empirical observations and, according to Fulton and Lazarsfeld,
”on the basis of few examples”, Hartshorne was led to formulate two conjectures in
1974, [H2]. The first one is the following.

”Let X ⊂ PN be a smooth irreducible non-degenerate projective variety.

If N <
3
2

dim(X), i.e. if codim(X) <
1
2

dim(X), then X is a complete intersection.”

ix



x INTRODUCTION

Let us quote Hartshorne: While I am not convicted of the truth of this state-
ment, I think it is useful to crystallize one’s idea, and to have a particular problem
in mind ([H2]). The conjecture is sharp as the example of G(1, 4) ⊂ P9 shows.

It is not here the place to remark how many important results originated and
still today arise from this open problem in the areas of vector bundles on projective
space, of the study of defining equations of a variety and k-normality and so on.
The list of these achievements is too long that we preferred to avoid citations, being
confident that everyone has met sometimes a problem or a result related to it. It
is quite embarrassing that the powerful methods of modern algebraic geometry did
not yet produced a solution (or a counterexample).

The second problem posed by Hartshorne, also suggested by the fact that com-
plete intersections are linearly normal and by some examples in low dimension, is
the following. We recall that a nonsingular variety X ⊂ PN is called linearly normal
if h0(X,OX(1)) = N + 1, i.e., there is no X ′ ⊂ PN ′

, N ′ > N , such that X ′ is not
contained in a hyperplane and can be isomorphically projected onto X.

”Let X ⊂ PN be a smooth irreducible non-degenerate projective variety.

If N <
3
2

dim(X)+1, i.e. if codim(X) <
1
2

dim(X) + 1, then X is linearly normal.”

Let us quote once again Hartshorne point of view on this second problem:Of
course in settling this conjecture, it would be nice also to classify all nonlinearly
normal varieties with N = 3

2n + 1, so as to have a satisfactory generalization of
Severi’s theorem. As noted above, a complete intersection is always linearly normal,
so this conjecture would be a consequence of our original conjecture, except for the
case N = 3n

2 . My feeling is that this conjecture should be easier to establish than
the original one ([H2]). Once again the bound is sharp taking into account the
example of the projected Veronese surface in P4.

The conjecture on linear normality was proved by Zak at the beginning of the
’80’s and till now it is the major evidence for the possible truth of the complete
intersection conjecture. Moreover, Zak classified all the extremal cases showing
that there are only 4 varieties analogous to the Veronese surface in P4, see chapter
3. These varieties were dubbed Severi varieties in honour of Francesco Severi, who
first established the case n = 2 in [Sev1].

Many theorems in classical projective geometry deal with ”general” objects, as
the Bertini theorem on hyperplane sections, see theorem 1.5.2 here. A more refined
version of this theorem says that if f : X → PN is morphism, with X proper
and such that dim(f(X)) ≥ 2, and if H = PN−1 ⊂ PN is a general hyperplane,
then f−1(H) is irreducible. The ”Enriques-Zariski principle” says that ”limits of
connected varieties remain connected” and it is illustrated in the previous example
because for an arbitrary H = PN−1 ⊂ PN , one proves that f−1(H) is connected.

This last result is particularly interesting because, as shown by Deligne and
Jouanolou, a small generalization of it proved by Grothendieck, [Gr] XIII 2.3,
yields a simplified proof of a beautiful and interesting connectedness theorem of
Fulton and Hansen in [FH], whose applications are deep and appear in different
areas of algebraic geometry and topology as we survey in chapter 2. One of the most
important is Zak’s theorem on tangencies. In the simplest situation this theorem
is formulated as follows. Let X ⊂ PN be an irreducible n-dimensional projective
variety over an algebraically closed field K that is not contained in any hyperplane,
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and let L be an m-dimensional linear subspace of PN that is tangent to X along an
r-dimensional subvariety Y ⊂ X (this means that all (embedded) tangent spaces
to X at the points of Y are contained in L, so that, in particular, m ≥ n). Then
r ≤ m− n, see chapter 2.

In particular the classical theorem of Bertini can be improved and new state-
ments appear; for example, for a nonsingular variety of dimension n, X ⊂ PN , each
hyperplane section is reduced for N < 2n and is normal for N < 2n− 1. Other ap-
plications furnished by Zak lead to the solution of many classical problems such as
the finiteness of the Gauss map for smooth varieties or the fact that the dimension
of the dual variety X∗ ⊂ PN∗ is not less than the dimension of X ⊂ PN .

The problems and results we exposed above and which are contained in these
notes are examples of the themes treated in projective geometry. This means that
we fix a variety, its embedding and we are studying the properties of this variety or of
its projections onto smaller dimensional spaces. Thus only the different incarnations
of the same variety embedded by a fixed very ample line bundle are studied, by
considering various sublinear system of the complete one realizing it in projective
spaces of different dimension. The existence of isomorphic projections onto smaller
projective spaces translates into strong properties of the linearly normal embedded
variety.

Let us quote excerpts from Hilbert presentation of projective geometry in
[HCV]:

”..... we shall learn about geometrical facts that can be formulated and proved
without any measurement or comparison of distances or of angles. It might be
imagined that no significant properties of a figure could be found if we do without
measurement of distances and angles and that only vague statements could be made.
And indeed research was confined to the metrical side of geometry far a long time,
and questions of the kind we shall discuss in this chapter arose only later, when the
phenomena underlying perspective painting were being studied scientifically. Thus,
if a plane figure is projected from a point onto another plane, distances and angles
are changed, and in addition, parallel lines may be changed into lines that are not
parallel; but certain essential properties must nevertheless remain intact, since we
could not otherwise recognize the projection as being a true picture of the original
figure. In this way, the process of projecting led to a new theory, which was called
projective geometry because of its origins. Since the 19th century, projective geom-
etry has occupied a central position in geometric research. With the introduction
of homogeneous coordinates, it became possible to reduce the theorems of projective
geometry to algebraic equations in much the same way that Cartesian coordinates
allow this to be done for the theorems of metric geometry. But projective analytic
geometry is distinguished by the fact that it is far more symmetrical and general
than metric analytic geometry, and when one wishes, conversely, to interpret higher
algebraic relations geometrically, one often transforms the relations into homoge-
neous form and interprets the variables as homogeneous coordinates, because the
metric interpretation in Cartesian coordinates would be too unwieldy.”

Varieties which could be projected isomorphically to projective spaces of lower
dimension such that their codimension became small, are very special. First of all
the projected manifold is not a complete intersection, being not linearly normal,
so that the principles cited above say that near the bound there should be very
few examples, satisfying strong restrictions and, at least experimentally, they are
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very few and could be classified; for examples most of them are homogeneous. To
study projections one naturally deals with secant and tangent lines to the variety
and with the varieties described by these lines in the ambient space.

We recall that a nonsingular variety X ⊂ PN can be isomorphically projected
to PN−1 if and only if SX 6= PN , where SX is the secant variety of X, i.e.,
the closure of the union of chords joining pairs of distinct points of X. Thus, the
minimal number m such that X can be isomorphically projected to Pm is equal
to the dimension of the variety SX. The relationship between embedded tangent
spaces to X and SX is given by Terracini lemma, see chapter 1.

If z ∈ SX, z ∈< x, y > , where x, y ∈ X and < x, y > is the chord joining x
with y, then the (embedded) tangent space TzSX contains the (embedded) tangent
spaces TxX and TyX. Moreover, if the ground field has characteristic zero and z
is a general point of SX, then

TzSX =< TxX,TyX > .

From this it follows that if X can be isomorphically projected to Pm , then for
each pair of points x, y ∈ X there exists an m-dimensional linear subspace of PN

which is tangent to X at the points x and y (if the characteristic of the ground field
is equal to zero, then the converse is also true).

Along with the secant variety SX one can consider higher secant varieties SkX,
k ≥ 1, where SkX is the c1osure of the union of k-dimensional linear subspaces
spanned by generic collections of k + 1 points of X. Zak established a connection
between geometric characteristics of the varieties SkX for various k. In particular,
for an arbitrary nonsingular variety X ⊂ PN such that < X >= PN he proved that

S[ n
δ ]X = PN ,

where
δ = δ(X) = 2n+ 1− dim(SX)

and [n
δ ] is the largest integer not exceeding n

δ , see chapter 4. This yields a bound
for the maximal (for given n and r ≤ 2n) number N for which there exist a variety
X ⊂ PN that can be isomorphically projected to Pr. This bound is sharp; the
varieties for which it is attained are called Scorza varieties, in honor of Gaetano
Scorza (Severi varieties are special cases of Scorza varieties for δ = n

2 ). Zak obtained
a complete classification of Scorza varieties, viz., there exist three series of such
varieties and one special sixteen-dimensional variety, see chapter 4. In other words,
for a smooth variety X ⊂ Pr such that codim(X) ≤ dim(X) there exists a sharp
bound for h0((X,OX(1))) in terms of dim(X) and r and Zak classified all varieties
for which this bound is attained.

Scorza and Terracini together with classical algebraic Geometers, antique and
modern, taught and teach to us also to experiment the ”live rapport” with ”the
objects one studies” and showed us the ”concrete intuition”, described by Hilbert
in his preface to the book ”Geometry and the Imagination” [HCV]:

”In mathematics, as in any scientific research, we find two tendencies present.
On the one hand, the tendency toward abstraction seeks to crystallize the logical
relations inherent in the maze of material that is being studied, and to correlate
the material in a systematic and orderly manner. On the other hand, the tendency
toward intuitive understanding fosters a more immediate grasp of the objects one
studies, a live rapport with them, so to speak, which stresses the concrete meaning
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of their relations. As to geometry, in particular, the abstract tendency has here
led to the magnificent systematic theories of Algebraic Geometry, of Riemannian
Geometry, and of Topology; these theories make extensive use of abstract reasoning
and symbolic calculation in the sense of algebra. Notwithstanding this, it is still as
true today as it ever was that intuitive understanding plays a major role in geometry.
And such concrete intuition is of great value not only far the research worker,
but also far anyone who wishes to study and appreciate the results of research in
geometry. In this book, it is our purpose to give a presentation of geometry, as it
stands today, in its visual, intuitive aspects. With the aid of visual imagination we
can illuminate the manifold facts and problems of geometry, and beyond this, it is
possible in many cases to depict the geometric outline of the methods of investigation
and proof, without necessarily entering into the details connected with the strict
definitions of concepts and with the actual calculations.

In this manner, geometry being as many-faceted as it is and being related to the
most diverse branches of mathematics, we may even obtain a summarizing survey
of mathematics as a whole, and a valid idea of the variety of its problems and the
wealth of ideas it contains.”





CHAPTER 1

Tangent cones, tangent spaces, tangent stars;
secant, tangent and tangent star variety to an

algebraic variety

1.1. Tangent cones to an algebraic variety and associated varieties

Let X be an algebraic variety, or more generally a scheme of finite type, over
a fixed algebraically closed field K. Let x ∈ X be a closed point. We briefly recall
the definitions of tangent cone to X at x and of tangent space to X at x. For more
details one can consult [Mu] or [Sh].

1.1.1. Definition. (Tangent cone at a point). Let U ⊂ X be an open
neighbourhood of x, let i : U → AN be a closed immersion and let U be defined
by the ideal I ⊂ K[X1, . . . , XN ]. There is no loss of generality in supposing i(x) =
(0, . . . , 0) ∈ AN . Given f ∈ K[X1, . . . , XN ] with f(0, . . . , 0) = 0, we can define
the ”leading form” of f , f∗, as the lower degree homogeneous polynomial in its
expression as a sum of homogenous polynomials in the variables Xi’s. Let

I∗ = {the ideal generated by the ”leading form”f∗, for all f ∈ I}.

Then
CxX := Spec(K[X1, . . . , XN ]/I∗),

is called the affine tangent cone to X at x.
It could seem that it depends on the choice of U ⊂ X and on the choice of

i : U → AN . It is not the case because if (Ox,mx) is the local ring of regular
functions of X at x, then it is immediate to see that

(k[X1, . . . , XN ]/I∗) ' gr(Ox) :=
⊕
n≥0

mn
x

mn+1
x

.

This fact simply says that we can calculate CxX by choosing an arbitrary set
of generators of I and moreover that the definition is ”local”. It should be noticed
that CxX is a scheme, which can be neither irreducible nor reduced as the examples
of plane cubic curves with a node and with a cusp show. We now get a geometrical
interpretation of this cone and see some of its properties.

Since CxX is ”locally” defined by homogeneous forms, it can be naturally pro-
jectivized and thought as a subscheme of PN−1 = P(AN ). If we consider the
blow-up of x ∈ U ⊂ AN , π : BlxU → U , then BlxU is naturally a subscheme of
U×PN−1 ⊂ AN×PN−1 and the exceptional divisor E := π−1(x) is naturally a sub-
scheme of x×PN−1. With these identifications one shows that E ' P(CxX) ⊂ PN−1

as schemes, see [Mu], pg. 225. In particular, if X is equidimensional at x, then
CxX is an equidimensional scheme of dimension dim(X). Moreover, we deduce the

1
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following geometrical definition:

CxX =
⋃

y∈U

lim
y→x

< y, x >.

The cone CxX can also be described geometrically in this way, see [Sh]. Let notation
be as in the affine setting above and set

m = min{multx(l ∩ V (f)), l line through x , f ∈ I}.
Then CxX is swept out locally by the lines l through x such that multx(l∩V (f)) >
m.

If X ⊂ PN is quasi-projective, we define the projective tangent cone to X at x,
indicated by CxX, as the closure of CxX ⊂ AN in PN , where x ∈ U = AN ∩ X
is a suitable chosen affine neighbourhood. The same geometrical definition holds,
remembering of the scheme structure,

CxX =
⋃

y∈U

lim
y→x

< y, x > ⊂ PN .

We now recall the definition of tangent space to X at x ∈ X.

1.1.2. Definition. (Tangent space at a point; Tangent variety to a
variety). Let notation be as in the previous definition. Given f ∈ K[X1, . . . , XN ]
with f(0, . . . , 0) = 0, we can define the ”linear term” of f , f lin, as the degree one
homogeneous polynomial in its expression as a sum of homogenous polynomials in
the variables Xi’s. In other words, f lin =

∑N
i=1

∂f
∂Xi

(0)Xi. Let

I lin = {the ideal generated by the ”linear terms”f lin, for all f ∈ I}.
Then

TxX := Spec(K[X1, . . . , XN ]/I lin),
is called the affine tangent space to X at x.

Geometrically it is the locus of tangent lines to X at x, where a line through
x is tangent to X at x if it is tangent to the hypersurfaces V (f) = 0, f ∈ I, i.e.
if the multiplicity of intersection of the line with V (f) at (0, . . . , 0) is greater than
one. In particular this locus is a linear subspace of AN .

Since I lin ⊆ I∗, we deduce the inclusion as schemes

CxX ⊆ TxX;
and that TxX is the smallest linear subscheme of AN containing CxX as a subscheme
(and not only as a set!). In particular for every x ∈ X it holds dim(TxX) ≥ dim(X).

We recall that a point x ∈ X is non-singular if and only CxX = TxX. Since
TxX is reduced and irreducible and since CxX is of dimension dim(X), we have
that x ∈ X is non-singular if and only if dim(TxX) = dim(X).

Once again there is an intrinsic definition of TxX

(K[X1, . . . , XN ]/I lin) ' S(mx/m
2
x),

where S(mx/m
2
x) is the symmetric algebra of the K-vector space mx/m

2
x.

If X ⊂ PN is a quasi-projective variety, we define the projective tangent space
to X at x, indicated by TxX, as the closure of TxX ⊂ AN in PN , where x ∈ U =
AN ∩X is a suitable chosen affine neighbourhood. Then TxX is a linear projective
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space naturally attached to X and clearly CxX ⊆ TxX as schemes. We also set,
for a (quasi)-projective variety X ⊂ PN ,

TX =
⋃

x∈X

TxX,

the variety of tangents, or the tangent variety of X.

At a non-singular point x ∈ X ⊂ PN , the equality CxX = TxX says that every
tangent line to X at x is ”limit” of a secant line < x, y > with y ∈ X approaching
x. For singular points this is not the case as one sees in the simplest examples of
singular points of an hypersurface.

An interesting question is to investigate what are the limits of secant lines
< y1, y2 >, yi ∈ X, y1 6= y2, when yi, i = 1, 2, approaches a fixed x ∈ X. As we will
immediately see for a non-singular point x ∈ X, every tangent line to X at x arises
in this ways but for singular points this is not the case. These limits generate a
cone, the tangent star cone to X at x, which contains but does not usually coincide
with CxX (or CxX). From now on we restrict ourselves to the projective setting
since we will not treat local questions related to tangent star cones but the situation
can be ”localized”. Firstly we introduce the notion of secant variety to a variety
X ⊂ PN .

1.1.3. Definition. (Secant varieties to a variety). For simplicity let us
suppose that X ⊂ PN is a closed irreducible subvariety.

Let

S0
X := {((x1, x2), z) : z ∈< x1, x2 >} ⊂ (X ×X\∆X)× PN .

The set is locally closed so that taken with the reduced scheme structure it is a
quasi-projective irreducible variety of dimension dim(S0

X) = 2 dim(X) + 1. Recall
that, by definition, it is a P1-bundle over X × X\∆X , which is irreducible. Let
SX be its closure in X ×X × PN . Then SX is an irreducible projective variety of
dimension 2 dim(X) + 1, called the abstract secant variety to X. Let us consider
the projections of SX onto the factors X ×X and PN ,

SX

p1

{{www
ww

ww
ww p2

!!DD
DD

DD
DD

X ×X PN .

The secant variety to X, SX, is the scheme-theoretic image of SX in PN , i.e.

SX = p2(SX) =
⋃

x1 6=x2 , xi∈X

< x1, x2 > ⊆ PN ,

which is an irreducible algebraic variety of dimension s(X) ≤ 2 dim(X) + 1, the
variety swept out by the secant lines to X. If equality (does not) holds, then X is
said to be (defective) non-defective.

Let now k ≥ 1 be a fixed integer. We can generalize the construction to the
case of (k+1)-secant Pk, i.e. to the variety swept out by the linear spaces generated
by k + 1 independent points on X.
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Define
(Sk

X)0 ⊂ X × . . .×X︸ ︷︷ ︸
k+1

×PN

as the locally closed irreducible set

(Sk
X)0 := {((x0, . . . , xk), z) : dim(< x0, . . . , xk >) = k , z ∈< x0, . . . , xk >}.

Let Sk
X , the abstract k-secant variety of X, be

(Sk
X)0 ⊂ X × . . .×X︸ ︷︷ ︸

k+1

×PN .

The closed set Sk
X is irreducible and of dimension (k+1) dim(X)+k. Consider the

projections of Sk
X onto the factors X × . . .×X︸ ︷︷ ︸

k+1

and PN ,

Sk
X

p1

yysssssssssss
p2

!!CC
CC

CC
CC

X × . . .×X PN .

The k-secant variety to X, SkX, is the scheme-theoretic image of Sk
X in PN , i.e.

SkX = p2(Sk
X) =

⋃
xi∈X , dim(<x0,...,xk>)=k

< x0, . . . , xk > ⊆ PN .

It is an irreducible algebraic variety of dimension sk(X) ≤ (k + 1) dim(X) + k. If
equality (does not) holds, then X is said to be (k-defective)not k-defective.

We are now in position to define the last cone attached to a point x ∈ X. This
notion was introduced by Johnson in [Jo] and further studied extensively by Zak.
Algebraic properties of tangent star cones and of the algebras related to them are
investigated in [SUV].

1.1.4. Definition. (Tangent star at a point; Variety of tangent stars,
[Jo]). Let X ⊂ PN be an irreducible projective variety.

The abstract variety of tangent stars to X, T ∗X , is defined by the following
cartesian diagram

T ∗X

p

��

� � // SX

p2

��
∆X

� � // X ×X .

The tangent star to X at x, T ∗xX, is defined by

T ∗xX := p2(p−1((x, x))) ⊆ PN .

It is a scheme which can be described geometrically as follows:

T ∗xX =
⋃

(x1,x2)∈X×X\∆X

lim
xi→x

< x1, x2 > ⊂ PN .

The variety of tangent stars to X is by definition

T ∗X = p2(T ∗X) ⊆ PN ,
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so that by construction
T ∗X ⊆ SX;

moreover letting only one point varying we deduce

CxX ⊆ T ∗xX.

It is also clear that the limit of a secant line is a tangent line, i.e. that

T ∗xX ⊆ TxX.

By what we have defined and studied we deduce that for a point x ∈ X ⊂ PN ,
there is the following relation between the cones we attached at X:

CxX ⊆ T ∗xX ⊆ TxX.

Moreover a point x ∈ X is non-singular if and only if CxX = T ∗xX = TxX. We
immediately show in the following class of examples that at singular points strict
inequalities can hold, i.e. at singular points there could exist tangent lines which
are not limit of secant lines.

1.1.5. Example. (Singular points for which CxX ( T ∗xX ( TxX). Let
Y ⊂ PN ⊂ PN+1 be an irreducible, non-degenerate variety in PN . Consider a point
p ∈ PN+1 \ PN and let X := S(p, Y ) be the cone over Y of vertex p, i.e.

S(p, Y ) =
⋃

y∈Y

< p, y > .

Then X is an irreducible, non-degenerate variety in PN+1. In fact, modulo a
projective transformation, the variety X is defined by the same equations of Y ,
now thought as homogeneous polynomials with one variable more; in particular
dim(X) = dim(Y ) + 1.

The line < p, y > is contained in X for every y ∈ Y , so that X ⊂ TxX and
therefore PN =< Y >⊂ TpX. Since p ∈ TpX, we get

(1.1.1) TpX = PN+1.

It follows from the definition of tangent cone to a variety that

CpS(p, Y ) = S(p, Y ).
We also have that

(1.1.2) S(p, SY ) = SX.

Indeed, by projecting from p onto PN , it is clear that a general secant line to X
projects onto a secant line to Y , proving SX ⊆ S(p, SY ). On the contrary if we
get a general point q ∈ S(p, SY ), by definition it projects onto a general point
q′ ∈ SY , which belongs to a secant line < p′1, p

′
2 >, p′i ∈ Y . The plane < p, p′1, p

′
2 >

contains the point q, while the lines < p, p′i >, i = 1, 2, are contained in X by
definition of cone; hence through q there pass infinitely many secant lines to X,
yielding S(p, SY ) ⊆ SX. The claim is proved.

The above argument proves the following general fact:

T ∗p S(p, Y ) = S(p, SY ).

Indeed by definition T ∗pX ⊆ SX = S(p, SY ) as schemes. On the other hand,
by fixing two general points p1, p2 ∈ X, p1 6= p2, pi 6= p, the plane < p, p1, p2 > is
contained in T ∗pX as it is easily seen by varying the velocity of approaching p of
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two points qi ∈< p, pi >. By the generality of the points pi we get the inclusion
SX ⊆ T ∗pX as schemes and the proof of the claim.

As an immediate application one constructs example of irreducible singular
varieties X with a point p ∈ Sing(X) for which

CpX ( T ∗pX ( TpX.

One can take as Y ⊂ P4 ⊂ P5 an irreducible, smooth, non-degenerate curve in
P4 and consider the cone X over Y of vertex p ∈ P5\P4. Then CpX = S(p, Y ) = X,
T ∗pX = S(p, SY ) = SX is an hypersurface in P5, because SY is an hypersurface
in P4 (see 1.2.2 if you do not agree), while TpX = P5. Every variety Y such that
SY ( PN (see the following exercise or take N > 2 dim(Y ) + 1) will produce
analogous examples.

1.1.6. Exercise. Let K be a(n algebraically closed) field. Recall that the linear
combination of two (symmetric) matrixes of rank 1 has rank at most 2 and that
every (symmetric) matrix of rank 2 can be written as the linear combination of two
(symmetric) matrixes of rank 1.

Deduce the following geometrical consequences for the secant varieties of the
varieties described below.

(1) Let X = ν2(P2) ⊂ P5 be the 2-Veronese surface in P5. Identify P5 with

P({A ∈M(3;K) : A = At}),

and show that X = {[A] : rk(A) = 1}. Prove that SX = TX =
V (det(A)) ⊂ P5 is the cubic hypersurface given by the cubic polynomial
det(A). Show that if x1, x2 ∈ X, then Tx1X ∩ Tx2X 6= ∅ ((if you have a
lot of energy and not enough patience to wait for the next section, prove
that if the points are general, then the intersection consists of a point).
Prove that Sing(SX) = X.

(2) Let X = P2 × P2 ⊂ P8 be the Segre embedding of P2 × P2 in P8. Identify
P8 with

P({A ∈M(3;K)}),
and show that X = {[A] : rk(A) = 1}. Prove that SX = TX =
V (det(A)) ⊂ P8 is the cubic hypersurface given by the cubic polynomial
det(A). Show that if x1, x2 ∈ X, then Tx1X and Tx2X intersect at least
along a line (prove that if the points are general, then the intersection
consists of a line). Take H be a general hyperplane in P8 and let Y :=
X ∩ H. Then Y is a smooth, irreducible, non-degenerate 3-fold Y ⊂ P7

such that SY ⊆ SX ∩H so that dim(SY ) ≤ 6 (in fact one can prove that
SY = SX∩H and hence that dim(SY ) = 6). Prove that given y1, y2 ∈ Y ,
then Ty1Y ∩Ty2Y 6= ∅ (consists of a point if the points are general). Prove
that Sing(SX) = X.

Let p ∈ P9\P8, let Z = S(p,X) ⊂ P9 and let X ′ = X ∩ W , with
W ⊂ P9 a general hypersurface, not an hyperplane, not passing through
p. Then X ′ is a smooth, irreducible, non-degenerate 4-fold such that
SX ′ = SZ = S(p, SX). Conclude that dim(SX ′) = 8 and use the fact
that Z is a cone over X to deduce that two general tangent spaces to X ′

intersect.
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(3) Generalize the previous exercise and find the relation between SX ⊂ PN

and SX ′ ⊂ PN+1 for X ′ ⊂ PN+1 a general intersection of Z = S(p,X) ⊂
PN+1 with a general hypersurface W ⊂ PN+1, not passing through p ∈
PN+1\PN .

1.2. Join of varieties

We generalize to arbitrary irreducible varieties X,Y ⊂ PN the notion of ”cone”
or of ”join” of linear spaces.

Let us remember that if Li ' PNi ⊆ PN , i = 1, 2, is a linear subspace, then

< L1, L2 >:=
⋃

xi∈Li , x1 6=x2

< x1, x2 >,

is a linear space called the join of L1 and L2. It is the smallest linear subspace of
PN containing L1 and L2. By Grassmann formula we have

(1.2.1) dim(< L1, L2 >) = dim(L1) + dim(L2)− dim(L1 ∩ L2),

where as always dim(∅) = −1. This shows that the dimension of the join depends
on the intersection of the two linear spaces.

On the other hand, if X ⊂ PN ⊂ PN+1 is an irreducible subvariety and if
p ∈ PN+1\PN is an arbitrary point, if we define as before

S(p,X) =
⋃

x∈X

< p, x >,

the cone of vertex p over X, then for every z ∈< p, x >, z 6= x, z 6= p, we have by
construction

(1.2.2) TzS(p,X) =< p, TxX >=< Tpp, TxX >,

i.e. the well known fact that the tangent space is constant along the ruling of a
cone.

As we shall see in the next section, once we have defined the join of two varieties
as the union of lines ”joining” points of them, then we can ”linearize” the problem
looking at the tangent spaces and calculate the dimension of the ”join” by looking at
the affine cones over the varieties, exactly as in the proof of the formula 1.2.1. The
dimension of the join of two varieties will depend on the intersection of a general
tangent space of the first one with a general tangent space of the other one, a result
known as Terracini Lemma, [T1]. Moreover a kind of property similar to the second
tautological inequality in 1.2.2 will hold generically, at least in characteristic zero,
see theorem 1.3.1.

1.2.1. Definition. (Join of varieties; relative secant, tangent star and
tangent varieties). Let X,Y ⊂ PN be closed irreducible subvarieties.

Let

S0
X,Y := {((x, y, z) , x 6= y : z ∈< x, y >} ⊂ X × Y × PN .

The set is locally closed so that taken with the reduced scheme structure it is a
quasi-projective irreducible variety of dimension dim(S0

X,Y ) = dim(X)+dim(Y )+1.
Let SX,Y be its closure in X × Y × PN . Then SX,Y is an irreducible projective
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variety of dimension dim(X) + dim(Y ) + 1, called the abstract join of X and Y .
Let us consider the projections of SX,Y onto the factors X × Y and PN ,

(1.2.3) SX,Y

p1

zzuuuuuuuuu
p2

""FFFFFFFF

X × Y PN .

The join of X and Y , S(X,Y ), is the scheme-theoretic image of SX,Y in PN , i.e.

S(X,Y ) = p2(SX,Y ) =
⋃

x6=y, x∈X, y∈Y

< x, y > ⊆ PN ;

it is an irreducible algebraic variety of dimension s(X,Y ) ≤ dim(X) + dim(Y ) + 1,
swept out by lines joining points of X with points of Y .

With this notation S(X,X) = SX and S(X,Sk−1X) = SkX = S(SlX,ShX),
if h ≥ 0, l ≥ 0, h + l = k − 1. Moreover, for arbitrary irreducible varieties X, Y
and Z, we have S(X,S(Y,Z)) = S(S(X,Y ), Z).

When Y ⊆ X ⊂ PN is an irreducible closed subvariety, the variety S(Y,X) is
usually the relative secant variety of X with respect to Y . Analogously, T (Y,X) =⋃

y∈Y TyX. In this case by taking ∆Y ⊂ Y × X and by looking at 1.2.3, we can
define T ∗Y,X := p−1

1 (∆Y ) ⊆ SY,X to be the abstract relative tangent star variety and
finally

(1.2.4) T ∗(Y,X) := p2(T ∗Y,X) ⊆ S(X,Y )

to be the relative tangent star variety. If

T ∗y (Y,X) = p2(p−1
1 (y × y)) =

⋃
(y1,x1)∈Y×X\∆Y

lim
y1→y
x1→y

< y1, x1 > ⊂ PN ,

then T ∗(Y,X) =
⋃

y∈Y T
∗
y (Y,X). With this terminology, T ∗y (y,X) = CyX and

T ∗y (X,X) = T ∗yX for every y ∈ X. In particular CyX = T ∗y (y,X) ⊆ T ∗y (X,X) =
T ∗yX.

We furnish some immediate applications of the definition of join to properties
of SkX and to characterizations of linear spaces.

1.2.2. Proposition. ([P2]) Let X,Y ⊂ PN be closed irreducible subvarieties.
The following holds:

(1) for every x ∈ X,

Y ⊆ S(x, Y ) ⊆ S(x,< Y >) ⊆ TxS(X,Y );

(2) if SkX = Sk+1X for some k ≥ 0, then SkX = Psk(X) ⊆ PN ;
(3) if dim(Sk+1X) = dim(SkX) + 1 for some k ≥ 0, then Sk+1X = Psk+1(X)

so that SkX is a hypersurface in Psk+1(X);
(4) if Sk+1X, k ≥ 0, is not a linear space, then SkX ⊆ Sing(Sk+1X).

Proof. By definition of join we get the inclusion S(x, Y ) ⊆ S(X,Y ) and hence
TxS(x, Y ) ⊆ TxS(X,Y ). Moreover for every y ∈ Y , y 6= x, the line < x, y > is
contained in S(x, Y ) and passes through x so that it is contained in TxS(x, Y ) and
part 1) easily follows.
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Let z ∈ SkX be a smooth point of SkX. From part 1) we get

X ⊆ TzS(SkX,X) = TzS
k+1X = TzS

kX = Psk(X).

Thus SkX ⊆< X >⊆ TzS
kX = Psk(X) so that SkX =< X >= Psk(X) since SkX

and TzS
kX are both irreducible varieties of dimension sk(X).

To prove part 3), take a general point z ∈ Sk+1X \ SkX. For general x ∈ X
we get SkX ( S(x, SkX) ⊆ S(X,SkX) = Sk+1X. Thus for general x ∈ X we get
S(x, SkX) = Sk+1X since sk+1(X) = sk(X) + 1. In particular z ∈ S(x, SkX) for
x ∈ X general, i.e. there exists y ∈ SkX such that z ∈< x, y >⊂ Sk+1X. Thus a
general point x ∈ X is contained in TzS

k+1X so that

Sk+1X ⊆< X >⊆ TzS
k+1X

yields Sk+1X =< X >= Psk+1(X) since dim(TzS
k+1X) = sk+1(X) by the general-

ity of z ∈ Sk+1X.
Recall that in any case Sk+1X ⊆< X >. Take z ∈ SkX and observe that by

part 1) Sk+1X ⊆< X >⊆ TzS
k+1X so that dim(TzS

k+1X) > dim(Sk+1X), z is a
singular point of Sk+1X and part 4) follows. �

To a non-degenerate irreducible closed subvariety X ⊂ PN we can associate an
ascending filtration of irreducible projective varieties, whose inclusion are strict by
1.2.2, and an integer k0 = k0(X) ≥ 1:

(1.2.5) X = S0X ( SX ( S2X ( . . . ( Sk0X = PN ,

where k0 is the least integer such that SkX = PN .

The above immediate consequences of the definitions give also the following
result, which was classically very well known, see for example [P1] footnote pg. 635,
but considered as an open problem by Atiyah, [At] pg. 424. From the following
corollary, an argument of Atiyah yields a proof of C. Segre and Nagata theorem
about the minimal section of a geometrically ruled surface, see [Ln].

1.2.3. Corollary. ([P1]) Let C ⊂ PN be an irreducible non-degenerate pro-
jective curve. Then sk(C) = min{2k + 1, N}.

Proof. For k = 0 it is true and we argue by induction. Suppose SkC $ PN .
By proposition 1.2.2 sk(C) ≥ sk−1(C)+2 and the description Sk(C) = S(C,Sk−1C)
yields sk(C) ≤ sk−1(C)+2 so that sk(C) = 2(k−1)+1+2 = 2k+1 as claimed. �

We define and study linear projections with the terminology just introduced
and generalize in a suitable way the dimension formula 1.2.1, in characteristic zero,
i.e. to the case of arbitrary cones over the variety X. In the next section we deal
with the general case.

1.2.4. Definition. (Linear projections and ”linear” cones) Let L = Pl ⊂
PN be a fixed linear space, l ≥ 0, and let M = PN−l−1 be a linear space skew to
L, i.e. L∩M = ∅ and < L,M >= PN . Let X ⊆ PN be a closed irreducible variety
not contained in L and let

πL : X 99K PN−l−1 = M,

be the rational map defined on X \ (L ∩X) by

πL(x) =< L, x > ∩M.
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The map is well defined by Grassmann formula, 1.2.1. Let X ′ = πL(X) ⊂ PN−l−1

be the closure of the image of X by πL. The whole process can be described with
the terminology of joins. Indeed we have

X ′ = S(L,X) ∩M,

i.e. X ′ is the intersection of M with the cone over X of vertex L and moreover
S(L,X) = S(L,X ′). The projective differential of πL is the projection of the
tangent spaces from L, i.e. if x ∈ X \ (L∩X), then dπL

(TxX) =< L, TxX > ∩M ⊆
TπL(x)X

′ as it is easily seen eventually passing to (local) coordinates.
Suppose L ∩ X = ∅, then we claim that πL : X → X ′ is a finite morphism,

which implies dim(X) = dim(X ′). Being a morphism between projective varieties,
it is sufficient to show that it has finite fibers. By definition for x′ ∈ X ′,

π−1
L (x′) =< L, x′ > ∩X ⊂< L, x′ >= Pl+1.

If there exists an irreducible curve C ⊂< L, x′ > ∩X ⊂< L, x′ >, then ∅ 6= L∩C ⊆
L ∩X, contrary to our assumption.

In particular for an arbitrary L, the dimension of X ′ does not depend on the
choice of the position of M , except for the requirement L ∩M = ∅.

The relation S(L,X) = S(L,X ′) allows us to calculate the dimension of the
irreducible variety S(L,X) for an arbitrary L. Exactly as in 1.2.2 for z ∈ S(L,X)\
L,

z ∈< L, x >=< L, πL(z) >=< L, x′ >,

with x ∈ X and πL(z) = πL(x) = x′ ∈ X ′. Since S(L,X ′) is, modulo a projective
transformation, the variety defined by the same homogeneous polynomials of X ′

now though as polynomial in N + 1 variables, we have

(1.2.6) TzS(L,X) =< L, TπL(z)X
′ >⊇< L, TxX > .

Taking z ∈ S(L,X) general and recalling that L ∩M = ∅ we deduce:

(1.2.7) dim(S(L,X)) = dim(< L, TπL(z)X
′ >) = dim(X ′) + l + 1.

Suppose till the end of the subsection char(K) = 0. By generic smoothness,
the differential map is surjective so that TπL(x)X

′ = πL(TxX) for x ∈ X general.
In this case πL(x) = x′ ∈ X ′ will be general on X ′ and finally

dim(X ′) = dim(Tx′X
′) = dim(πL(TxX)) = dim(X)− dim(L ∩ TxX)− 1,

which combined with 1.2.7 gives the following generalization of 1.2.1:

(1.2.8) dim(S(L,X)) = dim(L) + dim(X)− dim(L ∩ TxX),

x ∈ X general point.

Moreover, we get the following refinement of 1.2.6

(1.2.9) TzS(L,X) =< L, TxX >,

x ∈ X , z ∈< L, x > general points.
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We have generalized the notion of cone over a variety lying in a skew space with
respect to the vertex by taking S(L,X) and shown that by projecting the variety
X from the vertex L, we can find the description of it as an ”usual” cone, S(L,X ′).

Now we investigate under which condition a variety is a ”cone”, i.e. there exists
a ”vertex” L ' Pl ⊆ X such that X = S(L,X) = S(L,X ′), if X ′ is the section with
a general PN−l−1 skew with the ”vertex” L. Clearly the ”vertex” is not uniquely
determined if we do not require some maximality condition. Let us begin with the
definitions.

1.2.5. Definition. (Cone; vertex of a variety) Let X ⊂ PN be a closed
(irreducible) subvariety. The variety is a cone if there exists x ∈ X such that
S(x,X) = X. Geometrically this means that given y ∈ X, y 6= x, the line < x, y >
is contained in X. In particular x ∈

⋂
y∈X TyX.

This motivates the definition of vertex of a variety. Given X ⊂ PN an irre-
ducible closed subvariety, the vertex of X, Vert(X), is the set

Vert(X) = {x ∈ X : S(x,X) = X }.

In particular a variety X is a cone if and only if Vert(X) 6= ∅; by definition
S(X,Y ) = X if and only if Y ⊆ Vert(X).

We list some obvious consequences and leave to the interested reader the plea-
sure of showing that the hypothesis on the characteristic of the base field are nec-
essary.

1.2.6. Proposition. Let X ⊂ PN be a closed irreducible variety of dimension
dim(X) = n. The following holds:

(1)

Vert(X) = Pl ⊆
⋂

x∈X

TxX,

l ≥ −1;
(2) if codim(Vert(X), X) ≤ 1, then Vert(X) = X = Pn ⊂ PN ;
(3) if dim(S(X,Y )) = dim(X) + 1, then Y ⊆ Vert(S(X,Y ));
(4) if char(K) = 0,

Vert(X) =
⋂

x∈X

TxX = Pl ⊆ X,

l ≥ −1;
(5) suppose char(K) = 0 and ∅ 6= Vert(X) ( X, then X = S(Vert(X), X ′)

is a cone, where X ′ is the projection of X from Vert(X) onto a PN−l−1

skew to Vert(X) (dim(X ′) = n− l − 1).

Proof. To prove 1) it is sufficient to show that, given two points x1, x2 ∈
Vert(X), the line < x1, x2 > is contained in Vert(X), forcing Vert(X) irreducible
and linear by proposition 1.2.2 part 2). Taken y ∈< x1, x2 > \{x1, x2} and x ∈
X \ Vert(X), it is sufficient to prove that < y, x >⊂ X. By definition the lines
< xi, x > are contained in X and by varying the point q ∈< x2, x >⊂ X and by
joining it with x1 we see that the line < x1, q > is contained in X for every such
q, i.e. the plane Πx =< x1, x2, x > is contained in X. Since y and x belong to Πx,
the claim follows.
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If Vert(X) = X, then X = Pn by part 1). If there exists W = Pn−1 ⊆
Vert(X) = Pl ⊆ X, i.e. if l ≥ n−1, we can take x ∈ X\W . Therefore S(x,W ) = Pn

and S(W,x) ⊆ X forces X = Pn.
To prove 3) take y ∈ Y \ Vert(X) and observe that for dimension reasons

S(y,X) = S(Y,X) and S(y, S(X,Y )) = S(y, S(y,X)) = S(y,X) = S(Y,X) gives
the desired conclusion.

Set L =
⋂

x∈X TxX and assume char(K)=0. By 1.2.8 dim(S(L,X)) = dim(X),
yielding X = S(L,X) and L ⊆ Vert(X), which proves part 4). Part 5) follows in a
straightforward way. �

Later we will use the following result.

1.2.7. Corollary. Let X ⊂ PN be an irreducible non-degenerate variety of
dimension n = dim(X). Assume char(K)=0, N ≥ n+ 3 and dim(SX) = n+ 2. If
through the general point x ∈ X there passes a line lx contained in X, then X is a
cone.

Proof. Let x ∈ X be a general point. Then x 6∈ Vert(X) and x 6∈ Vert(SX)
since X is non-degenerate, so that X ( S(lx, X) ⊆ SX. If dim(S(lx, X)) = n+ 2,
then S(lx, X) = SX. Since S(lx, SX) = S(lx, S(lx, X)) = S(lx, X) = SX, we
would deduce x ∈ lx ⊆ Vert(SX). In conclusion lx is not contained in Vert(SX)
and dim(S(lx, X)) = n+1. Then the general tangent space to X, TyX, will cut lx in
a point px,y := lx∩TyX. If this point varies with y, then two general tangent spaces
Ty1X and Ty2X would contain lx so that < lx, < Ty1X,Ty2X >>=< Ty1X,Ty2X >
would force S(lx, SX) = SX, i.e. lx ⊆ Vert(SX). So the point remain fixed, i.e.
p ∈ ∩y∈XTyX = Vert(X) and X is a cone by proposition 1.2.6. �

We end this section by putting in relation the projections of a variety and the
dimension of its secant or tangent varieties.

If L = Pl ⊂ PN is a linear space and if πL : PN \L→ PN−l−1 is the projection
onto a skew complementary linear space, then πL restricts to a finite morphism
πL : X → PN−l−1, as soon as L∩X = ∅. In the idea that studying varieties whose
codimension is small with respect to the dimension is easier (from some points of
view but not from others!), we can ask when this finite morphism is one-to-one, or
a closed embedding. Let us examine this conditions in the following proposition.

1.2.8. Proposition. Let notation be as above. Then:
(1) the morphism πL : X → PN−l−1 is one-to-one if and only if L ∩ SX = ∅;
(2) the morphism πL : X → PN−l−1 is unramified if and only if L∩ TX = ∅;
(3) the morphism πL : X → PN−l−1 is a closed embedding if and only if

L ∩ SX = L ∩ TX = ∅.

Proof. The morphism πL : X → X ′ ⊆ PN−l−1 is one-to-one if and only there
exists no secant line to X cutting the center of projection: < L, x >=< L, y >
if and only if < x, y > ∩L 6= ∅. It is ramified at a point x ∈ X if and only if
TxX ∩L = ∅ by looking at the projective differential of πL. A morphism is a closed
embedding if and only if it is one-to-one and unramified. �

We must state the following well known result, which only takes into account
that for smooth varieties the equality TX = T ∗X furnishes TX ⊆ SX.
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1.2.9. Corollary. Let X ⊂ PN be a smooth irreducible closed subvariety. If
N > dim(SX), then X can be isomorphically projected into PN−1. In particular if
N > 2 dim(X) + 1, then X can isomorphically projected into PN−1.

One could ask what is the meaning of L ∩ T ∗X = ∅. This means that πL

(or d(πL)) restricted to T ∗xX is finite for every x ∈ X. This is the notion of J-
unramified morphism, where J stands for Johnson [Jo], and it can be expressed
in terms of affine tangent stars, see [Z2]. We take the above condition as the
definition of J-unramified projection. In particular, if L ∩ SX = ∅, then πL is
one-to-one and J-unramified and it is said to be a J-embedding. If the projection
πL : X → X ′ ⊂ PN−l−1, then Sing(πL(X)) = πL(Sing(X)) so that X ′ does not
acquire singularities from the projection.

It is clearly weaker than the usual notion of embedding and it is well behaved
to study the projections of singular varieties. For example take C ⊂ P4 ⊂ P5 a
smooth non-degenerate curve in P4 and let p ∈ P5 \ P4. If X = S(p, C) is the cone
over C, then TpX = P5, 1.1.1, and X cannot be projected isomorphically in P4.
Since SX = S(p, SC), 1.1.2, is an hypersurface in P5, there exists a point q ∈ P5\X
such that πq : X → X ′ is a J-embedding and X ′ = S(πq(p), C) is a cone over C of
vertex πq(p) = p′. In this example the morphism πq is one-to-one and unramified
outside the vertex of the cones and maps the tangent star at p, T ∗pX = S(p, SC),
m-to-one onto P4, where m = deg(S(p, SC)) = deg(SC) =

(
d−1
2

)
− g, d = deg(C),

g the genus of C.
The conditions L∩S(Y,X) = ∅, respectively L∩T ∗(Y,X) = ∅ or L∩T (Y,X) =

∅, with Y ⊆ X, mean that πL is one-to-one in a neighbourhood of Y , respectively
is J-unramified in a neighbourhood of Y or unramified in a neighbourhood of Y .

1.3. Terracini Lemma and its first applications

As we have seen the definition of secant variety is the ”join” of X with itself
and it is not clear how to calculate the dimension of SX, see exercise 1.1.6, or
more generally the dimension of S(X,Y ). In fact, the circle of ideas, which allowed
Alessandro Terracini to solve the problem of calculating the dimension of SX, or
more generally of SkX, originated exactly from the study of examples like the ones
considered in 1.1.6 and from the pioneering work of Gaetano Scorza, [S1] and [S4].
Let Terracini explain us this process, by quoting the beginning of [T1]:

É noto, [dP], che la sola V2, non cono, di Sr, i cui S2 tangenti si incontrano
a due a due, é, se r ≥ 5, la superficie di VERONESE; e che questa superficie,
[Sev1], é pure caratterizzata dall’ essere, in un tale Sr, la sola, non cono, le cui
corde riempono una V4. Recentemente lo SCORZA, [S3] pg. 265, disse di aver
ragione di credere, sebbene non gli fosse venuto fatto di darne una dimostrazione,
che le V3 di S7, o di uno spazio piú ampio, le cui corde non riempiono una V7

<< rientrino >> tra le V3 a spazi tangenti mutuamente secantisi. Ora si puó
dimostrare, piu’ precisamente, che queste categorie di V3 coincidono, anzi, piu’ in
generale, che: Se una Vk di Sr (r > 2k) gode di una delle due proprietá, che le corde
riempiano una varietá di dimensione 2k−i (i ≥ 0), o che due qualsiansi Sk tangenti
si seghino in uno Si, gode pure dell’ altra. Questo teorema, a sua volta, non é se
non un caso particolare di un teorema piú generale che ora dimostreremo, teorema
che pone in relazione l’ eventuale abbassamento di dimensione della varietá degli Sh

(h+1)-seganti di una Vk immersa in uno spazio di dimensione r ≥ (h+1)k+h, coll’
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esistenza di h+ 1 qualsiansi suoi Sk tangenti in uno spazio minore dell’ ordinario.

To calculate the dimension of S(X,Y ) in a simple way and to determinate the
relation between TzS(X,Y ), TxX and TyY , where z ∈< x, y >, z 6= x, z 6= y,
x 6= y, we recall the definition of affine cone over a projective variety X ⊂ PN .

Let π : AN+1 \ 0 → PN be the canonical projection. If X ⊂ PN is a closed
subvariety, we indicate by C0(X) the affine cone over X, i.e. C0(X) = π−1(X)∪ 0
is the affine variety cut out by the homogeneous polynomials in N + 1 variables
defining X. If x 6= 0 is a point such that π(x) = x ∈ X, then

π(TxC0(X)) = TxX.

Moreover, if Li = π(Ui), i = 1, 2, Ui vector subspace of AN+1, then by definition
< L1, L2 >= π(U1 + U2), where + : AN+1 × AN+1 → AN+1 is the vector space
operation. Therefore, thought as a morphism of algebraic varieties, the differential
of the sum coincides with the operation, i.e.

d(x,y) : T(x,y)(AN+1 × AN+1) = TxAN+1 × TyAN+1 → Tx+yAN+1

is the sum of the corresponding vectors.
With the above notation we have

(1.3.1) C0(X) + C0(Y ) = C0(S(X,Y )).

We are now in position to prove the so called Terracini Lemma. The original
proof of Terracini relies on the study of the differential of the second projection
morphism p2 : SX,Y → S(X,Y ). Here we follow Ådlandsvik, [Åd], to avoid the
”difficulty”, if any, of writing the tangent space at a point (x, y, z) ∈ S0

X,Y . When
writing z ∈< x, y >, we always suppose x 6= y.

1.3.1. Theorem. (Terracini Lemma) Let X,Y ⊂ PN be irreducible subvari-
eties. Then:

(1) for every x ∈ X, for every y ∈ Y , x 6= y, and for every z ∈< x, y >,

< TxX,TyY >⊆ TzS(X,Y );

(2) if char(K) = 0, there exists an open subset U of S(X,Y ) such that

< TxX,TyY >= TzS(X,Y )

for every z ∈ U , x ∈ X, y ∈ Y , z ∈< x, y >. In particular

dim(S(X,Y )) = dim(X) + dim(Y )− dim(TxX ∩ TyY )

for x ∈ X and y ∈ Y general points.

Proof. The first part follows from equation 1.3.1 and from the interpretation
of the differential of the affine sum. The second part from generic smoothness
applied to the affine cones over X, Y and S(X,Y ). �

Since we have quoted the original form given by Terracini, let us state it as an
obvious corollary.

1.3.2. Corollary. ([T1]) Let X ⊂ PN be an irreducible subvariety of PN .
Then:
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(1) for every x0, . . . , xk ∈ X and for every z ∈< x0, . . . , xk >,

< Tx0X, . . . , Txk
X >⊆ TzS

kX;

(2) if char(K) = 0, there exists an open subset U of SkX such that

< Tx0X, . . . , Txk
X >= TzS

kX

for every z ∈ U , xi ∈ X, i = 0, . . . , k, z ∈< x0, . . . , xk >. In particular

dim(SX) = 2 dim(X)− dim(TxX ∩ TyX)

for x, y ∈ X general points.

The first application we give is the so called Trisecant Lemma. Let us recall
that a line l ⊂ PN is said to be a trisecant line to X ⊂ PN if length(l ∩X) ≥ 3.

1.3.3. Proposition. (Trisecant Lemma) Let X ⊂ PN be a non-degenerate,
irreducible closed subvariety. Suppose char(K)=0 and codim(X) > k. Then a
general (k + 1)-secant Pk, < x0, . . . , xk >= L = Pk, is not (k + 2)-secant, i.e.
L∩X = {x0, . . . , xk} as schemes. In particular, if codim(X) > 1, the projection of
X from a general point on it, πx : X 99K X ′ ⊂ PN−1, is a birational map.

Proof. We claim that it is sufficient to prove the result for k = 1. Indeed X is
not linear so that by taking a general x ∈ X and projectingX from this point we get
a non-degenerate, irreducible subvariety X ′ = πx(X) ⊂ PN−1 with codim(X ′) =
codim(X)−1 > k−1. If the general L =< x0, . . . , xk > as above were k+2-secant,
by taking x = xk, the linear space < πx(x0), . . . , πx(xk−1) >= Pk−1 = L′ would be
a general k-secant Pk−1, which results to be (k + 1) = ((k − 1) + 2)-secant. So we
can assume k = 1 and we set n = dim(X).

Take x ∈ X \ Vert(X). Then a general secant line through x, l =< x, y >, is
not tangent to X neither at x nor at y. If l is a trisecant line then necessarily it
exists u ∈ (l∩X)\{x, y}. Consider the projection of X from x. Since x 6∈ Vert(X),
if X ′ = πx(X) ⊂ PN−1, then dim(X ′) = dim(X) and πx(y) = πx(u) = x′ is a
general smooth point of X ′. By generic smoothness

< x, Tx′X
′ >=< x, TyX >=< x, TuX >

so that TyX and TuX are hyperplanes in < x, Tx′X
′ >= Pn+1 so that

dim(TyX ∩ TuX) = n− 1.

Taking z ∈< x, y >=< y, u > general, we have a point in the set U specified in
corollary 1.3.2 yielding dim(SX) = dim(TzSX) = dim(< TyX,TuX >) = n + 1.
This implies codim(X) = 1 by proposition 1.2.2 part 3). The last part follows from
the fact that a generically one-to one morphism is birational if char(K)=0, being
generically étale. �

As a second application we reinterpret Terracini Lemma as tangency of tangent
space to higher secant varieties at a general point along the locus described on
X by the secant spaces passing through the point. To this aim we first define
tangency along a subvariety and then the entry loci described above, studying their
dimension.
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1.3.4. Definition. (Tangencies along a subvariety) Let Y ⊂ X be a closed
(irreducible) subvariety of X and let L = Pl ⊂ PN , l ≥ dim(X), be a linear
subspace.

The linear space L is said to be tangent to X along Y if for every y ∈ Y

TyX ⊆ L,

i.e. if and only if T (Y,X) ⊆ L.
The linear space L is said to be J-tangent to X along Y if for every y ∈ Y

T ∗yX ⊆ L,

i.e. if and only if T ∗(Y,X) ⊆ L.
Clearly if L is tangent to X along Y , it is also J-tangent to X along Y .
In the case L = PN−1, the scheme-theoretic intersection L∩X = D is a divisor,

i.e. a subscheme of pure dimension dim(X)− 1. By definition, for every y ∈ D, we
have TyD = TyX ∩ L so that, if X is a smooth variety, L = PN−1 is tangent to X
exactly along Sing(D) = {y ∈ D : dim(TyD) > dim(D)}.

We define the important notions of entry loci and k-secant defect and we study
their first properties.

1.3.5. Definition. (Entry loci and k-secant defect δk) Let X ⊂ PN be a
closed irreducible non-degenerate subvariety. Let us recall the diagram defining the
higher secant varieties SkX as join of X with Sk−1X:

Sk
X

p1

yyssssssssss
p2

!!B
BB

BB
BB

B

X × Sk−1X PN .

Let us define φ : X × Sk−1X → X to be the projection onto the first factor of this
product.

Then, for z ∈ SkX, the k-entry locus of X with respect to z is the scheme
theoretic image

(1.3.2) Σk
z = Σk

z(X) := φ(p2(p−1
1 (z))).

Geometrically, the support of Σk
z is the locus described on X by the (k + 1)-

secant Pk of X passing through z ∈ SkX. If z ∈ SkX is general, then through z
there passes an ordinary (k+ 1)-secant Pk, i.e. given by k+ 1 distinct points on X
and we can describe the support of Σk

z in this way

(Σk
z)red = {x ∈ X : ∃x1, . . . , xk distinct and z ∈< x, x1, . . . , xk >}.

Moreover, by the theorem of the dimension of the fibers for general z ∈ SkX, the
support of Σk

z is equidimensional and every irreducible component contains ordinary
Pk’s since necessarily codim(X) > k, see proposition 1.3.3. If char(K)=0 and for
general z ∈ SkX the scheme p−1

1 (z) is smooth so that Σk
z is reduced.

To recover the scheme structure of Σk
z geometrically, one could define Πz as

the locus of (k+ 1)-secant Pk’s through z and define Σk
z = Πz ∩X as schemes. For

example if through z ∈ SX there passes a unique tangent line l to X, then in this
way we get Πz = l and Σz = l∩X the point of tangency with the double structure.
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Let us study the dimension of Σk
z for z ∈ SkX general. Before let us remark

that if x ∈ Σk
z is a general point in an irreducible component, z ∈ SkX general,

then, as sets,

φ−1(x) = dim({y ∈ Sk−1X : z ∈< x, y >} =< z, x > ∩Sk−1X 6= ∅
and dim(φ−1(x)) = 0 because z ∈ SkX \ Sk−1X by the generality of z.

Then we define the k-secant defect of X, 1 ≤ k ≤ k0(X), δk(X), as the integer

(1.3.3) δk(X) = dim(Σk
z) = dim(p2(p−1

1 (z))) = sk−1(X) + dim(X) + 1− sk(X),

where z ∈ SkX is a general point.
For k = 1, we usually put Σz = Σ1

z, z ∈ SX, and δ(X) = δ1(X) = 2 dim(X) +
1− dim(SX); for k = 0, δ0(X) = 0.

Let us reinterpret Terracini Lemma with these new definitions.

1.3.6. Corollary. (Tangency along the entry loci) Let X be an irreducible
non-degenerate closed subvariety. Let k < k0(X), i.e. SkX ( PN , and let z ∈ SkX
be a general point. Then:

(1) the linear space TzS
kX is tangent to X along (Σk

z)red \ Sing(X);
(2) δk(X) < dim(X);
(3) δk0(X) = dim(X) if and only if sk0−1(X) = N − 1, i. e. if and only if

Sk0−1X is an hypersurface;
(4)

sk(X) = (k + 1)(n+ 1)− 1−
k∑

i=1

δi(X) =
k∑

i=0

(dim(X)− δi(X)− 1);

(5) (cfr. 1.2.3) if X is a curve, sk(X) = 2k + 1.

Proof. Part 1) is clearly a restatement of part 1) of corollary 1.3.2 when we
take into account the geometrical properties of Σk

z , z ∈ SkX general, described in
the definition of entry loci and the fact that the locus of tangency of a linear space
is closed in X \ Sing(X), see also definition 1.5.8. Recall that if char(K)=0, the
scheme Σk

z is reduced.
If dim(Σk

z) = δk(X) = dim(X), then a general tangent space to SkX would be
tangent along X and X would be degenerated.

With regard to 3), we remark that δk0(X) = sk0−1(X) + dim(X) + 1 − N so
that dim(X)− δk0(X) = N − 1− sk0−1(X).

Part 4) is an easy computation by induction, while part 5) follows from part
4) since for a curve δk(X) < dim(X) yields δk(X) = 0. �

1.3.7. Remark. The statement of part 1) cannot be improved. Take for ex-
ample a cone X ⊂ P5 of vertex a point p ∈ P5 \ P4 over a smooth non-degenerate
projective curve C ⊂ P4. If z ∈ S(p, SC) = SX is general and if z ∈< x, y >,
x, y ∈ X, it is not difficult to see that Σz(X) =< p, x > ∪ < p, y >. The hyper-
plane TzSX is tangent to X at x and y by Terracini Lemma, so that it is tangent
to X along the rulings < p, x > and < p, y > minus the point p. Since TpX = P5,
the hyperplane TzSX is not tangent to X at p (neither J-tangent to X at p).

A phenomenon studied classically firstly by Scorza, [S1], [S2], [S4], and then
by Terracini, [T2] is the case in which imposing tangency of a hyperplane at k +
1 general points, k ≥ 0, of a variety X ⊂ PN forces tangency along a positive
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dimensional variety, even if δk(X) = 0. Indeed, Terracini Lemma says that if
δk(X) > 0, k < k0(X), than a hyperplane tangent at k+1 points, becomes tangent
along the corresponding entry locus. The interesting and exceptional behaviour
occurrs for varieties with δk(X) = 0. The first examples are the tangent developable
to a non-degenerate curve or cones of arbitrary dimension. Indeed they are 0-
defective as every variety but by imposing tangency at a general point, we get
tangency along the ruling passing through the point.

Varieties for which a hyperplane tangent at k+ 1, k ≥ 0, general points is tan-
gent along a positive dimensional subvariety are called k-weakly defective varieties,
according to Chiantini and Ciliberto, [CC]. In [CC] many interesting properties
of these varieties are investigated and a refined Terracini Lemma is proved, also
putting in modern terms the classification of k-weakly defective irreducible sur-
faces obtained classically by Scorza, [S2], and Terracini, [T2]. Let us remark that,
as shown in [CC], for every k ≥ 1 there exist smooth varieties of dimension greater
than one which are k-weakly defective but not k-secant defective.

As another application, we study the dimension of the projection of a variety
from linear subspaces generated by general tangent spaces. Terracini Lemma says
that we are projecting from a general tangent space to the related higher secant
variety. As we have seen when the center of projection L cuts the variety it is
difficult to control the dimension of the image of X under projection because we
do not know a priori how a general tangent space intersects L. In the case of
L = TzS

k−1X this information is encoded in the dimension of SkX and of the
defect δk(X) as we immediately see. In chapter ?? we shall see how the degree of
the projections from TzS

kX is related to the number of (k+2)-secant Pk+1 passing
through a general point of Sk+1X, a problem dubbed as Bronowski’s conjecture,
[B1], and partially solved in [CMR]. Projections from tangent spaces, or more
generally from TzS

kX, were a classical tool of investigation, [Ca], [E1], [S1], [S4],
[B1], [B2], and were recently used to study classical and modern problems, [CC],
[CMR], [CR2].

1.3.8. Proposition. (Projections from tangent spaces) Let X ⊂ PN be
an irreducible, non-degenerate closed subvariety. Let n = dim(X) and suppose
char(K)=0 and N ≥ sk, k ≥ 1, where sk = sk(X). Set δk = δk(X). Let
x1, . . . , xk ∈ X be k general points and let L =< Tx1 , . . . , Txk

> and πk = πL :
X → X ′ ⊂ PN−sk−1(X)−1. Then dim(L) = sk−1(X) = sk−1 and, if X ′

k = πk(X) ⊂
PN−sk−1−1, then

(1) dim(X ′
k) = sk − sk−1 − 1 = n− δk;

(2) suppose N ≥ (k+1)n+k and and sk−1 = kn+k−1, i.e. if δk−1 = 0. Then
sk = (k + 1)n + k (or equivalently δk = 0) if and only if dim(X ′

k) = n;
if and only if πk : X 99K X ′

k ⊂ PN−kn+k is dominant. In particular if
N = (k+ 1)n+ k and if sk−1 = kn+ k− 1, then SkX = P(k+1)n+k if and
only if πk : X 99K Pn is dominant.

Proof. If z ∈< x1, . . . , xk > is a general point, then z is a general point of
Sk−1X and by Terracini lemma sk−1 = dim(TxS

k−1X) = dim(< Tx1 , . . . , Txk
>).

By equation 1.2.7 we get dim(X ′
k) = dim(S(TzS

k−1X,X))−sk−1−1 = sk−sk−1−
1 = n− δk. The other claims are only reformulations of part 1). �

A complete description of SlX ′
k in terms of higher secant varieties of X is

possible and the dimensions sl(X ′
k) are easily expressible as functions of the sm(X),
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i.e. δk(X ′
k) is controlled by δm(X) and viceversa. These remarks and the possibility

of constructing explicit rational maps reveals the importance of projections from
tangent spaces.

We study via Terracini Lemma the tangent space to the entry locus of SX at
a general point of it. As a minimal generalization we can define the projections
onto the i-factor φi : X1 × X2 → Xi and for z ∈ S(X1, X2), define Σz(Xi) =
φi(p2(p−1

1 (z))), where the morphism pi’s are the map used for the definition of the
join. We remark that dim(Σz(X1)) = dim(Σz(X2)) = dim(X1) + dim(X2) + 1 −
dim(S(X1, X2)). With this notation we get the following result.

1.3.9. Proposition. Let X,Y ⊂ PN be closed irreducible subvarieties and
assume char(K)=0. Suppose S(X,Y ) ) X and S(X,Y ) ) Y to avoid triviali-
ties. If z ∈ S(X,Y ) is a general point, if x ∈ Σz(X) is a general point and if
< z, x > ∩Y = y ∈ Σz(Y ), then y is a smooth point of Σz(Y ),

TxΣz(X) = TxX∩ < x, TyΣz(Y ) >= TxX∩ < x, TyY >,

TyΣz(Y ) = TyY ∩ < y, TxΣz(X) >= TyY ∩ < y, TxX >

and
TxX ∩ TyY = TxΣz(X) ∩ TyΣz(Y ).

In particular for z ∈ SX general point, X not linear, and for x ∈ Σz(X)
general point, we have that, if < x, z > ∩X = y ∈ Σz(X), then y is a smooth point
of Σz(X),

TxΣz(X) = TxX∩ < x, TyΣz(X) >= TxX∩ < x, TyY >

and
TxX ∩ TyX = TxΣz(X) ∩ TyΣz(X).

Proof. Let us remark that by assumption and by the generality of z and of
x, we can suppose that y 6∈ TxX and that x 6∈ TyY .

Take S(z,Σz(X)) = S(z,Σz(Y )). Then dim(S(z,Σz(X))) = dim(Σz(X)) + 1.
If u ∈< z, x >=< z, y > is a general point, then TuS(z,Σz(X)) =< z, TxΣz(X) >=
Pdim(S(z,Σz(X))) because z 6∈ TxX. In particular u is a smooth point of S(z,Σz(X)).
By Terracini Lemma, we get TuS(z,Σz(X)) ⊇< z, TyΣz(Y ) >, which together with
z 6∈ TyY yields dim(TyΣz(Y )) = dim(Σz(Y )) so that y ∈ Σz(Y ) is a smooth point.
Moreover,

TxΣz(X) ⊆ TuS(z,Σz(Y )) =< z, TyΣz(Y ) >=< x, TyΣz(Y ) >⊆< x, TyY > .

Since TxΣz(X) ⊆ TxX, to conclude it is enough to observe that

dim(TxX∩ < x, TyY >) = dim(X) + dim(Y ) + 1− dim(< TxX,TyX >)

= dim(Σz(X)) = dim(TxΣz(X)).

The other claims follows from symmetry between x and y or are straightforward. �

1.4. Characterizations of the Veronese surface in P5 according to del
Pezzo, Bertini and Severi and classification of algebraic varieties in

PN , N ≥ dim(X) + 3 with dim(SX) = dim(X) + 2

In this section, as a beautiful application of the definitions and tools introduced
in this chapter, we prove various characterizations of the Veronese surface in P5

among irreducible non-degenerate surfaces in PN , not cones, N ≥ 5, having special
geometrical properties. We also classify varieties in PN , N ≥ dim(X) + 3 with
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dim(SX) = dim(X) + 2, a result due to Edwards for dim(X) ≥ 3, [Ew], and
outlined and essentially solved by Scorza in [S1], as we shall see below. These
results serve also as a motivation for the further generalizations of this classical
material in the next chapters.

The proof we propose here is the most ”elementary” we are aware of since
it not based on any result involving dual varieties, contact loci, flatness and so
on. We essentially use the previous results and the elementary fact that for an
irreducible curve, not a line, supposing char(K)=0, a general tangent line to the
curve at a point is tangent to it only at that point. This is an easy property which
is immediately reduced to the analogous statement for plane curves by a linear
projection. For plane curves it simply says that the dual curve of a plane curve has
only a finite number of singular points. We followed a suggestion of Gaetano Scorza
in [S1], footnote at page 197: ”Non mi sembra inutile far notare come partendo
da un’ osservazione analoga a quella del testo si possa arrivare alla dimostrazione
del teorema del prof. Del Pezzo [n.d.A.: e del Prof. Edwards] in modo abbastanza
rapido e semplice”.

1.4.1. Theorem. (Characterizations of the Veronese surface) Let X ⊂
PN , N ≥ 5, be a non-degenerate irreducible surface, not a cone. Then N = 5 and
X is projectively equivalent to the Veronese surface in P5, ν2(P2) ⊂ P5, if and only
if one of the following equivalent conditions holds:

(1) if x, y ∈ X are general points, then TxX ∩ TyX 6= ∅ ([dP]);
(2) dim(SX) = 4 ([Sev1]);
(3) X contains a two dimensional family of irreducible conics ([Be], pg. 392).

First of all, by Terracini Lemma if 1) holds, then dim(SX) ≤ 4 but since X
is non-degenerate part 3) of proposition 1.2.2 implies dim(SX) = 4. By Terracini
Lemma 2) implies that TxX ∩ TyX consists of a point. Also condition 3) implies
1) (or 2)). Indeed, there exists at least a conic Cx,y passing through the general
points x and y so that px,y := TxCx,y ∩ TyCx,y ⊆ TxX ∩ TyX and in fact equality
holds. So it will sufficient to show that if TxX ∩ TyX = px,y is a point, then X
is projectively equivalent to the Veronese surface, which is Del Pezzo’s theorem,
[dP] and [Be], pg. 394. During the proof of the preliminaries lemma the appar-
ently more general fact that X contains a two dimensional linear system of Cartier
divisors of selfintersection 1, which are conics in the fixed embedding, is seen to
be a consequence of condition 1). This is essentially also Bertini’s proof that 3)
characterizes the Veronese surface, see [Be], pg. 392. So all the equivalences and
the necessary tools will be established.

Let us recall that if X ⊂ PN is an irreducible projective non-degenerate variety
of dimension n = dim(X), then dim(SX) ≥ n + 1 and that equality implies N =
n + 1, see proposition 1.2.2. Hence if codim(X) > 1, dim(SX) ≥ n + 2. Suppose
dim(SX) = n + 2. If N = n + 2, then SX = PN and there is no particular
restriction on X and clearly there exist infinitely many examples. If N > n + 2
the complete classification of varieties with dim(SX) = n + 2 is contained in the
following theorem of Scorza-Edwards.

1.4.2. Theorem. (Scorza, [S1], Edwards,[Ew]) Let X ⊂ PN be an irreducible
projective variety of dimension n = dim(X) ≥ 3. Assume N ≥ n + 3 and that
dim(SX) = n + 2. Then either X is a cone over a curve or N = n + 3 and X is
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a cone over the Veronese surface in P5. On the contrary such varieties enjoy those
geometrical properties.

Equivalently, X ⊂ PN , N ≥ n + 3, is a cone over a curve or a cone over the
Veronese surface in P5 if and only if it contains an irreducible two dimensional
family of divisors which are quadric hypersurfaces in the fixed embedding. The
general member of this family is a reducible quadric if and only if X is a cone over
a curve.

Once again, it is clear that if through two general point there passes a quadric
hypersurface of dimension n− 1, then for a general point z ∈ SX,

2n+ 1− dim(SX) = dim(Σz(X)) ≥ n− 1,

yields dim(SX) ≤ n+ 2 and hence equality by the non-degenerateness of X ⊂ PN

and by the hypothesis N ≥ n+ 3. The other implication will follow once again by
the next lemma of Scorza.

1.4.3. Lemma. (Scorza Lemma, [S1], footnote pg. 197) Let X ⊂ PN be
an irreducible non-degenerate projective variety of dimension n = dim(X). Suppose
N ≥ n+ 3 and dim(SX) = n+ 2. Then:

(1) the closure of the general fiber of the tangential projection of X from a
general point x ∈ X onto the irreducible curve Cx ⊂ PN−n−1, πx : X 99K
Cx ⊂ PN−n−1 is either a Pn−1 or an irreducible quadric hypersurface
of dimension n − 1. The first case occurs if and only if X is a cone
over a curve. Moreover, X contains a two dimensional family of quadric
hypersurfaces, whose general member is the union of two Pn−1 if and only
if X is a cone over a curve.

(2) If X is not a cone over a curve, then Cx is an irreducible conic, so that
N = n + 3 and the general fiber of πx : X 99K Cx ⊂ P2 is an irreducible
quadric hypersurface of dimension n− 1.

Proof. Let x, y ∈ X general points. The image of the tangential projection
πx : X 99K X ′

x = Cx ⊂ PN−n−1, or of πy : X 99K X ′
y = Cy ⊂ PN−n−1, is an

irreducible non-degenerate curve by proposition 1.3.8. Moreover πx is defined at
y, respectively πy is defined at x, since being general points they do not belong to
Vert(X). Let Fy denote the closure of the irreducible component of the fiber of
πx passing through y, respectively Fx denote the closure of irreducible component
of the fiber of πy passing through x. By generic smoothness they are reduced
varieties of dimension n− 1 since they are generically smooth irreducible varieties
of dimension n− 1. Moreover, by definition of πx, respectively πy, we have Fy ⊂<
TxX, y > ∩X, respectively Fx ⊂< TyX,x > ∩X.

If Fx ⊆ TxX ∩ X, then by the generality of x and y, Fy ⊆ TyX ∩ X so that
Fx ∪ Fy ⊂ Πx,y :=< TxX, y > ∩ < TyX,x >= Pn.

Suppose that Fx is not contained in TxX ∩X so that also Fy is not contained
in TyX ∩ X. Let Cx = S(TxX,Cx) be the cone over Cx of vertex TxX and let
Cy = S(TyX,Cy) be the cone over Cy of vertex TyX. By the generality of x,
respectively y, the point πx(y) ∈ Cx, respectively πy(x) ∈ Cy, is a general point on
Cx, respectively on Cy, so that the tangent space

< TxX,Tπx(y)Cx >=< TxX,TyX >=< Tπy(x)Cy, TyX >

is tangent to Cx, respectively Cy, exactly along < TxX,πx(y) > \TxX =< TxX, y >
\TxX, respectively < TyX,πy(x) > \TyX =< TyX,x > \TyX. Recall that a
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general tangent line to a curve is tangent to it only at one point. Since X ⊆
Cx ∩ Cy, the locus Y ⊂ X of smooth points of X \ ((TxX ∩ X) ∪ (TyX ∩ X) at
which the linear space < TxX,TyX > is tangent is contained in the linear space
Πx,y =< TxX, y > ∩ < TyX,x >= Pn. In our hypothesis, Fx, respectively Fy, has
an open dense set in common with Y , yielding that Fx ∪ Fy is contained in Πx,y.

More generally, using the same argument, we get that the closure of the fibers
π−1

x (πx(y)) and of π−1
y (πy(x)) are both contained in Πx,y. In conclusion, in any

case Fx ∪ Fy ⊆ π−1
y (πy(x)) ∪ π−1

x (πx(y)) ⊆ Πx,y = Pn.
Since the secant line < x, y > is general, it is not a trisecant line. The line

< x, y > is contained in Πx,y so that

2 ≥ deg(π−1
x (πx(y)) ∪ π−1

y (πy(x))) ≥ deg(Fx ∪ Fy) ≥ 2,

where the last inequality holds since it cannot clearly be Fx = Fy = Pn−1, the
line < x, y > being a proper secant line. In conclusion, either π−1

y (πy(x)) = Fx =
Fy = π−1

x (πx(y)) is an irreducible quadric hypersurface of dimension n− 1 passing
through x and y or Fx = π−1

y (πy(x)) and Fy = π−1
x (πx(y)) are Pn−1’s intersecting

in the linear space Lx,y = TxX ∩ TyX = Pn−2. In the last case the linear space
L = Lx,y does not vary by moving y in X because otherwise the linear spaces Fy

would describe a Pn contained in X. Then Pn−2 = L ⊆ Vert(X) = Pl, l ≤ n − 2,
forces Vert(X) = Pn−2 so that X is a cone over a curve by proposition 1.2.6. On
the contrary if X is a cone over a curve, clearly the Pn−1’s passing through two
general points x, y ∈ X are contracted by πy, respectively πx, so that Fx ∪ Fy is a
reduced quadric hypersurface.

To prove part 2) it suffices to remark that if X is not a cone over a curve,
then by the previous analysis two general points on X are connected by an ir-
reducible quadric hypersurface, which dominates Cx, so that, since X ⊂ PN is
non-degenerate, Cx ⊂ PN−n−1 is an irreducible non-degenerate conic, yielding
N − n− 1 = 2. �

As a corollary of Scorza Lemma we get the information about the entry locus
of a variety X ⊂ PN , N ≥ n+3 with dim(SX) = n+2, the original key observation
of Severi for n = 2 in his proof of the characterization of the Veronese surface, see
[Sev1].

1.4.4. Corollary. ([Sev1]) Let X ⊂ PN , N ≥ n + 3, be an irreducible non-
degenerate projective variety of dimension n such that dim(SX) = n + 2. Let z ∈
SX be a general point and let notation as in lemma 1.4.3. Then Σz(X) = Fx ∪ Fy

is a quadric hypersurface which is reducible if and only if X is a cone over a curve.

Proof. Let notation as in the above lemma. Then if z ∈< x, y > is general,
by corollary 1.3.6 TzSX =< TxX,TyX > is tangent to X along Σz(X) \ Sing(X).
By Scorza Lemma Σz(X) \ Sing(X) ⊂ Πx,y = Pn so that Σz(X) is a hypersurface
of degree at least 2 in Πx,y since z 6∈ X (it it were a linear space, then SX = X and
X would be linear). Then Σz(X) is a quadric hypersurface by the trisecant lemma
and the conclusion follows by arguing as in the previous lemma. �

We restrict ourselves for a moment to the case of surfaces and prove that, if X is
not a cone, two general fibers of πx : X 99K Cx ⊂ P2 are linearly equivalent Cartier
divisors intersecting transversally at x; and more precisely that every fiber of πx
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is a smooth conic so that the closure of two arbitrary fibers are linear equivalent
Cartier divisors, which are smooth conics in the fixed embedding.

1.4.5. Lemma. (Bertini, [Be]) Let X ⊂ P5 be a non-degenerate irreducible
projective surface, not a cone, such that dim(SX) = 4. Then (TxX ∩ X)red = x,
the closure of every fiber of πx : X 99K Cx ⊂ P2 is a smooth conic and two fibers of
πx are linearly equivalent Cartier divisors on X intersecting transversally at x.

Proof. Suppose that for a general point x ∈ X, there exists px ∈ TxX ∩X,
px 6= x. Fix a general x and take a general point y ∈ X. By lemma 1.4.3, if
πx : X 99K Cx is the tangential projection, then Cx is a smooth conic. Take the
line < y, py >. Thus πx is defined at y, since Vert(X) = ∅ and since x, y are general
points. It cannot be πx(y) 6= πx(py), because otherwise the line < y, py > would
not cut TxX so that it would project onto Tπx(y)Cx and this line would cut Cx at
least in 3 points counted with multiplicity, contrary to the fact that Cx is a conic. If
πx(y) = πx(py), then the line < y, py > cuts TxX necessarily at px,y = TxX ∩ TyX
and the line < y, py >=< y, px,y >= TyFy would cut the smooth conic Fy in at
least 3 points counted with multiplicity, which is impossible.

Therefore two fibers of πx can intersect only at x and they are linearly equivalent
divisors by definition. The closure of each fiber is then a Cartier divisor which is a
conic on X passing necessarily through x = (TxX∩X)red. Since (TxX∩X)red = x,
there is no line through X and the closure of every fiber is a smooth conic.

If two general fibers meet along a fixed tangent direction l ⊂ TxX at x, then the
tangent spaces at two general points of these fibers, let us say y ∈ X, respectively
z ∈ X, will cut the fixed line in different points since X is not a cone (otherwise
px,y = px,z ∈ Vert(X) and X would be a cone). Then S(l, SX) = SX by Terracini
lemma since dim(< l,< TzX,TyX >>) = dim(< TzX,TyX >) = dim(SX). This
forces x ∈ l ⊆ Vert(SX), which by the generality of x ∈ X, yields X ⊆ Vert(SX) =
Pl, l ≤ 2 (recall that SX is not linear and has dimension 4), i.e. X = P2. �

We can easily prove theorem 1.4.1.

Proof. (1st proof of theorem 1.4.1). By Scorza Lemma and by lemma 1.4.5
the fibers of the tangential projections at x and at y, x, y ∈ X general points, are
linearly equivalent Cartier divisors of selfintersection 1. Moreover, since there exists
a conic through x and y which is a fiber of both projections, we constructed a base
point free two dimensional linear system of Cartier divisors on X of autointerction
1. The associated morphism φ : X → P2 is birational.

Let ψ : P2 99K X ⊂ P5 be the composition of φ−1 : P2 99K X with the inclusion
i : X ↪→ P5. Since lines in P2 are mapped into the two dimensional linear system of
divisors constructed before, which are conics in the fixed embedding, the map ψ is
given by a linear system of conics of dimension 5, i.e. by the complete linear system
of conics, so that ψ : P2 → X is an isomorphism and X is projectively equivalent
to ν2(P2) ⊂ P5. �

Proof. (2nd proof of theorem 1.4.1). Fix a general point x ∈ X and consider
the tangential projection πx : X 99K Cx ⊂ P2. This rational map resolves to a
morphism π̃x : BlxX → Cx ' P1 such that every fiber is isomorphic to P1, i.e. it
is a P1-bundle over P1 and in particular BlxX and hence X are smooth surfaces.
Since BlxX contains the (−1)-curve E as a section of π̃x, then BlxX → Cx is
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isomorphic as a P1-bundle to π : F1 → P1. By contracting E we get X ' P2. Since
it contains conics in the fixed embedding and N = 5, it is necessarily the complete
2-Veronese embedding of P2. �

The reason for which we included the second proof, apparently more compli-
cated, is for the analogy with the argument used by Mori to prove Hartshorne’s
conjecture that PN is the only smooth projective variety of dimension N having
ample tangent bundle, see [Mo1]. There one shows that for a general point x ∈ X
P(TxX) ' PN−1 and then by blowing-up x, it proves that BlxX → PN−1 is a
P1-bundle, see loc. cit.

Now we can prove theorem 1.4.2.

Proof. (of theorem 1.4.2) Suppose X is not a cone over a curve. By lemma
1.4.3 we get N = n+3 and that through x there passes a line. In fact TxFx∩Fx ⊂ X
is a quadric in TxFx = Pn−1 and since n− 1 ≥ 2, through the point x there passes
at least a line lx ⊂ TxX ∩Fx ⊂ X. Then X is a cone by lemma 1.2.7 and since it is
not a cone over a curve, its linear section with a general P5 ⊂ Pn+3 is an irreducible
non-degenerate surface Y ⊂ P5, which is not a cone, and such dim(SY ) ≤ 4. By
theorem 1.1.6 Y ⊂ P5 is a Veronese surface and the conclusion follows. �

It is worth of note also the following geometrical characterization of the Veronese
surface given by Ran: it is the unique smooth surface in P5 which is not contained
in an irreducible 3-fold non-singular along the surface, see [Ra].

1.5. Dual varieties and contact loci of general tangent linear spaces

Let X ⊂ PN be a projective, irreducible non-degenerate variety of dimension n;
let Sm(X) := X \ Sing(X) be the locus of non-singular points of X. By definition
Sm(X) = {x ∈ X : dim(TxX) = n}.

If we take an hyperplane section of X, Y = X ∩ H, where H = PN−1 is an
arbitrary hyperplane, then for every y ∈ Y we get

(1.5.1) TyY = TyX ∩H.

Since Y is a pure dimensional scheme of dimension n−1, we see that Sing(Y )\
(Sing(X) ∩ H) = {y ∈ Y \ Sing(X) ∩ Y : TyX ⊆ H}, which is an open subset
in the locus of points of X at which H is tangent. In particular to show that an
hyperplane section has non-singular points, we have to exhibit an hyperplane H
which is not tangent at all the points in which it intersects X. It naturally arises the
need of patching together all the ”bad” hyperplanes and eventually show that there
always exists an hyperplane section of X, non-singular at least outside Sing(X).
Since hyperplane can be naturally thought as points in the dual projective space
(PN∗, we can define a subvariety of PN∗ parametrizing hyperplane sections which
are singular also outside Sing(X). This locus is the so-called dual variety.

1.5.1. Definition. (Dual variety) Let X ⊂ PN be as above and let

PX := {((x,H) : x ∈ Sm(X), TxX ⊆ H} ⊂ X × PN∗,

the so called conormal variety of X.
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Let us consider the projections of PX onto the factors X and PN∗,

PX

p1

~~||
||

||
|| p2

""EE
EE

EE
EE

X PN∗.

The dual variety to X, X∗, is the scheme-theoretic image of PX in PN∗, i.e. the
algebraic variety

X∗ := p2(PX) ⊆ PN∗.

The set PX is easily seen to be a closed subset. For x ∈ Sm(X), we have
p−1
1 (x) ' (TxX)∗ = PN−n−1 ⊂ PN∗. Then the set PX is irreducible since p−1

1 (Sm(X)) →
Sm(X) is a PN−n−1-bundle and clearly dim(PX) = N − 1. Then dim(X∗) ≤ N − 1
and the dual defect of X, def(X), is defined as

def(X) = N − 1− dim(X∗) ≥ 0.

A variety is said to be reflexive if the natural isomorphism between PN and PN∗∗

induces an isomorphism between PX and PX∗ . This clearly implies that the natural
identification between PN and PN∗∗ induces an isomorphism X ' X∗∗ = (X∗)∗.

Let us take H ∈ X∗. By definition

CH := CH(X) = p−1
2 (H) = {x ∈ Sm(X) : TxX ⊂ H}

is exactly the closure of non-singular points of X where H is tangent to X, it is not
empty so that H ∩X is singular outside Sing(X). On the contrary if H 6∈ X∗, the
hyperplane section H ∩X can be singular only along Sing(X). This is the classical
”Bertini theorem”.

In particular we proved the following result.

1.5.2. Theorem. Let X ⊂ PN be a projective, irreducible non-degenerate va-
riety of dimension n =. Then for every H ∈ (PN )∗ \ X∗ the divisor H ∩ X is
non-singular outside Sing(X).

In particular if X has at most a finite number of singular points p1, . . . , pm,
then for every H 6∈ X∗ ∪ (p1)∗ ∪ . . . ∪ (pm)∗, the hyperplane section H ∩ X is a
non-singular subscheme of pure codimension 1.

Later we shall see that if n ≥ 2, then every hyperplane section is connected.
For non-singular varieties, the hyperplane sections with hyperplanes H 6∈ X∗, being
connected and non-singular are also irreducible so that are irreducible non-singular
algebraic varieties.

To justify the name of conormal variety for PX and to get some practice with
the definitions, one could solve the following exercise. It is also a training for the
language of locally free sheaves and their projectivizations.

1.5.3. Exercise. Prove the following facts.
(1) Let X ( PM ( PN be a degenerate variety. Prove that X∗ ⊂ PN∗ is a

cone of vertex PM∗ = PN−M−1 ⊂ PN∗ over the dual variety of X in PM .
Suppose X = S(L,X ′) is a cone of vertex L = Pl, l ≥ 0, over a variety
X ′ ⊂ M = PN−l−1, M ∩ L = ∅. Then X∗ ⊂ (Pl)∗ = PN−l−1 ⊂ (PN )∗ is
degenerated. Is there any relation between X∗ and the dual of X ′ in M?
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Suppose X ⊂ PN is a cone. Prove that X∗ ⊂ PN∗ is degenerated.
Conclude that X ⊂ PN is degenerated if and only if X∗ ⊂ PN∗ is a cone;
and, dually, that X ⊂ PN is a cone if and only if X∗ ⊂ PN∗ is degenerated.

(2) Let C ⊂ PN be an irreducible non-degenerate projective curve. Then
p2 : PC → C∗ ⊂ (PN )∗ is a finite morphism so that def(C) = 0.

(3) LetX ⊂ PN be a non-singular variety, then PX ' P(N ∗
X/PN (1)) (Grothen–

dieck’s notation), where N ∗
X/PN (1) is the the twist of the conormal bundle

of X in PN by OPN (1). Show that p2 : PX → X∗ ⊂ PN∗ is given by a sub-
linear system of |ON∗

X/PN (1)(1)|. (Hint: restrict Euler sequence to X and
use the standard conormal sequence; interpret these sequences in terms
of the associated projective bundles and of the incidence correspondence
defining PX).

(4) Let X ⊂ PN be a smooth complete intersection. Deduce by the previous
exercise that p2 : PX → X∗ ⊂ PN∗ is a finite morphism so that dim(X∗) =
N − 1, i.e. def(X) = 0 (Hint: show that N ∗

X/PN (1) is a sum of very ample
line bundles; deduce that ON∗

X/PN (1)(1) is very ample and finally that

p2 : PX → X∗ ⊂ PN∗ is a finite morphism).
(5) Suppose char(K)=0 and let C ⊂ P2 be an irreducible curve, not a line.

Show that C∗ is an irreducible curve of degree at least 2. Take a tangent
line at a point x ∈ C. Show that if TxC is tangent at another point y ∈ C,
y 6= x, then the point (TxC)∗ ∈ C∗ is a singular point of C∗. Deduce that
if char(K)=0, then a general tangent line is tangent to C only at one
point. Deduce that the same is true for an irreducible curve C ⊂ PN ,
N ≥ 3.

(6) Let X = P1 × Pn ⊂ P2n+1, n ≥ 1, be the Segre embedding of P1 × Pn.
Identify P2n+1 with the projectivization of the vector space of 2 × n + 1
matrices and show that, due to the fact that there are only two orbits for
the action of GL(2) on PN and on (PN )∗, (P1 × Pn)∗ ' P1 × Pn so that
def((P1×Pn)) = n−1. Interpret this result geometrically and reverse the
construction for n = 2 to show directly that X = X∗.

(7) Use the same argument as above to show that if X = ν2(P2) ⊂ P5, or if
X = P2 × P2 ⊂ P8, then X∗ ' SX and SX∗ ' X.

As we have seen the dual varieties encode informations about the tangency of
hyperplanes. Terracini Lemma says that linear spaces containing tangent spaces
to higher secant varieties are tangent along (Σk

z)red \ Sing(X), see corollary 1.3.6.
Hence if the maximal dimension of the fibers of p2 : PX → X∗ ⊂ PN∗ is an upper
bound for δk(X) as soon as SkX ( PN , as we shall immediately see. More refined
versions with the higher Gauss maps γm, see below, can be formulated but in those
cases the condition expressed by the numbers εm(X), which can be defined as
below, is harder to control.

1.5.4. Theorem. (Dual variety and higher secant varieties) Let X ⊂ PN

be an irreducible non-degenerate projective variety. Let p2 : PX → X∗ ⊂ PN∗ be as
above and let ε(X) = max{dim(p−1

2 (H)) , H ∈ X∗}. If SkX ( PN , then δk(X) ≤
ε(X). In particular if p2 : PX → X∗ is a finite morphism, then dim(SkX) =
min{(k + 1)n+ k,N}.
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Proof. Let z ∈ SkX be a general point. There exists x ∈ Σk
z(X)∩Sm(X) and

moreover TzS
kX is contained in a hyperplane H. Then p1(p−1

2 (H)) ⊇ Sing(X ∩
H) \ (Sing(X) ∩ H) (and more precisely Sing(X ∩ H) \ (Sing(X) ∩ H)) contains
the irreducible component of Σk

z(X) \ (Sing(X) ∩ Σk
z(X)) passing through x by

corollary 1.3.6. Then p1(p−1
2 (H)) has dimension at least δk(X) = dim(Σk

z(X)) and
the conclusion follows. �

1.5.5. Corollary. (cfr. corollaries 1.2.3 and 1.3.6).
Let X ⊂ PN be either an irreducible non-degenerate curve or a smooth non-

degenerate complete intersection. Then

dim(SkX) = min{(k + 1)n+ k,N}.

Proof. By exercise 1.5.3, we know that in both cases p2 : PX → X∗ is a finite
morphism. �

More generally one would study the locus of points at which a general hyper-
plane is tangent, the so called contact locus. For reflexive varieties it is a linear space
of dimension def(X). This is an interpretation of the isomorphism X ' (X∗)∗. One
should be careful in the interpretation of the result: it does not mean that the hy-
perplane remains tangent along the whole ”contact locus”, see remark 1.3.7 and
adapt it to the more general situation of a ruling of a cone. This is true only
for non-singular varieties. In particulat reflexive varieties of positive dual defect
contain positive dimensional families of linear spaces.

1.5.6. Proposition. Let X ⊂ PN be a reflexive variety. Then for H ∈
Sm(X∗),

p−1
2 (H) = {x ∈ Sm(X) : TxX ⊂ H} = (THX

∗)∗ = Pdef(X).

The following result will not be proved here but the reader can consult [Ha],
pg. 208 for an elementary and direct proof. It is considered as a classical theorem,
know at least to C. Segre.

1.5.7. Theorem. (Reflexivity Theorem) Let X ⊂ PN be an irreducible va-
riety. Suppose char(K)=0. Then X is reflexive.

Another natural and similar problem is to know if a general tangent space to a
variety X is tangent at more than one point. During the discussion we will always
suppose char(K)=0 to avoid artificial problems, since the natural ones are enough
interesting.

We have seen in exercise 1.5.3 that for irreducible curves a general tangent
space is tangent only at one point. On the other hand if X is a cone over a curve,
we know that a a general tangent space is tangent exactly along the ruling passing
through the point. The unique common feature of irreducible algebraic varieties
from this point of view seems to be the linearity of the locus of points at which a
general linear space is tangent.

1.5.8. Definition. (Gauss maps) Let X ⊂ PN be an irreducible projective
variety and let m ≥ n. Let

Pm
X := {((x, L) : x ∈ Sm(X), TxX ⊆ L} ⊂ X ×G(m,N).
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Let us consider the projections of Pm
X onto the factors X and (PN )∗,

SX

p1

~~}}
}}

}}
}} γm

$$IIIIIIIII

X G(m,N).

The variety of m-dimensional tangent subspaces to X, X∗
m, is the scheme-theoretic

image of Pm
X in G(m,N), i.e. the algebraic variety

X∗
m := γm(Pm

X ) ⊂ G(m,N).

For m = N − 1, we recover the dual variety and its definition, while for m = n,
we get the usual Gauss map GX : X 99K G(n,N) which associates to a point
x ∈ Sm(X) its tangent space TxX. For such x ∈ Sm(X) GX(x) := γn(x) = TxX.

If X ⊂ PN is an hypersurface, then n = N − 1 and clearly the Gauss map
GX : X 99K PN∗ associates to a smooth point p of X its tangent hyperplane, so
that in coordinates is given by

GX(p) = (
∂f

∂X0
(p) : . . . :

∂f

∂XN
(p)).

The following theorem is once again a consequence of reflexivity and it is a
generalization of proposition 1.5.6 and of the properties of cones. One can consult
[Z2], pg. 21, for a proof.

1.5.9. Theorem. (Linearity of general contact loci) Let X ⊂ PN be an
irreducible projective non-degenerate variety. Assume char(K)=0. The general
fiber of the morphism γm : Pm

X → X∗
m is a linear space of dimension dim(Pm

X ) −
dim(X∗

m). In particular the closure of a general fiber of GX : X 99K X∗
n ⊂ G(n,N)

is a linear space of dimension n−dim(GX(X)) so that a general linear tangent space
is tangent along an open subset of a linear space of dimension n− dim(GX(X)).

To conclude the section and the chapter, we prove via Terracini Lemma a
relation between X∗ and (SkX)∗, k < k0(X), assuming char(K)=0.

1.5.10. Proposition. Let X ⊂ PN be an irreducible non-degenerate projective
variety. Assume char(K)=0 and SX ( PN . Then (SX)∗ ⊆ Sing(X∗) ( X∗, i.e. a
general bitangent hyperplane represents a singular point of X∗. More generally for a
given k ≥ 2 such that k < k0(X), we have (SkX)∗ ⊆ Sing((Sk−1X)∗) ( (Sk−1X)∗,
i.e. a general (k + 1)-tangent hyperplane represents a singular point of (Sk−1X)∗.

Proof. Take H ∈ (SX)∗ general point. Then H ⊇ TzSX, with z ∈ SX
general point. By corollary 1.3.6,H is tangent toX along Σz(X)\(Σz(X)∩Sing(X))
so that H ∈ X∗. Since X is non-degenerate, then z 6∈ X implies that the contact
locus of H is not linear, yielding H ∈ Sing(X∗) by proposition 1.5.6.

Take more generally H ∈ (SkX)∗ general and write SkX = S(X,Sk−1X).
Then H ⊆ TzS

kX, with z ∈ SkX general point. Then there exists y ∈ Sm(Sk−1X)
with y ∈ Σk

z(X) and such that z ∈< x, y >, x ∈ X, x 6= y. By Terracini Lemma
TzS

kX ⊇ TyS
k−1X so that H ∈ (Sk−1X)∗. Since x ∈ X, x ∈ Sing(H ∩ Sk−1X),

so that p−1
2 (H) ⊆ Sk−1X is not linear since once again z ∈ SkX \ Sk−1X by the

non-linearity of SkX. �
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Recall that to a non-degenerate irreducible closed subvariety X ⊂ PN we asso-
ciated an ascending filtration of irreducible projective varieties, see equation 1.2.5,

X = S0X ( SX ( S2X ( . . . ( Sk0X = PN .

The above proposition says that at least over a filed of characteristic zero, there
exists also a strictly descending dual filtration:

X∗ ) Sing(X∗) ⊇ (SX)∗ ) . . . ⊇ (Sk0−2X)∗ ) Sing((Sk0−2X)∗) ⊇ (Sk0−1X)∗.





CHAPTER 2

Fulton-Hansen connectedness theorem and some
applications to projective geometry

2.1. Connectedness principle of
Enriques-Zariski-Grothendieck-Fulton-Hansen and some classical

theorems in algebraic geometry

In the first chapter we introduced the main definitions of classical projective
geometry and furnished rigorous proofs of many classical results. Many theorems in
classical projective geometry deal with ”general” objects. For example the classical
Bertini theorem on hyperplane sections, see theorem 1.5.2. A more refined version
of this theorem says that if f : X → PN is morphism, with X proper and such that
dim(f(X)) ≥ 2, and if H = PN−1 ⊂ PN is a general hyperplane, then f−1(H) is
irreducible, see [Ju] theorem 6.10 for a modern reference. The ”Enriques-Zariski
principle” says that ”limits of connected varieties remain connected” and it is for
example illustrated in the previous example because for an arbitrary H = PN−1 ⊂
PN , f−1(H) is connected as we shall prove below.

This result is particularly interesting because, as shown by Deligne and Jouanolou,
a small generalization of it proved by Grothendieck, [Gr] XIII 2.3, yields a sim-
plified proof of a beautiful and interesting connectedness theorem of Fulton and
Hansen in [FH], whose applications are deep and appear in different areas of al-
gebraic geometry and topology. Moreover, Deligne’s proof generalizes to deeper
statements involving higher homotopy groups when studying complex varieties, see
[D1], [D2], [Fu], [FL].

To illustrate this circle of ideas and the ”connectedness principle”, we describe
how the theorem of Fulton-Hansen includes some classical theorems in algebraic
geometry and generalizes them. In our treatment we strictly follow the surveys [Fu]
and [FL]. Another interesting source, where the ideas of Grothendieck behind this
theorem and their generalizations to d-connectedness and to weighted projective
spaces are explained in great detail, are the notes of a course of Bǎdescu, [B1], and
his book [B2].

Now we recall four classical theorem with emphasis on the connectedness results
in the idea of looking for a common thread. When dealing with homotopy groups
πi, we are assuming K = C and referring to the classical topology.

2.1.1. Four classical theorems. Let us list the following more or less known
theorems.

(1) (Bézout) Let X and Y be closed subvarieties of PN . If dim(X)+dim(Y ) ≥
N , then X ∩ Y 6= ∅. If dim(X) + dim(Y ) > N , then X ∩ Y is connected
and more precisely (dim(X) + dim(Y )−N)-connected.

31
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(2) (Bertini) Let f : X → PN be a morphism, with X proper variety, and let
L = PN−l ⊂ PN be a linear space. If l ≤ dim(f(X)), then f−1(L) 6= ∅. If
l < dim(f((X)), then f−1(L) is connected.

(3) (Lefschetz) If X ⊂ PN is a closed irreducible subvariety of dimension n
and if L = PN−l ⊂ PN is a linear space containing Sing(X), then

πi(X,X ∩ L) = 0 for i ≤ n− l.

Equivalently the morphism

πi(X ∩ L) → πi(X)

is an isomorphisms if i ≤ n− l and surjective if i = n− l.
(4) (Barth-Larsen) If X ⊂ PN is a closed irreducible non-singular subvariety

of dimension n, then

πi(PN , X) = 0 for i ≤ 2n−N + 1.

(Recall that πi(PN ) = Z for i = 0, 2 and πi(PN ) = 0 for i = 1, 3, 4, . . . , 2N).

As we said at the beginning usually the names of the classical theorem refers to
properties of general linear sections, for which a better property can be expected,
as in the case of Bertini theorem for example, or as in the case of Bézout theorem
(when the intersection is transversal one usually computes #(X ∩ Y )). In the
classical Lefschetz theorem the variety was non-singular and L was general.

Let us remark that the two parts of theorem 1) can be reformulated by mean
of homotopy groups. The first part is equivalent to

π0(X ∩ Y ) → π0(X × Y )

is surjective, the second one to the fact that the above morphism is an isomorphism.
Similarly theorem 2) can be reformulated as

π0(f−1(L)) → π0(X)

is an isomorphism.
A common look at the above theorems comes from the following observation of

Hansen, [FL],[FH]. All the above theorems are statement about the not emptiness,
respectively connectedness, of the inverse image of ∆PN ⊂ PN ×PN under a proper
morphism f : W → PN×PN such that dim(f(W )) ≥ N , respectively dim(f(W )) >
N .

Suppose this is true and take W = X × Y for theorem 1) or W = X × L in
theorem 2) and 3) at least to deduce the connectedness parts. Theorem 4) can be
deduced by taking W = X ×X, see [FL] and [Fu].

These results can be explained from other points of view as consequences of
the ampleness of the normal bundle of a smooth subvarieties, or of complete inter-
sections in PN . On the other hand the same positivity holds for ∆PN ⊂ PN × PN

since N∆PN /PN×PN ' TPN and the tangent bundle to PN , TPN , is ample by Euler
sequence.

The above discussion and further generalizations by Faltings, Goldstein and
Hansen revealed a connectedness principle, which we now state and later justify
why one should expect its validity.
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2.1.2. Connectedness Principle, [Fu], pg. 18. Let P be a smooth projective
variety.

Given a ”suitable positive” embedding Y ↪→ P of codimension l and a proper
morphism f : W → P , n = dim(W ),

f−1(Y )

��

� � // W

f

��
Y

� � // P,

we should have

πi(W, f−1(Y )) '→ πi(P, Y ) for i ≤ n− l − ”defect”.

This defect should be measured by (a) lack of positivity of Y in P ; (b) singularities
of W ; (c) dimensions of the fibers of f . Usually πi(P, Y ) = 0 for small i, so the
conclusion is that, as regards connectivity, f−1(Y ) must look like W . If the defect
is zero we deduce that

f−1(Y ) 6= ∅ if n ≥ l,

f−1(Y ) is connected and π1(f−1(Y )) → π1(W ) is surjective if n > l.

The most basic case is with P = PN and Y = PN−l a linear subspace. In
this case the principle furnishes the theorems of Bertini and Lefschetz by taking
W = X. As we explained before the case which allows one to include all the
classical theorems is P = PN × PN , and Y = ∆PN diagonally embedded in P .
Indeed W = X × Y gives Bézout theorem, while theorems 2) and 3) are recovered
by setting W = X × L. Theorem 4) can be obtained with W = X ×X.

When PN is replaced by other homogeneous spaces, one could measure the
defect of positivity of its tangent bundle and one expects the principle to hold with
this defect, see [Fa], [Go], [BS].

Why should one expect this connectedness principle to be valid? In some cases
one can define a Morse function which measures distance from Y . Positivity should
imply that all the Morse indices of this function are at least n−l−1 (perhaps minus
a defect). Then one constructs W from f−1(Y ) by adding only cells of dimension
at least n− l− 1, which yields the required vanishing of relative homotopy groups,
see [Fu] for a proof giving theorems 3) and 4) above.

Before ending this long introduction to the connectedness theorem we recall for
completeness the following statements for later reference. They are particular forms
or consequences of results of Barth and Barth and Larsen. Chronologically part
2) has been stated before the Barth-Larsen Theorem involving higher homotopy
groups and recalled above.

2.1.3. Theorem. Let X ⊂ PN be a smooth, irreducible projective variety and
let H ⊂ X be a hyperplane section.

(1) If n ≥ N+1
2 , then π1(X) = 1 (Barth-Larsen).

(2) If n ≥ N+i
2 , then the restriction map

Hi(PN ,Z) → Hi(X,Z)

is an isomorphism (Barth).
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(3) If n ≥ N+2
2 , then

Pic(X) ' Z < H > (Barth).

We come back to the algebraic setting and to the proof of the theorem of Fulton-
Hansen and hence of the non-emptiness and connectedness parts (i = 0) of theorems
1), 2), 3) (and 4)). The theorem appears as a consequence of the connectedness of
preimages of linear spaces under proper morphisms, a result due to Grothendieck
and which follows from the ”classical” Bertini theorem we quoted at the beginning.
We start with the connectedness theorem and later prove some interesting results
having their own interest and leading to its proof. In [B1], Lucian Bǎdescu extends
the connectedness theorem to weighted projective spaces using the original ideas of
Grothendieck, so that many geometrical consequences of the result are valid also
for this class of homogeneous varieties.

2.1.4. Theorem. (Fulton-Hansen Connectedness Theorem, [FH]) Let X
be an irreducible variety, proper over an algebraically closed filed K. Let f : X →
PN × PN be a morphism and let ∆ = ∆PN ⊂ PN × PN be the diagonal.

(1) If dim(f(X)) ≥ N , then f−1(∆) 6= ∅.
(2) If dim(f(X)) > N , then f−1(∆) is connected.

We begin by recalling the following ”classical” Bertini theorem in a more general
form. For a proof we refer to [Ju], theorem 6.10, where the hypothesis K = K is
relaxed.

2.1.5. Theorem. (Bertini Theorem, see [Ju]) Let X be an irreducible variety
and let f : X → PN be a morphism. For a fixed integer l ≥ 1, let G(N − l, N) be
the Grassmann variety of linear subspaces of PN of codimension l. Then

(1) if l ≤ dim(f(X)), then there is a non-empty open subset U ⊆ G(N − l, N)
such that for every L ∈ U ,

f−1(L) 6= ∅;

(2) if l < dim(f(X)), then there is a non-empty open subset U ⊆ G(N − l, N)
such that for every L ∈ U ,

f−1(L) is irreducible.

We now show that the Enriques-Zariski principle is valid in this setting by
proving the next result, which is the key point towards theorem 2.1.4. We pass
from general linear sections to arbitrary ones and for simplicity we suppose K = K
as always.

2.1.6. Theorem. ([Gr], [FH], [Ju], theorem 7.1) Let X be an irreducible vari-
ety and let f : X → PN be a morphism. Let L = PN−l ⊂ PN be an arbitrary linear
space of codimension l.

(1) If l ≤ dim(f(X)) and if X is proper over K, then

f−1(L) 6= ∅.

(2) If l < dim(f(X)) and if X is proper over K, then

f−1(L) is connected.
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More generally for an arbitrary irreducible variety X, if f : X → PN is proper
over some open subset V ⊆ PN , and if L ⊆ V , then, when the hypothesis on the
dimensions are satisfied, the same conclusions hold for f−1(L).

Proof. (According to [Ju]). We prove the second part of the theorem from
which the statements in 1) and 2) follow.

Let W ⊆ G(N − l, N) be the open subset consisting of linear spaces contained
in V and let

Z = {(x, L′) ∈ X×W : f(x) ∈ L′} ⊂ {(x, L′) ∈ X×G(N−l, N) : f(x) ∈ L′} = I.

The scheme Z is irreducible since it is an open subset of the Grassmann bundle
p1 : I → X. Since f is proper over V , the second projection p2 : Z → W is a
proper morphism. Consider its Stein factorization:

X

q

��

p2

!!CC
CC

CC
CC

W ′
r

// W ;

the morphism q is proper with connected fibers and surjective, while r is finite.
By theorem 2.1.5 r is dominant and hence surjective if l ≤ dim(f(X)), respectively
generically one-to-one and surjective if l < dim(f(X)). In the first case p2 : Z →W
is surjective so that f−1(L) 6= ∅ for every L ∈ W . In the second case, since W is
smooth, it follows that r is one to one everywhere so that f−1(L) = q−1(r−1(L))
is connected for every L ∈W . �

2.1.7. Remark. The original proof of Grothendieck used an analogous local
theorem proved via local cohomology. His method has been used and extended by
Hartshorne, Ogus, Speiser and Faltings. Faltings proved with similar techniques a
connectedness theorem for other homogeneous spaces, see [Fa], at least in charac-
teristic zero. A different proof of a special case of the above theorem was also given
by Barth in 1969.

Now we are in position to prove the connectedness theorem.

Proof. (of theorem 2.1.4, according to Deligne, [D1]). The idea is to pass from
the diagonal embedding ∆ ⊂ PN × PN to a linear embedding L = PN ⊂ P2N+1, a
well known classical trick.

In P2N+1 separate the 2N+2 coordinates into [X0 : . . . : XN ] and [Y0 : . . . : YN ]
and think these two sets as coordinates on each factor of PN × PN . The two N
dimensional linear subspacesH1 : X0 = . . . = XN = 0 andH2 : Y0 = . . . = YN = 0
of P2N+1 are disjoint. If V = P2N+1 \ (H1 ∪H2) since there is a unique secant line
to H1 ∪H2 passing through each p ∈ V , there is a morphism

φ : V → H1 ×H2 = PN × PN ,

which to p associates the points (p1, p2) = (< H2, p > ∩H1, < H1, p > ∩H2). In
coordinates, φ([X0 : . . . : XN : Y0 : . . . : YN ] = ([X0 : . . . : XN ], [Y0 : . . . : YN ]).
Then φ−1(φ(p)) =< p1, p2 > \{p1, p2} ' A1

K \ 0. Let L = PN ⊂ V be the linear
subspace of P2N+1 defined by Xi = Yi, i = 0, . . . , N . Then

φ|L : L '−→ ∆
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is an isomorphism. Given f : X → PN × PN we construct the following Cartesian
diagram

X ′

f ′

��

φ′ // X

f

��
V

φ // PN × PN ,

where
X ′ = V ×PN×PN X.

Clearly φ′ induces an isomorphism between f ′−1(L) and f−1(∆). To prove the
theorem it is sufficient to verify the corresponding assertion for f ′−1(L). To this
aim we apply theorem 2.1.6. Let us verify the hypothesis.

Since φ′−1(x) ' φ−1(f(x)) = A1
K \ 0 for every x ∈ X, the scheme X ′ is

irreducible and of dimension dim(X) + 1. The morphism f is proper, so that also
f ′ : X ′ → V is proper and moreover dim(f(X ′)) = dim(f(X))+1. If dim(f(X)) ≥
N , then dim(f(X ′)) ≥ N + 1 = codim(L,P2N+1). If dim(f(X ′)) > N , then
dim(f(X ′)) > N + 1 = codim(L,P2N+1). �

2.2. Zak’s applications to Projective Geometry

In this section we come back to projective geometry and apply Fulton-Hansen
theorem to prove some interesting and non-classical results in projective geometry.
Most of the ideas and the results are due to Fyodor L. Zak, see [Z2], [FL], [LV],
and they will be significant improvements of the classical material presented in the
first chapter. Other applications to new results in algebraic geometry can be found
in [FH], [FL], [Fu].

We begin with the following key result, which refines a result of Johnson, [Jo].

2.2.1. Theorem. ([FH], [Z2]) Let Y ⊆ X ⊂ PN be a closed subvariety of
dimension r = dim(Y ) ≤ dim(X) = n, with X irreducible and projective. Then
either

(1) dim(T ∗(Y,X)) = r + n and dim(S(Y,X)) = r + n+ 1, or
(2) T ∗(Y,X) = S(Y,X).

Proof. We can suppose Y irreducible and then apply the same argument to
each irreducible component of Y . We know that T ∗(Y,X) ⊆ S(Y,X) and that
dim(T ∗(Y,X)) ≤ r + n by construction. Suppose that dim(T ∗(Y,X)) = r + n.
Since S(Y,X) is irreducible and dim(S(Y,X)) ≤ r + n+ 1, the conclusion holds.

Suppose now dim(T ∗(Y,X)) = t < r + n. We prove that dim(S(Y,X)) ≤ t so
that T ∗(Y,X) = S(Y,X) follows from the irreducibility of S(Y,X). There exists
L = PN−t−1 such that L∩T ∗(Y,X) = ∅. The projection πL : PN \L→ Pt restricts
to a finite morphism on X and on Y , since L ∩X = ∅, see definition 1.2.4. Then
(πL × πL)(X × Y ) ⊂ Pt × Pt has dimension r + n > t by hypothesis. By theorem
2.1.4, the closed set

∆̃ = (πL × πL)−1(∆Pt) ⊂ Y ×X

is connected and contains the closed set ∆Y ⊂ Y ×X so that ∆Y is closed in ∆̃.
We claim that

∆Y = ∆̃.
This yields L ∩ S(Y,X) = ∅ and hence dim(S(Y,X)) ≤ N − 1− dim(L) = t.
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Suppose ∆̃ \∆Y 6= ∅. We find y′ ∈ Y such that ∅ 6= T ∗y′(Y,X)∩L ⊆ T ∗(Y,X)∩
L contrary to the assumption. If ∆̃ \∆Y 6= ∅, the connectedness of ∆̃ implies the

existence of (y′, y′) ∈ ∆̃ \∆Y ∩ ∆Y . Let notation be as in definition 1.2.1. i. e.
p2(p−1

1 (y, x)) =< x, y > if x 6= y and p2(p−1
1 (y, x)) = T ∗y (Y,X) if x = y ∈ Y .

Since for every (y, x) ∈ ∆̃ \ ∆Y we have < y, x > ∩L 6= ∅ by definition of πL

(πL(y) = πL(x), y 6= x, if and only if < y, x > ∩L 6= ∅), the same holds for (y′, y′)
so that p2(p−1

1 (y, x)) ∩ L 6= ∅ forces p2(p−1
1 (y′, y′)) ∩ L 6= ∅. �

2.2.2. Corollary. Let X ⊂ PN be an irreducible projective variety of dimen-
sion n. Then either

(1) dim(T ∗X) = 2n and dim(SX) = 2n+ 1, or
(2) T ∗X = SX.

The following theorem well illustrates the passage from general to arbitrary
linear spaces, as regards to tangency.

2.2.3. Theorem. (Zak’s Theorem on Tangencies) Let X ⊂ PN be an irre-
ducible projective non-degenerate variety of dimension n. Let L = Pm ⊂ PN be a
linear subspace, n ≤ m ≤ N − 1, which is J-tangent along the closed set Y ⊆ X.
Then dim(Y ) ≤ m− n.

Proof. Without loss of generality we can suppose that Y is irreducible and
then apply the conclusion to each irreducible component. By hypothesis and by
definition we get T ∗(Y,X) ⊆ L. Since X ⊆ S(Y,X) and since X is non-degenerate,
S(Y,X) is not contained in L so that T ∗(Y,X) 6= S(Y,X). By theorem 2.2.1 we
have dim(Y ) + n = dim(T ∗(Y,X)) ≤ dim(L) = m. �

We now come back to the problem of tangency and to contact loci of smooth
varieties to furnish two beautiful applications of the theorem on Tangencies. We
begin with the finiteness of the Gauss map of a smooth variety.

2.2.4. Corollary. (Gauss map is finite for smooth varieties, Zak) Let
X ( PN be a smooth irreducible non-degenerate projective variety of dimension n.
Then the Gauss map GX : X → G(n,N) is finite. If moreover char(K)=0, the GX

is birational onto the image, i.e. X is a normalization of GX(X).

Proof. As always it is sufficient to prove that GX has finite fibers. For every
x ∈ X, G−1

X (GX(x)) is the locus of points at which the tangent space TxX is tangent.
By theorem 2.2.3 it has dimension less or equal than dim(TxX)− n = 0.

If char(K)=0, then every fiber G−1
X (GX(x)) is linear by theorem 1.5.9 and of

dimension zero by the first part, so that it reduces to a point. �

The next result reveals a special feature of non-singular varieties, since the
result is clearly false for cones, see exercise 1.5.3.

2.2.5. Corollary. (Zak) Let X ⊂ PN be a smooth projective non-degenerate
variety. Let X∗ ⊂ PN∗ be its dual variety. Then dim(X∗) ≥ dim(X). In particular,
if also X∗ is smooth, then dim(X∗) = dim(X).

Proof. By the theorem of the dimension of the fiber, letting notation as in
definition 1.5.1, dim(X∗) = N − 1 − dim(p−1

2 (H)), H ∈ X∗ general point. By
theorem 2.2.3, dim(p−1

2 (H)) ≤ N − 1− dim(X) and the conclusion follows. �
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2.2.6. Remark. In exercise 1.5.3, we saw that (P1 × Pn)∗ ' P1 × Pn for every
n ≥ 1. In [Ei], L. Ein shows that if N ≥ 2/3 dim(X), if X is smooth, if char(K)=0
and if dim(X) = dim(X∗), then X ⊂ PN is either a hypersurface, or P1 × Pn ⊂
P2n+1 Segre embedded, or G(1, 4) ⊂ P9 Plücker embedded, or the 10-dimensional
spinor variety S10 ⊂ P15. In the last three cases X ' X∗.

We apply the theorem on Tangencies to deduce some strong properties of the
hyperplane sections of varieties of small codimension. By the theorem of Bertini
proved in the previous section we know that arbitrary hyperplane sections of vari-
eties of dimension at least 2 are connected. When the codimension of the variety
is small with respect to the dimension, some further restrictions for the scheme
structure hold.

If X ⊂ PN is a non-singular irreducible nondegenerate variety, we recall that
for every H ∈ X∗

Sing(H ∩X) = {x ∈ X : TxX ⊂ H},
i.e. it is the locus of points at which H is tangent. By theorem 2.2.3 we get

dim(Sing(X ∩X) ≤ N − 1− dim(X),
i.e.

codim(Sing(X ∩H), X ∩H) ≥ 2 dim(X)−N.

Recall that H ∩X is a Cohen-Macaulay scheme of dimension dim(X)− 1 and
that such a scheme is reduced as soon as it is generically reduced (R0 + S1 ⇔ R1).

If N ≤ 2 dim(X) − 1, then H ∩ X is a reduced scheme being non-singular
in codimension zero and in particular generically reduced. The condition forces
dim(X) ≥ 2, so that it is also connected by Bertini theorem.

If N ≤ 2 dim(X)−2, which forces dim(X) ≥ 3, then H ∩X is also non-singular
in codimension 1, so that it is normal being Cohen-Macaulay. Since it is connected
and integral, it is also irreducible. The case of the Segre 3-fold P1×P2 ⊂ P5 shows
that this last result cannot be improved, since an hyperplane containing a P2 of the
ruling yields a reducible, reduced, hyperplane section. Clearly in the same way, if
N ≤ 2 dim(X)− k− 1, k ≥ 0, then X ∩H is connected, Cohen-Macaulay and non-
singular in codimension k. We summarize these result in the following corollary to
the theorem on Tangencies.

2.2.7. Corollary. (Zak) Let X ⊂ PN be a smooth non-degenerate projective
variety of dimension n. Then

(1) if N ≤ 2n− 1, then every hyperplane section is connected and reduced;
(2) if N ≤ 2n− 2, then every hyperplane section is irreducible and normal;
(3) let k ≥ 2. If N ≤ 2n− k− 1, then every hyperplane section is irreducible,

normal and non-singular in codimension k.



CHAPTER 3

Hartshorne’s conjectures and Severi varieties

3.1. Hartshorne’s conjectures and Zak’s theorem on linear normality

After the period in which new and solid foundations to the principles of alge-
braic geometry were rebuilt especially by Zariski, Grothendieck and their schools,
at the beginning of the ’70 a new trend began. There was a renewed interest in
solving concrete problems and in finding applications of the new methods and ideas.
One can consult the beautiful book of Robin Hartshorne, [H1], to have a picture of
that situation. In [H1] many outstanding questions, such as the set-theoretic com-
plete intersection of curves in P3 (still open), the characterization of PN among the
smooth varieties with ample tangent bundle (solved by Mori in [Mo1] and which
cleared the path to the foundation of Mori theory, [Mo2]) were discusses, or stated
and a lot of other problems solved. In related fields we only mention Deligne proof
of the Weil conjectures or later Faltings proof of the Mordell conjecture, which used
the new machinery.

The interplay between topology and algebraic geometry returned to flourish.
Lefschetz theorem and Barth-Larsen theorem, see subsection 2.1.1 and theorem
2.1.3, also suggested that smooth varieties, whose codimension is small with respect
to their dimension, should have very strong restrictions both topological, both
geometrical. To have a feeling we remark that a codimension 2 smooth complex
subvariety of PN , N ≥ 5, has to be simply connected for example. If N ≥ 6, there
are no known examples of codimension 2 smooth varieties with the exception of
the trivial ones, the complete intersection of two hypersurfaces, i.e. the transversal
intersection of two hypersurfaces, smooth along the subvariety. In fact, at least for
the moment, one is able to construct only these kinds of varieties whose codimension
is sufficiently small with respect to dimension. Let us recall the following definition
and some notable properties of complete intersections analogous to varieties whose
codimension is small with respect to dimension.

3.1.1. Definition. (Complete intersection) A variety X ⊂ PN of dimen-
sion n is a complete intersection if there exist N − n homogeneous polynomials
fi ∈ K[X0, . . . , XN ] of degree di ≥ 1, generating the homogeneous ideal I(X) ⊂
K[X0, . . . , XN ], i.e. I(X) =< f1, . . . , fN−n > .

Let us recall that since f1, . . . , fN−n form a regular sequence in K[X0, . . . , XN ],
the homogeneous coordinate ring S(X) = K[X0, . . . , XN ]/I(X) has depth n+1, i.e.
X ⊂ PN is an arithmetically Cohen-Macaulay variety. Thus a complete intersection
X ⊂ PN is projectively normal, i.e. the restriction morphisms

H0(OPN (m)) → H0(OX(m))

are surjective for every m ≥ 0, so that X is connected, and Hi(OX(m)) = 0 for
every i such that 0 < i < n and for every m ∈ Z. Moreover, by Grothendieck
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theorem on complete intersections, Pic(X) ' Z < OX(1) >, as soon as n ≥ 3,
see [H1]. By Lefschetz theorem complete intersections defined over K = C are
simply connected, as soon as n ≥ 2 and have the same cohomology Hi(X,Z) of the
projective spaces containing them for i < n.

Based on some empirical observations, inspired by the theorem of Barth and
Larsen and, according to Fulton and Lazarsfeld, ”on the basis of few examples”,
Hartshorne was led to formulate the following conjectures.

3.1.2. Conjecture. (1st Conjecture of Hartshorne, or Complete Inter-
section Conjecture, [H2]) Let X ⊂ PN be a smooth irreducible non-degenerate
projective variety.

If N <
3
2

dim(X), i.e. if codim(X) <
1
2

dim(X), then X is a complete intersection.

Let us quote Hartshorne: While I am not convicted of the truth of this state-
ment, I think it is useful to crystallize one’s idea, and to have a particular problem
in mind ([H2]).

Hartshorne immediately remarks that the conjecture is sharp, due to the ex-
amples of the Grassmann variety of lines in P4, G(1, 4) ⊂ P9, Plücker embedded,
and of the spinorial variety of dimension 10, S10 ⊂ P15; moreover, the examples
of cones over curves in P3, not complete intersection, reveals the necessity of the
non-singularity assumption. Varieties for which N = 3

2 dim(X) and which are not
complete intersection are usually called Hartshorne varieties. No other example of
Hartshorne variety is known till today. It is not a case that these varieties are ho-
mogeneous since a technique for constructing varieties of not too high codimension
is exactly via algebraic groups, see for example [Z2], chapter 3, or the appendix to
[LV].

One of the main difficulties of the problem is a good translation in geometrical
terms of the algebraic condition of being a complete intersection and in general of
dealing with the equations defining a variety.

It is not here the place to remark how many important results originated and
still today arise from this open problem in the areas of vector bundles on projective
space, of the study of defining equations of a variety and k-normality and so on.
The list of these achievements is too long that we preferred to avoid citations, being
confident that everyone has met sometimes a problem or a result related to it.

Let us recall the following definition.

3.1.3. Definition. (Linear normality) A non-degenerate irreducible variety
X ⊂ PN is said to be linearly normal if the linear of hyperplane sections is complete,
i.e. if the injective, due to non-degenerateness, restriction morphism

H0(OPN (1)) r→ H0(OX(1))

is surjective and hence an isomorphism.
If a variety X ⊂ PN is not linearly normal, then the complete linear sys-

tem |OX(1)| is of dimension greater than N and embeds X as a variety X ′ ⊂
PM , M > N . Moreover, there exists a linear space L = PM−N−1 such that
L ∩ X ′ = ∅ and such that πL : X ′ → X ⊂ PN is an isomorphism. Indeed, if
V = r(H0(OPN (1))) ( H0(OX(1)) and if U ⊂ H0(OPN (1)) is a complementary
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subspace of V in H0(OPN (1)), the one can take PM = P(H0(OPN (1))), L = P(U)
and the claim follows from the fact that πL : X ′ ' X → X ⊂ PN = P(V ) is given
by the very ample linear system |V |. On the contrary, if X is an isomorphic linear
projection of a variety X ′ ⊂ PM , M > N , then X is not linearly normal.

In the same survey paper Hartshorne posed another conjecture, based on the
fact that complete intersections are linearly normal and on some examples in low
dimension.

3.1.4. Conjecture. (2nd Conjecture of Hartshorne, or Linear Normal-
ity Conjecture, [H2]) Let X ⊂ PN be a smooth irreducible non-degenerate pro-
jective variety.

If N <
3
2

dim(X)+1, i.e. if codim(X) <
1
2

dim(X) + 1, then X is linearly normal.

Recalling proposition 1.2.8 and the above discussion, we can equivalently reformu-
late it by means of secant varieties putting ”N = N + 1”.

If N <
3
2

dim(X) + 2, then SX = PN .

Let us quote once again Hartshorne point of view on this second problem:Of
course in settling this conjecture, it would be nice also to classify all nonlinearly
normal varieties with N = 3n

2 + 1, so as to have a satisfactory generalization of
Severi’s theorem. As noted above, a complete intersection is always linearly normal,
so this conjecture would be a consequence of our original conjecture, except for the
case N = 3n

2 . My feeling is that this conjecture should be easier to establish than
the original one ([H2]). Once again the bound is sharp taking into account the
example of the projected Veronese surface in P4.

The conjecture on linear normality was proved by Zak at the beginning of the
’80’s and till now it is the major evidence for the possible truth of the complete
intersection conjecture. As we shall see conjecture 3.1.4 is now an immediate con-
sequence of Terracini Lemma and of theorem 2.2.1. Later we will furnish another
proof of this theorem, cfr. theorem ??.

3.1.5. Theorem. (Zak Theorem on Linear Normality) Let X ⊂ PN be
a smooth non-degenerate projective variety of dimension n. If N < 3

2n + 2, then
SX = PN . Or equivalently if SX ( PN , then dim(SX) ≥ 3

2n + 1 and hence
N ≥ 3

2n+ 2.

Proof. Suppose that SX ( PN , then there exists a hyperplane H con-
taining the general tangent space to SX, let us say TzSX. Then by corollary
1.3.6, the hyperplane H is tangent to X along Σz(X), which by the generality
of z has pure dimension δ(X) = 2n + 1 − dim(SX). Since T (Σz(X), X) ⊆ H,
the non-degenerate variety S(Σz(X), X) ⊇ X is not contained in H, yielding
T (Σz(X), X) 6= S(Σz(X), X). By theorem 2.2.1 we get

2n+ 1− dim(SX) + n+ 1 = dim(S(Σz(X), X)) ≤ dim(SX),

i.e.
3n+ 2 ≤ 2 dim(SX)

implying

N − 1 ≥ dim(SX) ≥ 3
2
n+ 1.



42 3. HARTSHORNE’S CONJECTURES AND SEVERI VARIETIES

�

3.2. Severi varieties

Theorem 3.1.5 opens the problem of investigating examples for which the result
is sharp, i.e. to try to classify smooth varieties of dimension n, X ⊂ P 3

2 n+2 such that
SX ( P 3

2 n+2, or equivalently smooth not linearly normal varieties of dimension n,
X̃ ⊂ P 3

2 n+1. Clearly n is even so that the first case to be considered is n = 2 and so
one would like to classify smooth surfaces in P5 such that SX ( P5. The answer is
thus contained in the classical and well known theorem of Severi, [Sev1], which is
theorem 1.4.1 here, saying that X is projectively equivalent to the Veronese surface
ν2(P2) ⊂ P5. This justifies the name given by Zak to such varieties.

3.2.1. Definition. (Severi variety) A smooth irreducible non-degenerate va-
riety of dimension n, X ⊂ P 3

2 n+2, is said to be a Severi variety if SX ( P 3
2 n+2.

By theorem 3.1.5, it follows that SX ⊂ P 3
2 n+2 is necessarily an hypersurface,

i.e. dim(SX) = 3
2n+ 1.

In exercise 1.1.6 we showed that the Segre variety X = P2 × P2 ⊂ P8 is an
example of Severi variety of dimension 4. Indeed N = 8 = 3

2 · 4 + 2 and SX is a
cubic hyersurface, see loc. cit.. By the classical work of Scorza, last page of [S1], it
turns out that P2 × P2 is the only Severi variety of dimension 4. We shall furnish
a short, geometrical and elementary proof of this fact below, see theorem ??.

The realization of the Grassmann variety of lines in P5 Plücker embedded,
X = G(1, 5) ⊂ P14, as the variety given by the pfaffians of the general antisymmetric
6×6 matrix, yields that G(1, 5) is a Severi variety of dimension 8 such that its secant
variety is a degree 3 hypersurface, see for example [Ha] pg. 112 and 145, for the
last assertion.

A less trivial examples is a variety studied by Elie Cartan and also by Room.
It is a homogeneous complex variety of dimension 16, X ⊂ P26, associated to the
representation of E6 and for this reason called E6-variety, or Cartan variety by
Zak. It has been shown by Lazarsfeld and Zak that its secant variety is a degree 3
hypersurface, see for example [LV] and [Z2], chapter 3.

There is a unitary way to look at these 4 examples, by realizing them as
”Veronese surfaces over the composition algebras over K”, K = K and char(K)=0,
[Z2] chapter 3. Let U0 = K, U1 = K[t]/(t2 + 1), U2 = quaternion algebra over K,
U3 = Cayley algebra over K. For K = C, we get R, C, H and the octonions num-
bers O. Let Ii, i = 0, . . . , 3, denote the Jordan algebra of Hermitian (3×3)-matrices
over Ui, i = 0, . . . , 3. A matrix A ∈ Ii is called Hermitian if A

t
= A, where the bar

denotes the involution in Ui. Let

Xi = {[A] ∈ P(Ii) : rk(A) = 1 } ⊂ P(Ii).

Then

Ni = dim(P(I)) = 3 · 2i + 2, ni = dim(Xi) = 2i+1 = 2dimK(Ui),

and
SX = {[A] ∈ P(Ii) : rk(A) ≤ 2 } = V (det(A)) ⊂ P(Ii)

is a degree 3 hypersurface. By definition Xi ⊂ P(Ii) is a Severi variety of dimension
2i+1, which is seen to be one of the above examples.
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A theorem of Jacobson states that over a fixed algebraically closed field K
there are only four Jordan algebras, the algebras Ui’s, and hence these are the only
examples which can be constructed in this way.

The highly non-trivial and very beautiful result, which is essentially equivalent
to Jacobson classification theorem, is the following classification theorem of Severi
varieties proved by Zak.

3.2.2. Theorem. (Zak classification of Severi varieties, [Z1], [Z2], [LV],
[La], [Ru6]) Let X ⊂ P 3

2 n+2 be a Severi variety of dimension n, defined over an
algebraically closed field K of characteristic 0. Then X is projectively equivalent to
one of the following:

(1) the Veronese surface ν2(P2) ⊂ P5;
(2) the Segre 4-fold P2 × P2 ⊂ P8;
(3) the Grassmann variety G(1, 5) ⊂ P14;
(4) the E6-variety X ⊂ P26.

A complete proof of this theorem for n > 8 is beyond the scope of these notes
and of the lectures and it can be found in the above cited references. We prefer
to sketch the basic ideas leading to the restriction n = 2, 4, 8, 16 for the dimension
using some results from the theory of quadric entry locus varieties, [Ru6], and
to study the analogies with the theorem we proved for n = 2, classifying Severi
varieties in dimension 2,4 (and 8) and explaining why there exists only one case
more. A proof of the classification can be found in above cited references. From
now on we will suppose char(K)=0, or equivalently K = C.

3.2.3. Theorem. (Dimension of a Severi variety, [Z2], theorem 3.10,
pg. 84, [Ru6]) Let X ⊂ P 3n

2 +2 be a Severi variety. Then n = 2 , 4, 8 or 16. In
particular, δ(X) = 1, 2, 4 or 8.

Proof. In [Ru6] it is shown that a Severi variety X ⊂ P 3n
2 +2 is a quadric

variety of type δ = n
2 . We can also suppose n ≥ 6, i.e. δ ≥ 3.

For a smooth quadric variety of type δ ≥ 3, X ⊂ PN , one defines

rX = sup{r ∈ N : δ ≥ 2r + 1}.

By the main result of [Ru6], 2rX divides n− δ = n
2 = δ so that 2rX+1 divides

n. Hence δ = n
2 is even and, by definition of rX , n

2 = 2rX + 2. Thus, for some
integer m ≥ 1,

m2rX+1 = n = 4(rX + 1).
Therefore either rX = 1, i.e. n = 8, or rX = 3, i.e. n = 16. �

The classification theorem 3.2.2 is now easy to deduce. Indeed, for n = 8 the
variety X ⊂ P14 is a Mukai variety, being a Fano variety of index 6 with b2(X) = 1.
Indeed, by Barth theorem 2.1.3, Pic(X) = Z < H > and X ⊂ P14 contains moving
lines, so that it is Fano. In [Ru6], it is shown that for a quadric variety of type
δ ≥ 3 and for a line l ⊂ X, −KX · l = n+δ

2 , so that i(X) = 6. It is classically well
known that X ' G(1, 5) ⊂ P14 Plücker embedded. A uniform approach connecting
the original ideas of Zak and a careful study of lines on X in dimension 4, 8 and 16
and leading to a quick classification of Severi varieties in dimension 4, 8 and 16 is
described in [Ru6]. This approach does not depend on any previous classification
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result, with the exceptions of the rational representations on Pn of the varieties
appearing, as done by Zak.

We would like to comment briefly the main differences between our approach,
if correct, to the classification of Severi varieties and the ones present in the lit-
erature. Zak’s approach, see also [LV], is based on some preliminary analysis of
the geometry of SX and of the fact that all the entry loci are smooth quadric of
dimension n

2 . The central point in Zak’s classification is a careful study of the
linear spaces on the quadrics of the family Q̃x, i.e. of the entry loci of the variety
to obtain n ≤ 16 and n ≡ 0 (mod. 4). This is very geometric but full of details
and verifications. The first part of Zak’s analysis was used by Chaput, [Ch], to
prove a priori that X is homogeneous and then one deduces the classification from
the known description of homogeneous varieties. There is a different proof of the
classification by Landsberg, [La], via local differential geometry and second funda-
mental form. Landsberg derives some restrictions on the linear system of quadrics
describing the second fundamental form, deduces the bound of the dimension from
the classification of Clifford modules and then reconstruct the variety via moving
frames.

In [Ru6] we concentrate on conics and lines contained in a Severi variety.
The classification of Severi varieties, or better of the possible dimension of such
a variety, becomes a particular case of the study of conics and lines on varieties
defined by quadratic equations, generalizing the case of the quadric hypersurface
in PN , [Ru6]. The reconstruction of the Severi varieties in dimension 4, 8 and 16
in [Ru6] is analogous to Zak’s one but follows the opposite direction, showing a
priori, in the possible dimensions, the description of the cones TxX ∩X.
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[E2] F. Enriques, Sulle irrazionalità da cui può farsi dipendere la risoluzione di una equazione

algebrica f(x, y, z) = 0 con funzioni razionali di due parametri, Math. Ann. 49 (1897),
1–23.

[Fa] G. Faltings, Formale Geometrie und homogene Räume, Inv. Math. 64 (1981), 123–165.
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[S3] G. Scorza, Le varietá a curve sezioni ellittiche, Ann. Mat. Pura Appl. 15 (1908), 217–273.
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