
Section 3: Library Functions

This section of the manual describes the functions available to programs from the
standard Xinu library. C programmers will recognize some of the C library functions
(esp. those that manipulate strings). Be careful: not all function arguments are like
those in UNIX.

1

ascdate(3) ascdate(3)

NAME
ascdate - print a date in ASCII including hours:mins:secs

SYNOPSIS
int ascdate(time, str)
long time;
char *str;

DESCRIPTION
Ascdate prints the date and time specified in time as an ASCII string which is

copied to str. The string str must be long enough to hold the converted date and time.

SEE ALSO
gettime(2)

2

atoi(3) atoi(3)

NAME
atoi, atol - extract and return an integer or long from a string

SYNOPSIS
int atoi(string)
char *string;

long atol(string)
char *string;

DESCRIPTION
Each function extracts the data type it returns from the string string. Atol

requires that its function prototype be specified in the calling function.

SEE ALSO
sscanf(3)

3

blkcmp(3) blkcmp(3)

NAME
blkcmp - lexical block comparison

SYNOPSIS
int blkcmp(s1, s2, len)
char *s1;
char *s2;
int len;

DESCRIPTION
Blkcmp compares up to len bytes of the blocks s1 and s2. If the blocks are

equal, the value 0 is returned. If the blocks differ, a negative integer is returned if a
byte in block s1 is less than the corresponding byte in block s2, otherwise a positive
integer is returned.

SEE ALSO
blkequ(3)

4

blkcpy(3) blkcpy(3)

NAME
 blkcopy - copy a contiguous block of bytes

SYNOPSIS
 int blkcopy(to, from, nbytes)
 char *to;
 char *from;
 int nbytes;

DESCRIPTION
 Blkcopy copies a block of nbytes contiguous bytes starting at location from into
the area starting at location to. Blkcopy returns OK to the caller. Blkcopy will copy any
byte value including the null character (zero).

SEE ALSO
 blkequ(3), string(3)

BUGS
 Blkcopy does not check for valid memory addresses.

5

blkequ(3) blkequ(3)

NAME
 blkequ - compare two contiguous blocks of memory for equality

SYNOPSIS
 int blkequ(first, second, nbytes)
 char *first;
 char *second;
 int nbytes;

DESCRIPTION
 Blkequ compares two blocks of memory for equality. Each block contains
exactly nbytes bytes. Blkequ returns FALSE if the two blocks differ, and TRUE if the
blocks are equal. Blkequ compares all byte values including null (zero).

SEE ALSO
 blkcmp(3), blkcopy(3), string(3)

6

ckmode(3) ckmode(3)

NAME
 ckmode - check a file mode string and convert to integer representation

SYNOPSIS
 #include <file.h>

 int ckmode(mode)
 char *mode;

DESCRIPTION
 Ckmode parses a null-terminated string, mode, containing characters that
represent file modes, and produces an integer with mode bits set. The possible mode
characters are:

 r The file is to be opened for reading (i.e., input).

 w The file is to be opened for writing (i.e., output).

 n The file must be new. That is, it must not already exist.

 o The file must be old. That is, it must already exist.

 The file mode string, mode, can specify that the file is to be accessed for both reading
and writing, but it cannot specify the mode to be both old and new. If neither reading
nor writing is specified, ckmode assumes the file will be used for both. Similarly, if
neither old nor new files are specified, ckmode assumes either is allowed.

Given a legal mode string, ckmode returns an integer with bits FLREAD, FLWRITE,
FLOLD, and FLNEW set according to the argument, mode. Ckmode returns SYSERR
if it finds illegal or duplicated characters in the argument string, or if the mode string
specifies that the file must be both old and new.

SEE ALSO
 access(2), open(2)

7

ctype(3) ctype(3)

NAME
 ctype - character type predicates and manipulation routines

SYNOPSIS
 #include <ctype.h>

 isalpha(c)
 ...
 toascii(c)
 tolower(c)
 toupper(c)
 char c;

DESCRIPTION
 Routines beginning with is are predicates that classify the type of a character.
Routines beginning with to convert characters. Each predicate returns TRUE if the
condition is satisfied, and FALSE otherwise. In the current implementation, predicates
are macros that use table lookup for efficiency.

 isalnum c is an alphanumeric character (i.e., a letter or digit)

 isalpha c is a lower- or upper-case letter

 isascii c is an ASCII character, code less than 0200

 iscntrl c has a value less than octal 040 or is a DEL (octal value 0177).

 isdigit c is a digit.

 islower c is a lower case letter.

 isprint c is a printable character with octal value 040 (blank) to 0176 (tilde).

 isprshort c is a printable short.

 ispunct c is a punctuation character (neither control nor alphanumeric).

 isspace c is a space, tab, carriage return, newline, or formfeed.

 isupper c is an upper case letter.

 isxdigit c is a hexadecimal digit (i.e., is 0-9 or a-f).

 toascii Converts c to an ascii by turning off high-order bits.

 tolower Converts argument c from upper to lower case.

8

ctype(3) ctype(3)

 toupper Converts argument c from lower to upper case. Converts argument

9

disable(3) disable(3)

NAME
 disable, enable, restore - change and restore processor interrupt status

SYNOPSIS
 #include<kernel.h>
 disable(ps);
 int ps;

 enable();

 restore(ps);
 int ps;

DESCRIPTION
 These routines change the processor interrupt status mode. Normally,
procedures use disable and restore to save the interrupt status, mask interrupts off,
and then restore the saved status. Enable explicitly enables interrupts; it is used only
at system startup.

10

dot2ip(3) dot2ip(3)

NAME dot2ip - convert dotted decimal notation to an IP address

SYNOPSIS
 int dot2ip(ip, pdot)
 IPaddr ip;
 char *pdot;

DESCRIPTION
 Function dot2ip converts an Internet (IP) address from dotted decimal notation
to its 32-bit integer form and stores it in argument ip. Argument pdot is a pointer to
the null-terminated dotted decimal representation of the Internet address.

SEE ALSO
 ip2dot(3), ip2name(2), name2ip(2)

11

fgetc(3) fgetc(3)

NAME
 fgetc, getchar - get character from a device

SYNOPSIS
 #include <io.h>

 int fgetc(dev)
 int dev;

 int getchar()

DESCRIPTION
 These procedures are included for compatibility with UNIX. Fgetc returns the
next character from the named input device.

Getchar() is identical to getc(STDIN).

Note that fgetc is exactly equivalent to getc.

SEE ALSO
 getc(2), putc(2), gets(3), scanf(3),

DIAGNOSTICS
 These functions return SYSERR to indicate an illegal device or read error.

12

fputc(3) fputc(3)

NAME
 fputc, putchar - put character to a device

SYNOPSIS
 #include <io.h>

 int fputc(device, c)
 int device;
 char c;
 putchar(c)

DESCRIPTION
 These procedures are included for compatibility with UNIX. Fputc appends the
character c to the named output device, and returns SYSERR if device is invalid; it is
defined to be putc(device, c).

Putchar(c) is defined to be putc(STDOUT, c).

SEE ALSO
 putc(2), puts(3), printf(3)

13

gets(3) gets(3)

NAME
 gets, fgets - get a string from a device

SYNOPSIS
 #include <io.h>

 char *gets(s)
 char *s;

 char *fgets(dev, s, n)
 int dev;
 char *s;
 int n;

DESCRIPTION
 Gets reads a string into s from the standard input device, CONSOLE. The
string is terminated by a newline character, which is replaced in s by a null character.
Gets returns its argument.

Fgets reads n-1 characters, or up to a newline character, whichever comes first, from
device dev into the string s. The last character read into s is followed by a null
character. Fgets returns its second argument.

SEE ALSO
 getc(2), puts(2), scanf(3)

DIAGNOSTICS
 Gets and fgets return SYSERR if an error results.

BUGS
 Gets deletes a newline, fgets keeps it, all in the name of backward
compatibility.

14

gpq(3) gpq(3)

NAME
gpq - generic priority queue processing functions

SYNOPSIS
#include <q.h>

char *deq(q)
int q;

int enq(q, item, key)
int q;
char *item;
int key;

int freeq(q)
int q;

int newq(size, type)
int size;
int type;

char *seeq(q)
int q;

DESCRIPTION
The Xinu Kernel uses the queue structure QUEUE(3) to define and manipulate

doubly-linked lists of processes. The networking extensions in Xinu 7.9 use Generic
Priority Queues (GPQ) for queueing network packets. The gpq functions manipulate
priority queues with mutual exclusion either with a semaphore, or by using
disable()/restore(), depending on argument type when the queue is created. The
supported operations are:

deq
Remove the first item from the list q and return it.

enq
Insert item item on the ordered list q, using integer key to choose a position for
the item. Integer key represents the priority of an item. Enq returns the number
of available queue element slots after the insertion, or SYSERR on overflow.

freeq
Delete the list q, returning all memory to the free list. If q is not empty, freeq
returns SYSERR and does not free the list. Otherwise OK is returned.

15

gpq(3) gpq(3)

newq
Allocate a new list that can hold up to size nodes, use type to determine
whether mutual exclusion for the list is controlled with a semaphore (type is
QF_WAIT) or by disabling interrupts (type is QF_NOWAIT), and return the
list index. Queues which will be manipulated at interrupt time should specify
QF_NOWAIT.

seeq
Search list q one item at a time, without removing the items; the list only
remembers one search position at any instant. Multiple processes scanning a
queue will see only some of the elements; no locking is done across seeq calls,
and the queue may change from one call to the next because of enq or deq
calls. Returns the items until all seen, then returns NULLPTR and resets
q_seen.

A function initq is used (only at system startup) to initialize the GPQ mechanism.

SEE ALSO
queue(3)

16

ip2dot(3) ip2dot(3)

NAME ip2dot - convert an IP address to dotted decimal notation

SYNOPSIS
 #include <network.h>

char *ip2dot(pdot, ip)
 char *pdot;
 IPaddr ip;

int ip2str(cp, ip)
char *cp;
IPaddr ip;

DESCRIPTION
Function ip2dot converts an Internet (IP) address from its 32-bit integer form

to dotted decimal notation and stores it in argument pdot. Argument pdot should be a
pointer to a buffer at least 16 bytes long, the maximum length of a dotted decimal
address and its terminating null character The function returns pdot.

Function ip2str performs the same conversion, but returns OK.

SEE ALSO
 dot2ip(3), name2ip(2), ip2name(2)

17

netnum(3) netnum(3)

NAME
 netnum - compute the network portion of a given Internet (IP) address

SYNOPSIS
 #include <network.h>
 int netnum(netpart, address)
 IPaddr netpart;
 IPaddr address;

DESCRIPTION
 Netnum extracts the network portion of the Internet address specified by
argument address, and places the result in argument netpart. It operates by using the
IP class of argument address to determine whether the network part of the address
occupies 1, 2, or 3 bytes, and it zeros the remaining bytes. Netnum always returns OK.

SEE ALSO
 getaddr(2), getnet(2)

BUGS
 Netnum does not understand subnets or subnet masks.

18

netutils(3) netutils(3)

NAME
 netutil - Network utilities hs2net, net2hs, hl2net, net2hl, hl2vax, vax2hl

SYNOPSIS
#include <network.h>

 short net2hs(s)
 short hs2net(s)
 long net2hl(l)
 long hl2net(l)
 long vax2hl(l)

long hl2vax(l)

 short s;
 long l;

DESCRIPTION
These routines map binary integer data between network standard byte order

and local host byte order. In the description, the term short refers to a 2-octet (16-bit)
binary value, whether two's complement signed or unsigned, and the term long refers
to a 4-octet (32-bit) value.

net2hs
Converts a short item from network byte order to host byte order.

hs2net
Converts a short item from host byte order to network byte order.

net2hl
Converts a long item from network byte order to host byte order.

hl2net
Converts a long item from host byte order to network byte order.

vax2hl
Converts a long item from VAX byte order to host byte order (used in
communication with a file server running on a VAX).

hl2vax
Converts a long from host byte order to VAX byte order (used in
communication with a file server running on a VAX).

No conversion is needed for character strings because the local host order on most
machines agrees with network standard byte order (i.e., the string extends upward in
the memory address space).

19

pause(3) pause(3)

NAME
 pause - pause the processor

SYNOPSIS
 pause();

DESCRIPTION
Pause stops the processor until an interrupt occurs, allowing it to continue at

the instruction following the pause when the interrupt returns. Pause is used in the null
process instead of an infinite loop to avoid taking bus bandwidth needlessly.

SEE ALSO
 disable(3), wait(2), xdone(2)

20

printf(3) printf(3)

NAME
 printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
 printf(format [, arg] ...)
 char *format;

 fprintf(dev, format [, arg] ...)
 int dev;
 char *format;

 sprintf(s, format [, arg] ...)
 char *s, format;

DESCRIPTION
 Printf writes formatted output on device STDOUT. Fprintf writes formatted
output on the named output device. Sprintf places formatted 'output' in the string s,
followed by the character '\0'.

Each of these functions converts, formats, and prints its arguments after the format
under control of the format argument. The format argument is a character string which
contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which causes conversion and printing of
the next successive arg.

Each conversion specification is introduced by the character %. Following the %,
there may be, in the following order,

- an optional minus sign '-' which specifies left adjustment of the converted value in the
indicated field;

- an optional digit string specifying a field width; if the converted value has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero padding will be done instead of blank padding;

- an optional period '.' which serves to separate the field width from the next digit
string;

- an optional digit string specifying a precision which specifies the maximum number of
characters to be printed from a string;

- the character l specifying that a following d, o, x, or u corresponds to a long integer
arg. (A capitalized conversion code accomplishes the same thing.)

- a character which indicates the type of conversion to be applied.

21

printf(3) printf(3)

A field width or precision may be '*' instead of a digit string. In this case an integer
arg supplies the field width or precision.

The conversion characters and their meanings are:

dox The integer arg is converted to decimal, octal, or hexadecimal notation
respectively.

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the
precision specification is reached; however if the precision is 0 or missing all
characters up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be
in the range 0 through 65535 on the PC for normal integers and 0 through
4294967295 for long integers).

% Print a '%'; no argument is converted.

 In no case does a non-existent or small field width cause truncation of a field; padding
takes place only if the specified field width exceeds the actual width. Characters
generated by printf are printed by PUTC(2).

Examples

To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month
are pointers to null-terminated strings:

 printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

SEE ALSO
 putc(2), scanf(3)

BUGS
 Very wide fields (>128 characters) fail.

22

puts(3) puts(3)

NAME
 puts, fputs - write a string to a device

SYNOPSIS
 puts(s)
 char *s;

 fputs(dev, s)
 int dev;
 char *s;

DESCRIPTION
 Puts writes the null-terminated string s on the output device STDOUT and
appends a newline character.

Fputs writes the null-terminated string s on device dev.

Neither routine writes the terminal null character. They return SYSERR if dev is
invalid.

SEE ALSO
 gets(3), putc(3), printf(3), read(2), write(2)

BUGS
 Puts appends a newline, fputs does not; there is no good reason for this.

23

qsort(3) qsort(3)

NAME
 qsort - quicker sort

SYNOPSIS
 qsort(base, nel, width, compar)
 char *base;
 int (*compar)();

DESCRIPTION
 Qsort is an implementation of the quicker-sort algorithm. The first argument is
a pointer to the base of the data; the second is the number of elements; the third is the
width of an element in bytes; the last is the name of the comparison routine to be called
with two arguments which are pointers to the elements being compared. The routine
must return an integer less than, equal to, or greater than 0 according as the first
argument is to be considered less than, equal to, or greater than the second.

24

queue(3) queue(3)

NAME
 queue - q-structure predicates and list manipulation procedures

SYNOPSIS
 #include <q.h>

 int enqueue(proc, tail)
 int dequeue(proc)
 int firstid(head)
 int firstkey(head)
 int getfirst(head)
 int getlast(tail)
 int insert(proc, head, key)
 int insertd(proc, head, key)
 int isempty(head)
 int lastkey(tail)
 int nonempty(head)

 int head, tail;
 int proc;
 int key;

DESCRIPTION
 The q structure holds doubly-linked lists of processes, including lists of
processes that are ready, sleeping, and waiting on a semaphore. These routines
manipulate lists in the q structure as follows.

enqueue
Add a process to a FIFO list given the process id in argument proc and the q
index of the tail of the list in argument tail. Enqueue returns argument proc to
its caller.

dequeue
Remove a process from a list given the process id. The list on which the
process is found need not be specified because it can be determined from the q
structure. Dequeue will remove a process from both FIFO and ordered lists. It
returns its argument to the caller.

firstid
Return the process id of the first process on a list given the q index of the list
head in argument head.

firstkey
Return the integer key associated with the first entry on a list given the q index
of the list in argument head.

25

queue(3) queue(3)

getfirst
Remove the first process from a list and return its process id given the q index
of the head of the list in argument head. Getfirst returns EMPTY if the list is
empty, and a process id otherwise.

getlast
Remove the last process on a list and return its process id given the q index of
the tail of the list in argument tail. Getlast returns EMPTY if the list is empty,
and a process id otherwise.

insert
Insert a process into an ordered list given the process id in argument proc, the
q index of the head of the list in argument head, and an integer key for the
process in argument key. Ordered lists are always ordered by increasing key
values. Insert returns OK.

insertd
Insert a process in a delta list given the process id in argument proc, the q index
of the head of the list in argument head, and an integer key in argument key.
Insertd returns OK.

isempty
Return TRUE if there are no processes on a list, FALSE otherwise, given the q
index of the head of the list in argument head.

lastkey
Return the key of the last process in a list given the q index of the tail of the list
in argument tail.

nonempty
Return TRUE if there is at least one process on a list, FALSE otherwise, given
the q index of the head of the list in argument head.

SEE ALSO
gpq(3)

BUGS
 Most of these routines do not check for valid arguments or valid lists. Also,
they assume interrupts are disabled when called, and will corrupt the list structure if the
caller fails to disable interrupts.

26

rand(3) rand(3)

NAME
 rand, srand - random number generator

SYNOPSIS
 srand(seed)
 int seed;

 rand()

DESCRIPTION
 Rand uses a multiplicative congruential random number generator with period
232 to return successive pseudo-random numbers in the range from 0 to 231-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a
random starting point by calling srand with whatever you like as argument.

BUGS
 Rand does not provide mutual exclusion among calling processes. Thus, there
is a small chance that two concurrent processes will receive the same value.

27

scanf(3) scanf(3)

NAME
 scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
 scanf(format [, pointer] . . .)
 char *format;

 fscanf(dev, format [, pointer] . . .)
 int dev;
 char *format;

 sscanf(s, format [, pointer] . . .)
 char *s, *format;

DESCRIPTION
 Scanf reads from the standard input device STDIN. Fscanf reads from the
named input device. Sscanf reads from the character string s. Each function reads
characters, interprets them according to a format, and stores the results in its
arguments. Each expects as arguments a control string format, described below, and a
set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

- Blanks, tabs or newlines, which match optional white space in the input.

- An ordinary character (not %) which must match the next character of the input
stream.

- Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a conversion
character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion character indicates the interpretation of the input field; the correspond-
ing pointer argument must usually be of a restricted type. The following conversion
characters are legal:

% a single '%' is expected in the input at this point; no assignment is done.

28

scanf(3) scanf(3)

d a decimal integer is expected; the corresponding argument should be an integer
pointer.

o an octal integer is expected; the corresponding argument should be an integer
pointer.

x a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept the
string and a terminating '\0', which will be added. The input field is terminated
by a space character or a newline.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over space characters is suppressed in this case; to
read the next non-space character, try '%1s'. If a field width is given, the
corresponding argument should refer to a character array, and the indicated
number of characters is read.

[indicates a string not to be delimited by space characters. The left bracket is
followed by a set of characters and a right bracket; the characters between the
brackets define a set of characters making up the string. If the first character is
not circumflex (^), the input field is all characters until the first character not in
the set between the brackets; if the first character after the left bracket is
circumflex (^), the input field is all characters until the first character which is in
the remaining set of characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o and x may be capitalized or preceded by l to indicate
that a pointer to long rather than to int is in the argument list.

The scanf functions return the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. The constant
EOF is returned upon end of input; note that this is different from 0, which means that
no conversion was done; if conversion was intended, it was frustrated by an
inappropriate character in the input.

29

scanf(3) scanf(3)

For example, the call

 int i; char name[50];
 scanf("%d%s", &i, name);

with the input line

25 thompson

will assign to i the value 25, and name will contain 'thompson\0'. Or,

 int i; char name[50];
 scanf("%2d%*d%[1234567890]", &i, name);

with input

 56 0123 56a72

will assign 56 to i, skip '0123', and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
 getc(2), printf(3)

DIAGNOSTICS
 The scanf functions return SYSERR on end of input, and a short count for
missing or illegal data items.

BUGS
 The success of literal matches and suppressed assignments is not directly
determinable.

30

string(3) string(3)

NAME
 strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string

operations

SYNOPSIS
 char *strcat(s1, s2)
 char *s1, *s2;

 char *strncat(s1, s2, n)
 char *s1, *s2;

 strcmp(s1, s2)
 char *s1, *s2;

 strncmp(s1, s2, n)
 char *s1, *s2;

 char *strcpy(s1, s2)
 char *s1, *s2;

 char *strncpy(s1, s2, n)
 char *s1, *s2;

 strlen(s)
 char *s;

 char *index(s, c)
 char *s, c;

 char *rindex(s, c)
 char *s, c;

DESCRIPTION
 These functions operate on null-terminated strings. They do not check for
overflow of any receiving string.

Strcat appends a copy of string s2 to the end of string s1. Strncat copies at most n
characters. Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less
than 0, according as s1 is lexicographically greater than, equal to, or less than s2.

Strncmp makes the same comparison but examines at most n characters.

Strcpy copies string s2 to s1, stopping after the null character has been moved.

31

string(3) string(3)

Strncpy copies exactly n characters, truncating or null-padding s2; the target may not
be null-terminated if the length of s2 is n or more. Both return s1.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s,
or zero if c does not occur in the string.

32

