
Section 4: Device Descriptions

This section of the manual describes the full set of Xinu device driver types available in
Version 7.9 for an IBM PC fitted with a Serial Port and an ETHERNET Adapter.
Each device driver implements the device independent I/O routines open, close, read,
write, seek, getc, putc, control, and init, for one physical or pseudo-device type. While
the intuitive meanings of these routines are the same across all devices, each driver
defines specific, sometimes device dependent meaning to them. If a particular
operation does not make sense for a given device, the driver may choose to return
SYSERR or OK without taking further action.

1

df(4) df(4)

NAME
 df - Xinu file system pseudo-device driver

SYNOPSIS
 open(device, name, mode)
 close(device)
 read(device, buffer, count)
 write(device, buffer, count)
 getc(device)
 putc(device, char)
 seek(device, position)
 control(device, function, arg1, arg2)
 init(device, flag)

DESCRIPTION
 The df pseudo-device driver provides access to files on a local floppy disk
through the Xinu file system. The driver provides a master device (DS0) that can be
opened to obtain a connection with a file, as well as driver routines for individual file
pseudo-devices through which a process communicates with an open file. Files are
referenced by means of device descriptors returned by OPEN(2).

The upper-half behaves as follows:

read(device, buffer, count)
Reads count bytes of data from the file into the area starting at address buffer.
Read returns a count of bytes read, which may be less than the number
requested if the end of the file is reached during the operation. Read returns
EOF if it reaches end of file without reading anything.

write(device, buffer, count)
Writes count bytes of data from the user's buffer to the file starting at the
current position.

putc(device, char)
 Writes character char to the file at the current position.

getc(device)
Reads one character from the file and returns it to the caller. Getc returns EOF
when it reaches the end of the file.

2

df(4) df(4)

open(DS0, filename, mode)
Opens a Xinu file filename on the disk master device DS0. If successful, open
returns the descriptor of a Xinu file pseudo-device. The string mode specifies
the access mode for the file. Valid characters in the mode string are r (read
access), w (write access), n(create a new file), and o (open an existing file). If
neither r nor w is specified, both are assumed. Specifying both n and o is
illegal. If neither n nor o is specified, filename will be created if it does not
exist, otherwise the existing file filename will be opened.

close(dev)
 Closes a local file pseudo-device.

seek(dev, pos)
Changes the current position of the Xinu file pseudo-device dev to pos (a
longword). The next data transfer (e.g., read, write, getc, putc) will begin at
offset pos (a long word).

init(dev, flag)
Initializes a Xinu file pseudo-device if flag is true.

control(DS0, function, arg1, arg2)
Controls the driver and provides non-transfer operations. The valid functions
are:

DSKSYNC - wait for currently pending I/O requests to complete.
 FLACCESS - check file arg1 accessibility.

FLCHDSK - login a new disk in DS0
FLFORMAT - create a file system with disk ID arg1

 FLREMOVE - delete file named by arg1.
 FLRENAME - Rename file named arg1 to arg2.

SEE ALSO
access(2), chdsk(2), format(2), nam(4), remove(2), rename(2)

3

dos(4) dos(4)

NAME
 dos - MSDOS file system pseudo-device driver

SYNOPSIS
 #include <disk.h>

#include <file.h>
#include <mffile.h>

 open(device, name, mode)
 close(device)
 read(device, buffer, count)
 write(device, buffer, count)
 getc(device)
 putc(device, char)
 seek(device, position)
 control(device, function, arg1, arg2)
 init(device, flag)

DESCRIPTION
 The dos pseudo-device driver provides access to MSDOS files on the PC. The
driver provides a master device (DOS) that can be opened to obtain a connection with
a file, as well as driver routines for individual file pseudo-devices through which a
process communicates with an open file. Files are referenced by means of device
descriptors returned by OPEN(2).

The upper-half behaves as follows:

read(device, buffer, count)
Reads count bytes of data from the file into the area starting at address buffer.
Read returns a count of bytes read, which may be less than the number
requested if the end of the file is reached during the operation. Read returns
EOF if it reaches end of file without reading anything.

write(device, buffer, count)
Writes count bytes of data from the user's buffer to the file starting at the
current position.

putc(device, char)
 Writes character char to the file at the current position.

getc(device)
Reads one character from the file and returns it to the caller. Getc returns EOF
when it reaches the end of the file.

4

dos(4) dos(4)

open(DOS, filename, mode)
Opens an MSDOS file filename on the disk master device DOS. If successful,
open returns the descriptor of an MSDOS file pseudo-device. The string mode
specifies the access mode for the file. Valid characters in the mode string are r
(read access), w (write access), n(create a new file), and o (open an existing
file). If neither r nor w is specified, both are assumed. Specifying both n and o
is illegal. If neither n nor o is specified, filename will be created if it does not
exist, otherwise the existing file filename will be opened.

close(dev)
 Closes a local file pseudo-device.

seek(dev, pos)
Changes the current position of the Xinu file pseudo-device dev to pos (a
longword). The next data transfer (e.g., read, write, getc, putc) will begin at
offset pos.

init(dev, flag)
Initializes an MSDOS file pseudo-device if flag is true.

control(DOS, function, arg1, arg2)
Controls the driver and provides non-transfer operations. The valid functions
are:

 FLREMOVE - delete file named by arg1.
 FLRENAME - rename file named arg1 to arg2.

FLMKDIR - create the directory arg1
FLMKDIRS - create the directory tree arg1
FLRMDIR - remove the directory arg1
FLRMDIRS - remove the directory tree arg1

SEE ALSO
access(2), mkdir(2), nam(4), remove(2), rename(2), rmdir(2)

5

dsk(4) dsk(4)

NAME
 dsk - floppy disk driver

SYNOPSIS
 #include <disk.h>

 read(device buffer, sector)
 write(device, buffer, sector)
 control(device, function, arg1, arg2)
 init(device, flag)

DESCRIPTION
 The dsk device driver provides low-level input and output for the floppy disk
device. On most Xinu systems the floppy disk device is DS0. Unlike most drivers, the
floppy disk driver interprets the third argument to read and write requests as a disk
block number, not as a length.

The upper-half behaves as follows:

read(device, buffer, block)
Reads the data from the disk block number block into the area starting at
address buffer.

write(device, buffer, block)
Writes one block of data from the user's buffer to the floppy disk at block
number block.

init(device, flag)
 Initializes the driver if flag is true.

control(device, function)
Controls the driver and provides non-transfer operations. The valid functions
are:

 DSKSYNC - synchronize the disk by waiting until all pending I/O completes.

NOTES
The dsk device driver has no notion of files. To perform file I/O on a Xinu disk

see DF(4).

6

eth(4) eth(4)

NAME
eth - Ethernet network interface device driver

SYNOPSIS
#include <ether.h>

write(device, buffer, length)
init(device, flag)

DESCRIPTION
The eth device driver provides input and output for a 10 Mbps Ethernet local

area network. The standard Xinu device name for Ethernet devices is EC0.
Implemented on a 3C503 Ethernet controller, the eth driver handles byte input and
output at the physical network level, transmitting complete packets between user
processes and the device.The driver honors the following operations:

write(device, buffer, length)
Writes a packet of length characters found in buffer. Write enforces the
Ethernet minimum packet length requirement. It returns OK if the packet was
accepted for transmission, SYSERR otherwise. The call to write will return
once the packet has been placed in a port associated with the ethout process,
but the buffer will be in use until the device finishes. The call to write is non-
blocking, so write can be safely called at interrupt time. The driver calls
FREEBUF(2) to dispose of the buffer once the device finishes using it.

init(device, flag)
Initializes the device and driver if flag is true. The driver sets the device to
accept only those packets addressed directly to the devices' physical address
and broadcast packets (all 1's address). The state of the Ethernet Controller is
saved for later restoration when init is called with flag equal to zero.

NOTES
The eth driver in PCXinu 7.9 does not support a read function because packets

arriving from the network are passed (at interrupt time) directly to the function ni_in,
which handles them according to type. Received ARP and RARP packets are
processed immediately, while received IP packets are queued for later processing by
the ipproc process. All other packet types are of no interest to Xinu and thus
discarded.

BUGS
The full state of the Ethernet Card is not saved prior to initialization. Restoring

adapter state when Xinu exits is therefore only partially successful.

7

nam(4) nam(4)

NAME
 nam - syntactic namespace pseudo-device driver

SYNOPSIS
 #include <name.h>

 open(device, name, mode)
 init(device, flag)

DESCRIPTION
The nam pseudo-device driver provides mapping of OPEN(2) calls to

underlying devices based on name syntax. The standard Xinu name for the namespace
device is NAMESPACE.

The nam driver provides two operations as follows:

open(NAMESPACE, name, mode)
Open a device given its name and access mode (see ACCESS(2) for an
explanation of modes).

init(device, flag)
Initialize the namespace if flag is true by establishing a default interpretation
for names.

NOTES
 Although system calls MOUNT(2), UNMOUNT(2), NAMMAP(2), and
NAMREPL(2) are intricate parts of the naming system, they are not included in the
driver simply because they do not fit the read/write paradigm easily.

SEE ALSO
 open(2), remove(2), rename(2), unmount(1)

8

pip(4) pip(4)

NAME
pip - pipe device driver

SYNOPSIS
#include <pipe.h>
read(device buffer, length)
write(device, buffer, length)
open(device, name)
close(device)
getc(device)
putc(device, char)
init(device, flag)

DESCRIPTION
The pipm and pip device drivers, which operate as a related pair, provide a

mechanism for transferring data from one process to another. Data is stored in a
buffer, intermediate disk files are not used. Pipes are typically used by the shell to
connect STDOUT of one process to STDIN of another process. The standard Xinu
device name for the pipe master pseudo-device is PIPE, and individual pipe pseudo-
devices are referenced using their device descriptor.

The drivers cooperate so that processes can open a pipe by calling OPEN(2) on the
pipe master device pipm. If successful, the call to OPEN(2) returns the device
descriptor of a pip pseudo-device that can be used with READ(2), WRITE(2),
GETC(2) and PUTC(2) to transfer data. Finally, when finished with the pipe, a process
calls CLOSE(2) on the pip device.

open(device, name, mode)
Used with the master device to open a pipe pseudo-device. Mode is a string
that specifies whether the pipe is to be opened for reading (ro) or writing (w).
A pipeline is established in two steps: process A first opens a pipe for writing,
process B subsequently opens a pipe for reading. An open for reading will
always connect to the last pipe opened for writing, or return SYSERR if no
such pipe exists. Data can be written to a pipe before its other end has been
opened for reading (but not vice versa). The writing process will block until
another process reads from the pipe.

read(device, buffer, length)
Used with a pip pseudo-device to await the arrival of data from the pipe. Read
returns SYSERR if device has not been previously opened for writing by
another process.

9

pip(4) pip(4)

write(device, buffer, length)
Used with a pip pseudo-device to write to a pipe. The calling process will block
until the data is read by another process.

getc(device)
Returns a single character from the pipe device.

putc(device, char)
Writes char to the pipe device.

close(device)
The pipe device is only closed when close is called by the process which
opened the pipe for reading. When called by the process which opened the pipe
for writing, the pipe remains open for reading. Close has no effect when called
by any other process.

init(device, flag)
When applied to pip pseudo-devices with flag equal to true, initializes each
device to mark it not in use.

BUGS
The current implementation of pipes only buffers a single byte. This means that

a process writing to a pipe will block for each byte transferred until another process
reads that character.

10

rf(4) rf(4)

NAME rf - remote file system pseudo-device driver (types rfm, rf)

SYNOPSIS
 #include <rfile.h>
 #include <fserver.h>
 read(device buffer, length)
 write(device, buffer, length)
 open(device, name, mode)
 close(device)
 control(device, function, arg1, arg2)
 init(device, flag)
 seek(device, offset)

DESCRIPTION
 The rfm and rf pseudo-device drivers work as a pair to provide access to
remote files using a Xinu remote file server across the Internet. There is one master
remote file pseudo-device (type rfm) for a given remote server. When users open the
master remote file pseudo-device, they pass it the name of a specific file and the access
mode for that file. The call to OPEN(2) returns the device descriptor of a remote file
pseudo-device (type rf) connected to the named file.

Once opened, a user calls READ(2), WRITE(2), GETC(2), or PUTC(2), to transfer
data between the user program and the remote file, or SEEK(2) to position the file
pointer. The user calls CLOSE(2) to disconnect from the file. Finally, a user calls
CONTROL(2) on the master pseudo-device to test file access protections, remove
files, or change file names.

The standard Xinu device name for the remote file master pseudo-device is
RFILESYS; individual remote file pseudo-devices are referenced by means of device
descriptors. The operations on these devices are defined by:

open(device, name, mode)
Opens a connection to a remote file given the file name and access mode, and
returns the device descriptor used to access the file. See ACCESS(2) for valid
file modes.

read(device, buffer, length)
Transfers up to length bytes of data from a file to the user's buffer, and returns
the number of bytes found or EOF if no more data remains in the file.

write(device, buffer, length)
Writes length bytes of data to a file from the user's buffer. File length extends
automatically if needed.

11

rf(4) rf(4)

close(device)
Disconnect from a file, leaving it on secondary storage.

control(device, function, arg1, arg2)
Handles file manipulation other than data transfer. The possible functions are:

FLACCESS - test access (arg1 is mode string)
FLREMOVE - remove file named by arg1
FLRENAME - rename file named by arg1 to arg2
FLCLEAR - clear the remote file datagram port

init(device, flag)
When called with an rf device, initializes the pseudo-device data structures at
system startup, if flag is true. Initializing the master pseudo-device has no
effect.

seek(device, offset)
Positions the file to offset bytes from the beginning.

12

sio(4) sio(4)

NAME
 sio - standard input and output device

SYNOPSIS
#include <sio.h>

 open(device, name, mode)
 close(device)
 read(device, buffer, count)
 write(device, buffer, count)
 getc(device)
 putc(device, char)
 seek(device, position)
 control(device, function, arg1, arg2)

DESCRIPTION
The sio device driver implements a pseudo-device that the process can use to

indirectly reference it's standard input, standard output or standard error. The sio
device performs the specified operation on the underlying device whose descriptor is
proctab[currpid].pdevs[devtab[device].dvminor]. That is, it maps the standard I/O
descriptor through the process table to find a real device descriptor to use.

The sio devices are called STDIN, STDOUT and STDERR.

SEE ALSO
 getpdev(2), setpdev(2), xio(4)

13

sl(4) sl(4)

NAME
sl - serial line device driver

SYNOPSIS
#include <sl.h>

 read(device, buffer, count)
 write(device, buffer, count)

control(device, function, arg1, arg2)
init(device, flag)

DESCRIPTION
The serial line device driver is a frame-oriented device driver which is used for

passing packets in standard Ethernet format over a PC COM port. After suitable Xinu
configuration, the serial device (usually called SL0) can be used for SLIP access to the
Internet.

read(SL0, buffer, count)
Read a single packet from the serial device.

write(SL0, buffer, count)
Write a single packet to the serial device.

control(SL0, function, arg1, arg2)
The only function supported is SL_PRNTRAW, which returns a pointer to the
data field of a received packet.

init(SL0, flag)
If flag is true, initializes the driver and sets the COM port to 2400 bps, 8 bits,
no parity.

SEE ALSO
stat(1)

14

tcp(4) tcp(4)

NAME
tcp - interface to reliable 2-way Internet stream communications

SYNOPSIS
#include <network.h>
#include <tcb.h>
#include <tcpstat.h>

read(device, buffer, length)
write(device, buffer, length)
putc(device, char)
getc(char)
open(device, name, lport)
close(device)
control(device, function, arg1, arg2)

DESCRIPTION
The tcpm and tcp devices provide an interface to the Internet TCP protocol.

Programs use the master device TCP to allocate a new TCP connection endpoint or to
affect global TCP configuration parameters for subsequent connections. The slave
devices are particular instances of TCP servers or active TCP connections, they are
referenced using their device descriptors.

The TCP devices support the following operations:

open(TCP, name, lport)
Allocate a new TCP connection endpoint. Name is a string that gives the IP
address and TCP port number of the foreign endpoint in the form i1.i2.i3.i4:t
for active opens, or the manifest constant ANYFPORT for passive opens
(servers). Lport specifies the local port. If lport is ANYLPORT, Xinu will pick
a port to use.

control(device, function, arg1)
The master device supports only the TCPC_LISTENQ control function. It sets
the default listen queue size for all subsequent passive opens to the integer
value arg1. The default listen queue size is 5.

For all other TCP devices, the following control functions are defined:

TCPC_ACCEPT For servers, accept any incoming connection attempts
for a port.

TCPC_LISTENQ Set the listen queue length to the integer value in arg1.

TCPC_STATUS Return the status of a TCP connection. Arg1 is a
pointer to struct tcpstat which on successful return will
contain the relevant statistics for the connection.

15

tcp(4) tcp(4)

TCPC_SOPT/TCPC_COPTSet or clear TCP user options. The current
options are TCBF_DELACK (do delayed
ACK's) and TCBF_BUFFER (buffer TCP input
until the full count on a read is available). Arg1
contains the flag value(s) to set or clear.

 TCPC_SENDURG Send urgent data. Arg1 is a pointer to a buffer of urgent
data and arg2 is the size (in bytes) of the data to send.

read(device, buffer, length)
Read length characters into buffer from a connected TCP device. The return
value is the count of characters, if non-negative. Negative values indicate
various error and exceptional conditions defined as manifest constants TCPE_*
in file "tcb.h".

write(device, buffer, length)
Write length bytes from buffer to the connected TCP device. The return value
is the number of characters written, if non-negative, and an error or exceptional
condition, otherwise.

close(device)
Close a TCP device. For connected devices, the call blocks until all pending
data has been transmitted and acknowledged. A nonzero return value indicates
that some data may have been lost.

SEE ALSO
udp(4)

16

tty(4) tty(4)

NAME
 tty - console device driver

SYNOPSIS
 #include <tty.h>
 #include <window.h>

 read(device buffer, length)
 write(device, buffer, length)
 open(device, name)
 close(device)
 getc(device)
 putc(device, char)
 control(device, function, arg1, arg2)
 init(device, flag)

DESCRIPTION
 The tty device driver provides input and output for a PC keyboard and screen
that simulates a full-duplex ASCII terminal device. On most Xinu systems, the console
device is CONSOLE.

The tty driver operates in one of three modes, with switching between the modes
determined dynamically. In raw mode, it passes incoming characters to the reading
process without further processing. In cbreak mode, the driver honors character echo,
and mapping between carriage return and line feed. In cooked mode the driver behaves
like cbreak mode, but also handles line editing with backspace and line kill keys.
Characters are processed according to the driver mode when they arrive, and are
placed in a queue from which upper-half routines extract them. Echoing, presentation
of control characters, and editing are controlled by several fields in the driver control
structure, and may be changed dynamically.

The upper-half routines behave as follows:

read(device, buffer, length)
Reads up to one line into the user's buffer, stopping on an END-OF-FILE or
NEWLINE character, or after length characters have been supplied. In cooked
mode, read blocks until a line has been typed. As a special case, if length is
zero, the driver reads all available characters from the input buffer without
waiting for the full line to be typed.

write(device, buffer, length)
Writes length characters from the user's buffer, mapping CARRIAGE
RETURN to NEWLINE as specified by field ocrlf of the driver control
structure. Write may block if the output exceeds the currently available buffer
space.

17

tty(4) tty(4)

getc(device)
 Reads a single character and returns it as the function value.

putc(device, char)
 Writes character char.

open(CONSOLE, border, attr)
Used to open a screen window pseudo-device(see WIN(4)). Returns OK if
character strings border and attr are valid and the window could be opened
(see WINDOW(1) and COLOR(1)). Returns SYSERR otherwise.

close(device)
 Returns OK without taking any action.

init(device, flag)
Initializes the driver if flag is true. Note: for historical reasons, device
CONSOLE is initialized to cooked mode with echo, visual control character
printing, and line editing enabled; other devices may be initialized to raw mode.

control(device, function, arg1, arg2)
Controls the driver and provides non-transfer operations. Valid functions are:

 TCNEXTC - lookahead one character without reading it
TCNEXTCI - non-blocking cersion of TCNEXTC

 TCMODER - change the driver to raw mode
 TCMODEC - change the driver to cooked mode
 TCMODEK - change the driver to cbreak mode

TCMODEQ - return mode in *arg1
TCMODES - switch to mode specified by *arg1 which must be

IMCOOKED, IMCBREAK, or IMRAW
 TCECHO - turn on character echo
 TCNOECHO - turn off character echo

TCECHOQ - query echo mode and return in *arg1
TCECHOS - turn echo on if *arg1 is true, otherwise turn echo off

 TCICHARS - return a count of characters in the input buffer
TCFLUSH - flush the input buffer

 TCINT - make calling process receive interrupt messages
 TCINTQ - query pid of process receiving interrupt messages

TCINTS - set pid of process to receive interrupt message to *arg1
 TCNOINT - turn off interrupt message processing

TCCLEAR - clear screen
TCCURPOS - position cursor (arg1 contains position string)
TCATTR - change screen attributes (arg1 contains attribute string)

SEE ALSO
win(4)

18

udp(4) udp(4)

NAME
udp - UDP-level Internet interface pseudo-device driver (types dgm, dg).

SYNOPSIS
#include <network.h>
read(device buffer, length)
write(device, buffer, length)
open(device, name)
close(device)
control(device, function, arg1)
init(device, flag)

DESCRIPTION
The dgm and dg device drivers, which operate as a related pair, provide a

network interface at the IP datagram level. They accept datagrams from user processes
and send them out on the Internet, or receive datagrams from the Internet and deliver
them to user processes. The standard Xinu device name for the datagram master
pseudo-device is UDP, and individual connection pseudo-devices are referenced by
using their device descriptors.

The drivers cooperate so that users can initiate a connection by calling OPEN(2) on
the datagram master device. If successful, the call to OPEN(2) returns the device
descriptor of a dg pseudo-device that can be used with READ(2) or WRITE(2) to
transfer data. Finally, when finished with the connection, the user process calls
CLOSE(2) on the connection device descriptor.

The dgm driver consists of routines that implement OPEN(2) and CONTROL(2),
while the dg driver consists of routines for READ(2), WRITE(2), CLOSE(2), and
CONTROL(2). Primitives READ(2) and WRITE(2) operate in one of two basic
modes. Either they transfer data in Xinugram format complete with an address header,
or they transfer just the data portion of the datagram.

open(UDP, name, mode)
Used with the master device to open a datagram pseudo-device. Name is a
string that gives an IP address and UDP port number in the form i1.i2.i3.i4:u.

19

udp(4) udp(4)

control(device, function, arg1)
No control operations are supported for the master device.

Used with a pseudo-device descriptor to set the transfer mode. The valid
operations include DGCLEAR, which clears any UDP datagrams that happen
to be in the receive queue, and DGSETMODE, which sets the pseudo-device
mode. The mode argument arg1 is composed of a word in which the first two
bits control the transfer mode and the sixth bit controls timeout. The symbolic
constants for these bits are:

DG_NMODE (001) - Normal mode
DG_DMODE (002) - Data-only mode
DG_TMODE (004) - Timeout all reads
DG_CMODE (010) - Generate UDP checksums (default on)

read(device buffer, length)
Used with a dg pseudo-device to await the arrival of a UDP datagram and
transfer it to the user in the form of a Xinugram.

write(device, buffer, length)
Used with a dg pseudo-device to transfer a Xinugram into a UDP datagram and
send it on the Internet.

close(device)
Closes a dg pseudo-device.

init(device, flag)
When applied to dg pseudo-devices with flag equal to true, initializes each
device to mark it not in use.

SEE ALSO
tcp(4)

BUGS
The DG_TMODE timeout value cannot be changed dynamically.

20

win(4) win(4)

NAME
win - window driver

SYNOPSIS
 #include <tty.h>
 #include <window.h>

 open(device, border, attrib)
 close(device)
 read(device, buffer, length)
 write(device, buffer, length)
 getc(device)
 putc(device, char)
 control(device, function, arg1, arg2)
 init(device, flag)

DESCRIPTION
The win device driver provides input and output for windows that simulate a

full-duplex ASCII terminal device. Windows are created by calling open on the tty
device CONSOLE.

The win driver operates in one of three modes, with switching between the modes
determined dynamically. In raw mode, it passes incoming characters to the reading
process without further processing. In cbreak mode, character echo, and mapping
between carriage return and line feed is provided. In cooked mode the driver behaves
like cbreak mode, but also handles line editing with backspace and line kill keys.
Characters are processed according to the driver mode when they arrive, and are
placed in a queue from which upper-half routines extract them. Echoing, presentation
of control characters, and editing are controlled by several fields in the driver control
structure, and may be changed dynamically.

The upper-half routines behave as follows:

read(device, buffer, length)
Reads up to one line into the user's buffer, stopping on an END-OF-FILE or
NEWLINE character, or after length characters have been supplied. In cooked
mode, read blocks until a line has been typed. As a special case, if length is
zero, the driver reads all available characters from the input buffer without
waiting for the full line to be typed.

write(device, buffer, length)
Writes length characters from the user's buffer, mapping CARRIAGE
RETURN to NEWLINE as specified by field ocrlf of the driver control
structure. Write may block if the output exceeds the currently available buffer
space.

21

win(4) win(4)

getc(device)
Reads a single character and returns it as the function value.

putc(device, char)
Writes character char.

open(CONSOLE, border, attr)
Open allocates a new window specified by border and attr (see WINDOW(1))
and returns its device descriptor.

close(device)
Closes the window and deallocates associated data structures.

init(device, flag)
Initializes the window driver if flag is true.

control(device, function, arg1)
Controls the driver and provides non-transfer operations. The valid functions
are:

 TCNEXTC - lookahead one character without reading it
TCNEXTCI - non-blocking cersion of TCNEXTC

 TCMODER - change the driver to raw mode
 TCMODEC - change the driver to cooked mode
 TCMODEK - change the driver to cbreak mode

TCMODEQ - return mode in *arg1
TCMODES - switch to mode specified by *arg1 which must be

IMCOOKED, IMCBREAK, or IMRAW
 TCECHO - turn on character echo
 TCNOECHO - turn off character echo

TCECHOQ - query echo mode and return in *arg1
TCECHOS - turn echo on if *arg1 is true, otherwise turn echo off

 TCICHARS - return a count of characters in the input buffer
TCFLUSH - flush the input buffer

 TCINT - make calling process receive interrupt messages
 TCINTQ - query pid of process receiving interrupt messages

TCINTS - set pid of process to receive interrupt message to *arg1
 TCNOINT - turn off interrupt message processing

TCCLEAR - clear screen
TCCURPOS - position cursor (arg1 contains position string)
TCATTR - change screen attributes (arg1 contains attribute string)

SEE ALSO
tty(4), window(1)

22

xio(4) xio(4)

NAME
xio - Xinu I/O device driver

SYNOPSIS
#include <sio.h>

open(device, name, mode)

DESCRIPTION
The xio pseudo-device driver provides a mechanism for opening devices and

recording their device descriptors in the process table. Recorded devices are closed
automatically when the process is terminated. A call to open on device xio will open a
device name in mode mode on the NAMESPACE device. The device descriptor of the
device actually opened is returned after being recorded in the process table.

SEE ALSO
getpdev(2), setpdev(2), sio(4)

23

This page is empty.

24

