Section 2: Xinu System Calls

The Xinu operating system kernel consistsof a set of run-time proceduresto
implement operating system serviceson a microcomputer. The system supports
multiple processesl/O, synchronizationbasedon counting semaphorespreemptive
scheduling,and communicationswith other machines.Each page in this section
describes a system routine which can be called by a user process.

Eachpagedescribeonesystemcall, giving the numberandtypesof argumentsvhich
must be passedio the procedureunder the heading"SYNOPSIS" (by giving their
declarationin C syntax). The heading"SEE ALSO" suggeststhe namesof other
systemcalls that may be relatedto the describedfunction. For example,the "SEE
ALSO" entry for systemcall wait suggestghat the programmemay wantto look at
the page fosignal because both routines operate on semaphores.

In general, Xinu blocks processes when requested services are not availssthe
manual page suggestsotherwise,the programmershould assumethat the process
requestingsystemservicesmay be delayeduntil the requestcan be satisfied. For
examplecalling read may causean arbitrarydelayuntil datacanbe obtainedfrom the
device. During this delay, rescheduling will probably allow other processes to run.

Only non-blockingsystemfunctions should be called from within interrupt handling
routines.

access(2) access(2)

NAME
access - determine whether a file is accessible

SYNOPSIS
int access(filename, mode)
char *filename;
char *mode;

DESCRIPTION

Access examinesfile with name filename to determineif it is accessible
accordingto the modesspecifiedin the mode string mode. Valid characteran the
mode string are (check forreadaccessyv (checkfor write access)n (checkto seeif
anew file canbe created),and o (checkto seeif file exists). If neitherr nor w is
specified, both are assumed.

SEE ALSO
open(2), rename(2), ckmode(3)

chdsk(2) chdsk(2)

NAME
chdsk - login a new floppy disk in DSO

SYNOPSIS
int chdsk(device)
int device;

DESCRIPTION

Chdsk logsin a new floppy disk in device (usuallyDS0). All Xinu floppy disk
I/O requires that a floppy disk (Xinu or D@&mat) be presenin PCdrive A: atboot
time.

SEE ALSO
access(2), df(4), dir(1), dsk(4), format(2), remove(2), rename(2), stat(1)

chprio(2) chprio(2)

NAME
chprio - change the priority of a process

SYNOPSIS
int chprio(pid, newprio)
int pid;
int newprio;

DESCRIPTION

Chprio changeshe schedulingpriority of processid to newprio. Prioritiesare
positive integers. At any instant, the highestpriority process that is readywill be
running. A set of processes with equal priority is scheduled round-robin.

If the new priority is invalid, or the processid is invalid chprio returns SYSERR.
Otherwise |t returnsthe old processpriority. It is forbiddento changethe priority of
the null process, which always remains zero.

SEE ALSO
create(2), getprio(2), resume(2)

close(2) close(2)

NAME
close - device independent close routine

SYNOPSIS
int close(dev)
int dev;

DESCRIPTION
Close will disconnect/O from the devicegiven by dev. It returnsSYSERRIf
dev is incorrect, or is not opened for 1/0. Otherwidese returns OK.

Eachdevice hasa referencecount that is incrementedby the systemcall open and
decrementedtdy the systemcall close. Thus,if the devicehasbeenopened times,the
user must invokelose n times to close it.

Normally tty devices like the console do not have to be opened and closed.

SEE ALSO
control(2), getc(2), open(2), putc(2), read(2), seek(2), setdev(2), write(2)

control(2) control(2)

NAME
control - device independent control routine

SYNOPSIS
int control(dev, function, argl, arg2)
int dev;
int function;
int argl, arg2;

DESCRIPTION

Control is the mechanismusedto send control information to devicesand
devicedrivers,or to interrogatetheir status.(Datanormally flows throughGETC(2),
PUTC(2), READ(2), and WRITE(2).)

Control returnsSYSERRIf dev is incorrector if the function cannotbe performed.
The valuesreturnedotherwiseare devicedependent.For example thereis a control
function for "tty" devicesthat returnsthe numberof charactersvaiting in the input
queue.

SEE ALSO
close(2), getc(2), open(2), putc(2), read(2), remove(2), rename(2), seek(2),
write(2)

create(2) create(2)

NAME
create - create a new process

SYNOPSIS
int create(caddr, ssize, prio, name, nargg[, argument]*)
char *caddr;
int ssize;
int prio;
char *name;
int nargs,
int argument;

DESCRIPTION

Create creates a new process that will begin execution at locediddr, with a
stackof ssize bytes,initial priority prio, andidentifying namename. Caddr shouldbe
the addressof a procedureor xmain program. If the creationis successfulthe
(nonnegative)rocessid of the new processis returnedto the caller. The created
processis left in the suspendedtate;it will not begin executionuntil startedby a
resume command. If theargumentsareincorrect,or if thereareno free processslots,
thevalueSYSERRIs returned. The new processhasits own stack,but sharegjlobal
datawith otherprocesseaccordingto the scoperulesof C. Privateglobaldatacanbe
sharedbetweenprocessesising the pglob pointer containedin the processprocess
table entry (seePGLOB(2)).If the procedureattemptsto return, its processwill be
terminated (see KILL(2)).

The caller can passa variablenumberof argumentdo the createdprocesswhich are
accessed through formal parameters. The inteages specifies(in words)how many
argumentvaluesfollow. Nargs valuesfrom the argumentdist will be passedo the
createdprocess. The type and numberof suchargumentss not checked;eachis
treatedasa singlemachineword. Theuseris cautionedagainstpassinghe addresof

any dynamicallyallocateddatumto a processhecausesuchobjectsmay be deallocated
from the creator's run-time stack even though the created process retains a pointer.

SEE ALSO
chprio(2), die(2), kill(2), pglob(2), resume(2)

die(2) die(2)

NAME
die - commit suicide

SYNOPSIS
int die()

DESCRIPTION

Die terminateghe currentprocessyemovingall recordof it from the system.
Thefollowing actionsareperformed:all standard/O devicesbelongingto the current
processare closed,the next-of-kin procesgif any)is notified by sendingit a message
containingthe pid of the currentprocessand any memoryallocatedwith xmalloc or
xcalloc is freed.

Diethen callgesched, so it never returns to its caller.

SEE ALSO
kill(2), treceive(2), tsend(2), xmalloc(2)

BUGS

Die doesnot free memory allocatedwith getmem. Such memory must be
deallocatedwith freemem before die is called. The preferred memory allocation
functions for user programs anealloc andxcalloc.

format(2) format(2)

NAME
format - initialize a floppy disk to Xinu format

SYNOPSIS
int format(device, id)
int device;
char *id;

DESCRIPTION
Format is usedto format a floppy disk in drive device (usually DSO0). Id is a
pointer to an id string.

SEE ALSO
format(1)

freebuf(2) freebuf(2)

NAME
freebuf - free a buffer by returning it to its buffer pool

SYNOPSIS
int freebuf(buf)
char *buf;

DESCRIPTION

Freebuf returnsa previously allocated buffer to its buffer pool, making it
availablefor otherprocesses$o use.Freebuf returnsSYSERRIf the buffer addresss
invalid or if the pool id hasbeencorrupted(this versionstorespool ids in the integer
preceding the buffer address).

SEE ALSO
bpool(1), getbuf(2), mkpool(2), getmem(2), freemem(2)

10

freemem(2) freemem(2)

NAME
freemem, freestk - deallocate a block of main memory

SYNOPSIS
int freemem(addr, len)
char *addr;
int len;

int freestk (addr, len)
char *addr;
int len;

DESCRIPTION

In eitherform, freemem deallocates contiguousblock of memorypreviously
obtainedwith the getmem or getstk systemcalls GETMEM(2), and returnsit to the
free list. Argumentaddr specifiesthe addressof the block being deallocatedand
argumenten specifiesthe lengthof the block in bytes.For memoryallocatedby getstk
argumentaddr specifiesthe highestword addressof the block being deallocatedfor
memoryallocatedby getmem argumentaddr specifiesthe lowestword addresof the
block. Thesedefinitionsare consistentwith the addresseseturnedby calls to getstk
and getmem. In this version, memory is allocatedin multiples of eight bytes to
guarantedhat sufficient spaceis availablein eachblock to link it onto the free list.
However the lengthpassedo both getmem andfreemem is roundedautomatically,so
the user need not be aware of any extra space in the allocated block.

SEE ALSO
freebuf(2), getbuf(2), getmem(2), memstat(1)

11

getaddr(2) getaddr(2)

NAME
getaddr, getiaddr - obtain the local machine's Internet (IP) address

SYNOPSIS
int getaddr (ip)
| Paddr ip;

int getiaddr (inum, ip)
int inum;
| Paddr ip;

DESCRIPTION

Getaddr obtainsthe local machine'primary Internet(IP) addressand placesit
in the 4-byte array specifiedby argumentp. Calling getaddr may trigger a Reverse
Address Resolution Protocol (RARP) broadcastto find the address.lf RARP
succeedsthe addresss kept locally for successivéookup requests. If RARP fails,
getaddr callspanic to halt processing.

Getiaddr behavesas above, exceptthat it obtainsthe IP addressof the network
interface specified bynum.

SEE ALSO
getname(2), getnet(2)

12

getbuf(2) getbuf(2)

NAME
getbuf - obtain a buffer from a buffer pool

SYNOPSIS
#include <mem.h>

char *getbuf(poolid)
int poolid;

DESCRIPTION

Getbuf obtainsa free buffer from the pool given by argumentpoolid, and
returnsa pointerto thefirst word of the buffer. If all buffersin the specifiedpool are
in use, the calling processwill be blockeduntil a buffer becomesavailable. If the
argumenpoolid does not specify a valid pogetbuf returns SYSERR.

SEE ALSO
bpool(1), freebuf(2), getmem(2), freemem(2), mkpool(2)

13

getc(2) getc(2)

NAME
getc - device independent character input routine

SYNOPSIS
int getc(dev)
int dev;

DESCRIPTION

Getc will readthe next characterfrom the I/O devicegiven by dev. It returns
SYSERRIf dev is incorrect. A successfutall mayreturna charactef(widenedto an
integer) or the value EOF to denote end of file, depending on the device driver.

SEE ALSO
close(2), control(2), open(2), putc(2), read(2), seek(2), write(2)

BUGS
Not all devices report the end-of-file condition.

14

getdev(2) getdev(2)

NAME
getdev - get the device number from a character string name

SYNOPSIS
int getdev(cp)
char *cp;

DESCRIPTION
If cp pointsto a valid characterstring devicename,getdev returnsthe device
number for that device. Otherwiggtdev returns SYSERR.

SEE ALSO
getpdev(2), setpdev(2)

15

getmem(2) getmem(2)

NAME
getmem, getstk - get a block of main memory

SYNOPSIS
#include <mem.h>

char *getmem(nbytes)
long nbytes,

char *getstk(nbytes)
long nbytes,

DESCRIPTION

In eitherform, getmem roundsthe numberof bytes,nbytes, to a multiple of 8
bytes,andallocatesa block of nbytes bytesof memoryfor the caller. Getmem returns
the lowest wordaddressn the allocatedblock; getstk returnsthe highestword address
in the allocated block. If less thahytes bytes remain, the call returns SYSERR.

Getmem allocates memory starting with the end of the loaded program. Getstk
allocates memory from the stack area downward. The routines coopetiady never
allocate overlapping regions.

User programs should use xmalloc or xcalloc to allocate memory because such
memory isautomatically freed on process ter mination.

SEE ALSO
freebuf(2), freemem(2) getbuf(2), memstat(1), xmalloc(2)

BUGS

Thereis no way to protectmemory,so the active stackmay write into regions
returnedby either call; allocationsreturnedby getstk are more prone to disaster
because they lie closest to the dynamic stack areas of other processes.

16

getname(2) getname(2)

NAME
getname, getiname - get the Domain Name of this machine and place it where
specified.

SYNOPSIS
int getname(nam)
char *nam;

int getiname(inum, nam)
int inum;
char *nam

DESCRIPTION

Getname obtainsthe DomainNameof the machine'rimary networkinterface
andstoresit as a null-terminatedstring in the array nam. Getname usesip2name to
obtainthe name.lf the namecannotberesolvedgetname returnsSYSERR,otherwise
it returns OK.

Getiname behavesasabove,exceptthat it obtainsthe Domain Nameof the network
interface specified bynum.

SEE ALSO
ip2name(2), name2ip(2)

BUGS

No checkis doneon the size of array nam, so overwriting will occur if the
length of a name exceeds the space available in @anay

17

getnet(2) getnet(2)

NAME
getnet- obtainthe network portion of the Internet (IP) addressof the local
machine's network

SYNOPSIS
int getnet(ip)
| Paddr ip;

int getinet(inum, ip)
int inum;
| Paddr ip;

DESCRIPTION

Getnet obtainsthe network portion of the Internet(IP) addressof the local
machine'primary network,andstoresit in the 4-byte array specifiedby argumentp.
Calling getnet may trigger a ReverseAddressResolutionProtocol(RARP) broadcast
to find the address. If RARP succeedsthe addressis kept locally for successive
lookup requests. If RARP failgetnet calls panic to halt processing.

Getinet behavesas above,exceptthat it obtainsthe addressof the network interface
specified byinum,

SEE ALSO
getaddr(2), getname(2), getnet(2)

18

getnok(2) getnok(2)

NAME
getnok - get next-of-kin of a given process

SYNOPSIS
int getnok(pid)
int pid;

DESCRIPTION
If pid is valid, getnok returnsthe pid of the next-of-kin processof processid.
Otherwisegetnok returns SYSERR.

When a process dies, its next-of-kirocesss senta messageontainingthe pid of the
deceased process.

SEE ALSO
die(2), setnok(2)

19

getpdev(2) getpdev(2)

NAME
getpdev - return device descriptor to which a process' standard 1/0 maps

SYNOPSIS
int getpdev(pid, siodev)
int pid;
int siodev;

DESCRIPTION

Getpdev returns the device descriptor of the device to which a process
standardl/O connects.Argument pid specifies a process,and argumentsiodev
specifieseitherthe standardnput device,the standardoutputdevice,or the standard
errordevice.Getpdev allowsa procesgo identify the actualdevicebeingusedfor 1/0,
even if the process inherits the device from the shell.

SEE ALSO
open(2), setpdev(2)

20

getpid(2) getpid(2)

NAME
getpid - return the process id of the currently running process

SYNOPSIS
int getpid()

DESCRIPTION

Getpid returnsthe processd of the currentlyexecutingprocesslt is necessary
to beableto identify one'sselfin orderto performsomeoperationge.g.,changeone'’s
scheduling priority).

21

getprio(2) getprio(2)

NAME
getprio - return the scheduling priority of a given process

SYNOPSIS

int getprio(pid)

int pid;
DESCRIPTION

Getprio returnsthe schedulingpriority of processpid. If pid is invalid, getprio
returns SYSERR.

SEE ALSO
chprio(2)

22

getstdio(2) getstdio(2)
NAME
getstdi, getstdo - return the device currently assigned as STDIN or STDOUT

SYNOPSIS
int getstdi()

int getstdo()
DESCRIPTION

Getstdi returnsthe device currently assignedas STDIN. Getstdo returnsthe
device currently assigned as STDOUT.

SEE ALSO
getpdev(2), setpdev(2)

BUGS
There is no function which returns the device currently assigned as STDERR.

23

gettime(2) gettime(2)

NAME
gettime - obtain the current local time in seconds past the epoch date

SYNOPSIS
int gettime(timvar)
long *timvar;

DESCRIPTION

Gettime obtainsthe local time measuredn secondgastthe epochdate,andplacesit
in the longword pointed to by argumeimtvar. The epoch is taken to keroseconds
past Jan 1, 1970.

The correcttime is usually kept by the Xinu real-timeclock, but gettime may obtain
the time from the DOS clock if the local time has not been initialized.

If gettime cannotobtainthe currenttime, it returnsSY SERRto the caller. Otherwise,
gettime returns OK.

SEE ALSO
getutim(2)

BUGS

Local time computationdoesnot takedaylightsavingsinto account. The local
clock may drift, especiallyunder heavy CPU activity or activities that require the
operating system to mask interrupts for extended periods.

24

getutim(2) getutim(2)

NAME
getutim - obtain current universal time in seconds past the epoch

SYNOPSIS
int getutim(timvar)
long *timvar;

DESCRIPTION

Getutim obtainsthe currenttime measuredn secondgastthe epochdate,and
placesit in the long word pointedto by argumentiimvar. The correcttime is usually
keptby thereal-timeclock, but gettime may obtainthe time from the DOS clock if the
local time has not been initialized.

The epoch is taken to be zero seconds past Jan 1, 1970. Universtdrimedy called
GreenwichMeanTime, is the meansolartime of the meridianin Greenwich,England,
and is used throughout the world as a standard for measuring time.

If getutim cannotobtainthe currenttime, it returnsSY SERRto the caller. Otherwise,
getutim returns OK.

SEE ALSO
gettime(2)

BUGS

Thelocal clock maydrift, especiallyunderheavyCPU activity or activitiesthat
require the operating system to mask interrupts for extended periods.

25

halt(2) halt(2)
NAME
halt - halt Xinu and return to DOS

SYNOPSIS
halt()

DESCRIPTION

Halt abortsprocessingandreturnsto DOS. Becauséhalt causesall processes
anddevicesto ceaseexecutionjt shouldonly be calledin emergenciednternally, halt
calls the DOS Terminate Function (0x4c).

The correct way to terminate Xinu is by calling functioione.

SEE ALSO
xdone(2)

26

immortal(2) immortal(2)

NAME
immortal - make a process immortal

SYNOPSIS
int immortal(pid)
int pid;

DESCRIPTION

An immortal processcan only commit suicide, it cannotbe killed by other
processesinvoking immortal with a valid, non-zero pid will make processpid
immortalandOK is returned SYSERRIs returnedif pid is invalid. Invoking immortal
with apid of zero will make the current process mortal and OK is returned.

SEE ALSO
kill(2)

27

init(2) init(2)

NAME

init - device independent initialization routine
SYNOPSIS

int init(dev, flag)

int dev;

int flag;
DESCRIPTION

If flag is non-zero,init will initialize the device given by dev. The actual
intialization of a particulardeviceis performedby the function specifiedin the dvinit
field of thedevsw structure forthatdevice.Thatfunction shouldsavestateinformation
for configurablehardwaredevices(suchasthe serialportsand networkinterfaces)so
that device state can be restored when Xinu terminates.

If flag is zero,init will uninitialize the devicegiven by dev. Uninitialization is usedto
return the device to the state it was in before Xinu was executed.

Init returnsSYSERRIf dev is incorrect,or if the devicespecificinitialization routine
detects errors. Otherwis@jt returns OK.

SEE ALSO
control(2), getc(2), open(2), putc(2), read(2), seek(2), setdev(2), write(2)

BUGS

The stateof a networkinterfaceis containedin both the networkadapterand
its foreign devicedriver. When uninitializing, Xinu shouldrestartthe foreign device
driver to ensurethat both the hardware and the driver have consistent state
information.

28

ip2name(2) ip2name(2)

NAME
ip2name - translate an Internet address to a host Domain Name

SYNOPSIS
int ip2name(ip, name)
| Paddr ip;
char *name;

DESCRIPTION

Ip2name acceptsa 4-byte Internet(IP) addressandreturnsthe Domain Name
for that hostby consultinga DARPA Domainnameserveto performthe translation.
Argumentip gives the addres®f a 4-bytehostinternetaddresgo betranslatednto a
name. Argumentname pointsto anareaof memoryin which the domainnamewill be
written. The nameis written as a null-terminatedstring with periods separating
domain name components.

Ip2name returnsSY SERRIf the Internetaddresss invalid, if the nameservedoesnot
respond, or if the translation fails. It returns OK otherwise.

SEE ALSO
getname(2), getaddr(2)

BUGS

Thereis no way to specifya long time delay, so namelookup that consultsa
distant nameservemay timeout due to network delays.Also, there is no way to
specify a maximum name size.

29

kill(2) kill(2)

NAME
kill - terminate a process

SYNOPSIS
int Kill(pid)
int pid;

DESCRIPTION
The behaviourof kill dependson whetheror not processpid is the current
process:

If pid refersto the currentprocessthat processis terminatedby a call to die and
control passes to the rescheduler.

If pid refersto anyothervalid, mortal processthe trap function (seeTRECEIVE(2))
for that processs setto functiondie, the phastrap booleanin the procesgable entry
for that process is set to TRUE akll returnsOK. Thetrap functionwill be executed
when that process next becomes the current process.

If pid refersto a valid, immortal process,a TMSGKILL messages sentto that
processand kill returns0. Processpid can decideon a courseof action when it
receives the TMSGKILL message.

If pidis invalid,kill returns SYSERR.

SEE ALSO
create(2), die(2), immortal(2), kill(1), setdev(2), setnok(2), treceive(2),
tsend(2), unsleep(2), xmalloc(2)

BUGS
Kill will not terminate a mortal process in the suspended state.

30

mark(2) mark(2)

NAME
mark, unmarked - set and check initialization marks efficiently

SYNOPSIS
#include <mark.h>

int mark(mk)
MARKER mk;

int unmarked(mk)
MARKER mk;

DESCRIPTION

Mark setsmmk to "initialized", andrecordsits locationin the system. It returns
0 if thelocationis alreadymarked,OK if the markingwassuccessfulandSYSERRIf
there are too many marked locations.

Unmarked checksthe contentsand location of mk to seeif it has beenpreviously
marked with themark procedure. It returns OK if and onlynik hasnot beenmarked,
0 otherwise. The key is that they work correctly after a reboot,no matterwhat was
left in the marked locations when the system stopped.

Both mark and unmarked operateefficiently (in a few instructions)to correctly
determinewhethera locationhasbeenmarked. Theyaremostusefulfor creatingself-
initializing proceduresvhenthe systemwill be restartedBoth the valuein mk aswell
as its location are used to tell if it has been marked.

Memory marking can be eliminated from Xinu by removing the definition of the
symboIMEMMARK from the Configurationfile. Self-initializing library routinesmay
require manual initialization if MEMMARK is disabled.

BUGS

Mark doesnot verify that the locationgiven lies in the staticdataareabefore
marking it; to avoid having the systemretain marksfor locationson the stackafter
procedure exit, do not mark automatic variables.

31

mkdir (2) mkdir (2)

NAME
mkdir, mkdirs - make an MSDOS directory or directory tree

SYNOPSIS
int mkdir (name)
char *name;

int mkdirs(name)
char *name;

DESCRIPTION

Mkdir createghe directory specifiedin string name on the devicedetermined
by NAMESPACE mapping.Mkdirs performsthe sameoperationfor a directorytree.
Xinu can only create directories on MSDOS disk devices.

SEE ALSO
dos(4), nam(4), nammap(2), rmdir(2)

32

mkpool(2) mkpool(2)

NAME
mkpool - create a buffer pool

SYNOPSIS
int mkpool(bufsiz, numbufs)
int bufsiz;
int numbufs;

DESCRIPTION

Mkpool createsa pool of numbufs buffers,eachof size bufsiz, and returnsan
integeridentifying the pool. If no morepoolscanbe createdor if the argumentsare
incorrect,mkpool returns SYSERR.

SEE ALSO
bpool(1), getbuf(2), freebuf(2)

BUGS

At presenthereis no way to reclaimspacefrom buffer poolsoncetheyareno
longer needed Buffer pools should only be usedby backgroundprocessesuch as
daemons, and not by transient processes started by a shell.

33

mount(2) mount(2)

NAME
mount - add a prefix mapping to the namespace

SYNOPSIS
int mount(prefix, dev, replace)
char *prefix;
int dev;
char *replace;

DESCRIPTION

Mount addsa prefix mappingto the syntacticnamespaceansertingit just prior
to the lastentry. Argumentprefix pointsto a string that containsa null-terminated
prefix string, argumenidev givesthe deviceid of the deviceto which the prefix maps,
and argumenteplace pointsto a null-terminatedeplacemenstring. As a specialcase,
dev canspecifythe value SYSERRto indicatethat namesmatchingthe prefix cannot
be mapped or accessed.

If the namespaceableis full, or if the specifiedprefix or replacemenstringsexceed
the allowed sizemount returns SYSERR. Otherwise it returns OK.

SEE ALSO
mount(1), nam(4), nammap(2), namrepl(2), open(2), unmount(2), unmount(1)

34

nammap(2) nammap(2)

NAME
nammap - map a name through the syntactic namespace

SYNOPSIS
int nammap(name, newname)
char *name;
char *newname;

DESCRIPTION

Nammap uses the syntactic namespace to translate a nanmeeriatenameand
returnstheid of a deviceto which the namemaps. Namesare mappedteratively until
they map to a device other than the NAMESPACE.

Argumentname pointsto a null-terminatedstring containingthe nameto be mapped.
Argumentnewname points to astringarealargeenoughto hold the mappedversionof

the name.If successfulnammap returnsthe deviceid of the deviceto which the

mapping corresponds. Otherwise, it returns SYSERR.

SEE ALSO
mount(2), nam(4), namrepl(2), open(2), pwd(1), remove(2), unmount(2)

BUGS

Nammap writes the mappednameinto newnamewithout checkingto make
sureit fits. Thereis no way to distinguisherrorssuchasstring overflow from names
that map to device SYSERR.

35

namrepl(2) namrepl(2)

NAME
namrepl - replace a name once using the syntactic namespace

SYNOPSIS
int namr epl(name, newname)
char *name;
char *newname;

DESCRIPTION

Namrepl uses the syntactitamespac# translatea nameinto a newnameand
returnsthe id of a deviceto which the namemaps. The nameis translatedexactly
once,independenbf the deviceto which it maps. In particular,namrepl will return
the device id NAMESPACE without further mapping for those namesthat map
recursively through the syntactic namespace.

Argumentname pointsto a null-terminatedstring containingthe nameto be mapped,
and argumentnewname points to a string arealarge enoughto hold the mapped
version of the name. If successfulpamrepl returnsthe deviceid of the deviceto
which the name maps. Otherwise, it returns SYSERR.

SEE ALSO
mount(2), nam(4), nammap(2), open(2), pwd(1), unmount(2)

BUGS

Namrepl writes the mappednameinto newname without checkingto make
sureit fits. Thereis no way to distinguisherrorssuchas string overflow from names
that map to device SYSERR.

36

open(2) open(2)

NAME
open - device independent open routine

SYNOPSIS
int open(dev, name, mode)
int dev;
char *name;
char *mode;

DESCRIPTION

Open will establishconnectionwith the device given by dev using the null-
terminatedstring name to namean object on that device, and null-terminatedstring
mode to specify the accessodefor thatobject. Valid accessnodecharactersnclude
r (read),w (write), o (old), andn (new) as specified in ACCESS(2).

Open returnsSYSERRIf dev is incorrector cannotbe openedlf successfulthe value
returned byopen depend®n the device. Most callsto open returna devicedescriptor
that canbe usedin subsequentallsto read or write. For examplecalling open on a
disk devicewith a file nameasan argumentproducesa descriptorby which that file
can be accessed.

SEE ALSO
access(2), close(2), control(2), ckmode(3), getdev(2), mount(2), nammap(2),
namrepl(2), nam(4), rename(2)

BUGS
Not all devices produce meaningful return valueofen.

37

panic(2) panic(2)

NAME
panic - abort processing due to severe error

SYNOPSIS
int panic(message)
char *message;

DESCRIPTION
Panic will print the characterstring messagen the console restoreinterrupt
vectors to DOS, uninitialize devices, and abort Xinu.

A relatedfunction _panic is invoked when any of the following exceptionsoccur:
divide by zero, single step, breakpoint, arithmetic overflow, unknown interrupt.
Function_panic printsthe following informationon the consolebeforeaborting Xinu:
an interrupt type message, machine register contents, the top few stack locations.

SEE ALSO
xdone(2)

38

pcount(2) pcount(2)

NAME
pcount - return the number of messages currently waiting at a port

SYNOPSIS
int pcount(portid)
int portid;

DESCRIPTION
Pcount returns the message count associated withgootit.

A positive count p meansthat there are p messagesvailablefor processing.This
count includes the count of messaggglicitly in the port andthe countof the number
of processesgvhich attemptedo sendmessageto the queuebut areblocked(because
the queueis full). A negativecount p meansthat there are p processesawaiting
messagefrom the port. A zerocountmeanshat thereare neithermessagesvaiting
nor processes waiting to consume messages.

SEE ALSO
pcreate(2), pdelete(2), preceive(2), preset(2), psend(2)

BUGS

In this versionthereis no way to distinguishSYSERR (which hasvalue -1)
from a legal port count.

39

pcreate(2) pcreate(2)

NAME
pcreate - create a new port

SYNOPSIS
int pcreate(count)
int count;

DESCRIPTION

Pcreate createsa port with count locationsfor storing messagepointers,and
returnsanintegeridentifying the portif successful.lf no moreportscanbeallocated,
or if count is non-positivgycreate returns SYSERR.

Ports are manipulatedwith PSEND(2) and PRECEIVE(2). Receivingfrom a port
returns a pointer to a message that was previously sent to the port.

SEE ALSO
pcount(2), pdelete(2), pinit(2), preceive(2), preset(2), psend(2)

40

pdelete(2) pdelete(2)

NAME
pdelete - delete a port

SYNOPSIS
int pdelete(portid, dispose)
int portid;
int (*dispose)();

DESCRIPTION
Pdelete deallocateport portid. The call returnsSYSERRIf portid is illegal or
is not currently allocated.

The command has several effects, depending on the state of the port at the ¢atie the
is issued. If processearewaiting for messagefrom portid, they are madereadyand
return SYSERRIUo their caller. If messagesxistin the port, they are disposedof by
proceduredispose. If processesre waiting to place message# the port, they are
madereadyandgiven SYSERRIndications(just asif the port neverexisted). Pdelete
performs the same function of clearing messagesand processesrom a port as
PRESET(2) except thatlelete also deallocates the port.

SEE ALSO
pcount(2), pcreate(2), pinit(2), preceive(2), preset(2), psend(2)

41

pglob(2) pglob(2)

NAME
setpglob, getpglob - set or get a private global data pointer

SYNOPSIS
int setpglob(pid, memptr)
int pid;
char *memptr;

char *getpglob(pid)
int pid;

DESCRIPTION

Setpglob writes a pointer to a private global data structurememptr into the
pglob field of the procesdableentryfor processid. If pid is the currentprocessthe
global variable pglob is also set to memptr. If pid is invalid, setpglob returns
SYSERR, otherwise OK is returned.

Getpglob returnsthe private global data structurepointer containedin the process
table entry for procegad. If pid is invalid, SYSERRIs returnedIf processid hasno
private global data structure pointer, NULLPTR is returned.

Private global data structurescan be usedby groupsof processedor interprocess
communications.

SEE ALSO
create(2)

42

pinit(2) pinit(2)

NAME
pinit - initialize the ports table at system startup

SYNOPSIS
int pinit(maxmsgs)
int maxmsgs,

DESCRIPTION

Pinit initializes the ports mechanisnby clearingthe ports table and allocating
memory for messages. It should be called only once (usually at systemstartup).
Argument maxmsgs specifies an upper bound on the number of simultaneously
outstanding messages at all ports.

SEE ALSO
pcreate(2), pdelete(2), psend(2), preceive(2)

43

preceive(2) preceive(2)

NAME
preceive, preceivi - get a message from a port

SYNOPSIS
#include <ports.h>

char *preceive(portid)
int portid;

char *preceivi(portid)
int portid;

DESCRIPTION

Preceive retrieveshe nextmessagdrom the port portid, returninga pointerto
the messageaf successfulor SYSERRIf portid is invalid. The senderand receiver
must agree on a convention for passing the message length.

The calling processs blockedif thereare no messagesvailable,and reawakeneds
soonas a messagairrives. The only waysto be releasedrom a port queueare for
someotherprocesso senda messagéo the port with PSEND(2)or for someother
process to delete or reset the port with PDELETE(2) or PRESET(2).

Preceivi is a non-blockingversionof preceive. It returnsNULLPTR if thereare no
messages are available, otherwise it returns a pointer to the next message.

SEE ALSO
pcount(2), pcreate(2), pdelete(2), pinit(2), preset(2), psend(2), receive(2)

44

preset(2) preset(2)

NAME
preset - reset a port

SYNOPSIS
int preset(portid, dispose)
int portid;
int (*dispose)();

DESCRIPTION
Preset flushesall message$rom a port and releasesall processesvaiting to
send or receive messagé¥eset returns SYSERR iportid is not a valid port id.

Preset hasseveraleffects,dependingon the stateof the port at the time the call is
issued. If processes are blocked waiting to receive messages frquorgidritheyare
all madeready;eachreturnsSYSERRto caller. If messagearein the port they are
disposedof by passingthemto function dispose. If processare blockedwaiting to
sendmessagethey aremadeready;eachreturnsSYSERRUo its caller (asthoughthe
port never existed).

The effectsof preset arethe sameasPDELETE(2)followed by PCREATE(2),except
that the port is not deallocated. The maximum message count remains unaltered.

BUGS
There is no way to change the maximum message count when the port is reset.

SEE ALSO
pcount(2), pcreate(2), pdelete(2), preceive(2), psend(2)

45

psend(2) psend(2)

NAME
psend, psendi - send a message to a port

SYNOPSIS
int psend(portid, message)
int portid;
char *message;

DESCRIPTION

Psend addsthe pointermessagéo the port portid. If successfulpsend returns
OK; it returnsSYSERRIf portid is invalid. Note that only a pointer, not the entire
messageis enqueuedandthat psend may returnto the caller beforethe receiverhas
consumed the message.

If the portis full atthetime of the call, the sendingprocesswill be blockeduntil space
is available in the port for the message.

Psendi is a non-blockingversionof psend. It returnsSYSERRIf the port is full or
portid is invalid. Otherwise, it enqueues the message and returns OK.

SEE ALSO
pcount(2), pcreate(2), pdelete(2), pinit(2), preceive(2), preset(2), send(2)

46

putc(2) putc(2)

NAME
putc - device independent character output routine

SYNOPSIS
int putc(dev, ch)
int dev;
char ch;

DESCRIPTION
Putc will write the characterch on the I/O device given by dev. It returns
SYSERR ifdev is incorrect, OK otherwise.

By convention, printf calls putc on device STDOUT to write formatted output.
Usually, STDOUT refers to the process' output window.

SEE ALSO
close(2), control(2), getc(2), open(2), read(2), seek(2), write(2)

47

read(2) read(2)

NAME
read - device independent input routine

SYNOPSIS
int read(dev, buffer, numchars)
int dev;
char *buffer;
int numchars;

DESCRIPTION

Read will readup to numchars bytesfrom the I/0O device given by dev. It
returns SYSERRIf dev is incorrect. It returnsthe numberof charactersread if
successfullf numchars is zero,read readsall byteswhich arewaiting andreturnsthe
number of bytes read.

The numberof bytes actually returneddependson the device. For example,when
readingfrom a deviceof type "tty", eachread normally returnsone line. For a disk,
however,eachread returnsone block andthe argumentnumchars is takento be the
index of the disk block desired.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), read(1), seek(2), write(2)

48

receive(2) receive(2)

NAME
receive - receive a (longword) message

SYNOPSIS
#include <kernd.h>

long receive()
DESCRIPTION
Receive returnsthe longwordmessageentto a procesusingSEND(2). If no

messages are waiting, receive blocks until one appears.

SEE ALSO
preceive(2), recvclr(2), recvtim(2), send(2), sendf(2)

49

recvclr(2) recvclr(2)

NAME
recvclr - clear incoming message buffer asynchronously

SYNOPSIS
#include <kernd.h>

long recvclr()

DESCRIPTION

A processexecutesecvclr to clearits messagéduffer of any waiting message
in preparatiorfor receivingmessagedf a messagés waiting, recvclr returnsit to the
caller. If no messages are waitimggvclr returns OK.

SEE ALSO
preceive(2), receive(2), recvtim(2), send(2), sendf(2)

50

recvtim(2) recvtim(2)

NAME
recvtim - receive a message with timeout

SYNOPSIS
#include <kernd.h>

long recvtim(maxwait)
int maxwait;

DESCRIPTION

Recvtim allows a procesgo specifya maximumtime limit it is willing to wait
for a messageo arrive. Like RECEIVE(2), recvtim blocksthe calling processuntil a
messagarrivesfrom SEND(2). Argumentmaxwait givesthe maximumtime to wait
for a message, specified in tenths of seconds.

Recvtim returnsSYSERRIf the argumentis incorrector if no clock is present. It
returns integer TIMEOUT if the time limit expires before a messagearrives.
Otherwise, it returns the message.

SEE ALSO
receive(2), recvclr(2), send(2), sendf(2), sleep10(2), sleep(2), unsleep(2)

BUGS

There is no way to distinguish between messages that contain TIMEOUT or
SYSERR and errors reported tBgvtim.

51

remove(2) remove(2)

NAME
remove - remove a file from the file system

SYNOPSIS
int remove(filename, key)
char *filename;
int key;

DESCRIPTION

Remove takesa file nameas an argumentand destroysthe namedfile (i.e.,
removesit from the file system).Argumentfilename specifiesthe nameof a file to
remove, and the optional argumé&eay gives a one-word protection key.

Remove usesthe namespacéo mapthe givenfile nameto a new name,and invokes
CONTROL(2)on the underlyingdeviceto destroythe file. It returnsSYSERRIf the
nameis illegal or cannotbe mappedto an underlying device. It returnswhatever
CONTROL(2) returns otherwise.

SEE AL SO
control(2), nammap(2), nam(4)

52

rename(2) rename(2)

NAME
rename - change the name of an object, usually a file

SYNOPSIS
int rename(oldname, newname)
char *oldname;
char *newname;

DESCRIPTION

Rename changeghe nameof anobject. Argumentoldname givesthe nameof
an existing objectand argumentnewname givesa new namefor that object. Rename
mapsnamesthroughthe syntacticnamespacand then invokesthe control function
FLRENAME on the underlying device. Note tmahame does not provide fatopying
of objectsacrossdeviceboundariesThe intentis to provide only for changingnames
while objects stay residenton a given device and allow usersto implementcopy
operations separately if desired.

SEE ALSO
access(2), control(2), open(2), nam(4)

53

resume(2) resume(2)

NAME
resume - resume a suspended process

SYNOPSIS
int resume(pid)
int pid;

DESCRIPTION

Resume takesprocessid out of hibernationandallowsit to resumeexecution.
If pid is invalid or processid is not suspended,esume returnsSY SERR;otherwiseit
returnsthe priority at which the procesgesumedexecution Only suspendegrocesses
may be resumed.

SEE ALSO
chprio(2), create(2), sleep(2), suspend(2), send(2), receive(2)

54

rmdir(2) rmdir(2)

NAME
rmdir, rmdirs - remove a directory or directory tree from an MSDOS file
system

SYNOPSIS
int rmdir (name)
char *name;

int rmdirs(name)
char *name;

DESCRIPTION

Rmdir usesthe namespace&o mapstring name to a deviceanddirectoryname.
The directory is then removed.Rmdirs performsthe sameoperationfor a directory
tree.

SEE ALSO
mkdir(2)

55

scount(2) scount(2)

NAME
scount - return the count associated with a semaphore

SYNOPSIS
int scount(sem)
int sem;

DESCRIPTION

Scount returnsthe currentcount associatedvith semaphoresem. A count of
negativep meansthat thereare p processesvaiting on the semaphorea count of
positivep means that at moptmorecallsto WAIT(2) canoccurbeforea processwill
be blocked (assuming no intervening sends occur).

SEE ALSO
screate(2), sdelete(2), signal(2), sreset(2), wait(2)

BUGS

In this version,thereis no way to distinguishSY SERRfrom a legal semaphore
count of -1.

56

screate(2) screate(2)

NAME
screate - create a new semaphore

SYNOPSIS
int screate(count)
int count;

DESCRIPTION

Screate createsa countingsemaphorendinitializesit to count. If successful,
screate returnsthe integeridentifier of the new semaphorelt returnsSYSERRIf no
more semaphores can be allocated oouht is less than zero.

Semaphorearemanipulatedvith WAIT(2) andSIGNAL(2) to synchronizeprocesses
and implement mutual exclusion. Waiting causesthe semaphorecount to be
decrementeddecrementinga semaphorecount past zero causesa processto be
blocked. Signalinga semaphoréncreasedts count,freeinga blockedprocessf oneis
waiting.

SEE ALSO
scount(2), sdelete(2), signal(2), sreset(2), wait(2)

57

sdelete(2) sdelete(2)

NAME
sdelete - delete a semaphore

SYNOPSIS
int sdelete(sem)
int sem;

DESCRIPTION

Sdelete removessemaphoresem from the systemand returnsprocesseghat
werewaiting for it to the readystate.The call returnsSYSERRIf sem is not a legal
semaphore; it returns OK if the deletion was successful.

SEE ALSO
scount(2), screate(2), signal(2), sreset(2), wait(2)

58

seek(2) seek(2)

NAME
seek - device independent position seeking routine

SYNOPSIS
int seek(dev, position)
int dev;
long position;

DESCRIPTION

Seek will position the device given by dev after the position byte. It returns
SYSERR ifdev is incorrect, or if it is not possible to positidev as specified.
Seek should only be used with disk file devices.

Note that theposition argument is declared long rather than int.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), read(2), write(2)

59

send(2) send(2)

NAME
send - send a (longword) message to a process

SYNOPSIS
int send(pid, msg)
int pid;
long msg;

DESCRIPTION
Send sendsthe longword messagensg to the processwith id pid. A process
may have at most one outstanding message that has not been received.

Send returnsSYSERRIf pid is invalid or if the processalreadyhasa messagevaiting
that has not been received. Otherwise, it sends the message and returns OK.

SEE ALSO
preceive(2), psend(2), receive(2), recvtim(2), recvclr(2), sendf(2)

60

sendf(2) sendf(2)

NAME
sendf - send a (longword) message to a process, forcing delivery

SYNOPSIS
int sendf(pid, msg)
int pid;
long msg;
DESCRIPTION
Sendf sendsthe longword messagemsg to the processwith id pid. A process

may haveat mostone outstandingnessagehat hasnot beenreceived. Sendf returns
SYSERR if process idid is invalid. Otherwise, it returns OK.

SEE ALSO
preceive(2), psend(2), receive(2), recvtim(2), recvclr(2), send(2)

61

setnok (2) setnok(2)

NAME
setnok - set next-of-kin for a specified process

SYNOPSIS
int setnok(nok, pid)
int nok;
int pid;

DESCRIPTION

Setnok setsnok to be the next-of-kin for processpid by recordingnok in the
processtable entry for processpid. A call to setnok overwrites any previous
information in the process table entry.

The next-of-kinfor a proces<P is anothermprocessQ), that the systemnotifies whenP
dies (i.e., exits). Notification consistsof a messagesentto Q containingonly the
process id, P.

Both arguments teetnok mustbe valid procesdds. Setnok returnsSY SERRto report
errors in its arguments, and OK otherwise.

SEE ALSO
getnok(2), kill(2)

BUGS

Thereis no checkto ensurethat the next-of-kin remainsin existencebetween
the call tosetnok and the termination of a process.

62

setpdev(2) setpdev(2)

NAME
setpdev - set the standard input and output device ids for a process

SYNOPSIS
int setpdev(pid, siodev, dev)
int pid;
int siodev;
int dev;

DESCRIPTION

Setpdev associatestandardl/O device siodev with dev in the processtable
entry for processpid so the systemwill automatically close the device when the
processexits. It is usedprimarily by the shell to recordthe processstandardnput,
standard output, and standard error device ids.

SEE ALSO
close(2), getpdev(2), kill(2), sio(4)

63

signal(2) signal(2)

NAME
signal, signaln - signal a semaphore

SYNOPSIS
int signal(sem)
int sem;

int signaln(sem, count)
int sem;
int count;

DESCRIPTION

In either form, signal signals semaphoresem and returns SYSERRif the
semaphore does not exi®K otherwise.The form signal incrementghe countof sem
by 1 andfreesthe next processf any are waiting. The form signaln incrementsthe
semaphore bgount and frees up toount processes if that many are waiting. Nibtat
signaln(sem, x) is equivalent to executirggnal (sem) x times.

SEE ALSO
scount(2), screate(2), sdelete(2), sreset(2), wait(2)

64

seep(2) deep(2)

NAME
sleep, sleepl0, sleept - go to sleep for a specified time

SYNOPSIS
int sleep(secs)
int secs;

int sleep10(tenths)
int tenths;

int sleept(ticks)
int ticks;

DESCRIPTION

In anyform, sleep causeghe currentprocesso delayfor a specifiedtime and
thenresume.The form sdeep expectsthe delayto be given in an integral numberof
secondsit is mostusefulfor longerdelays.The form sleepl0 expectsthe delayto be
givenin anintegralnumberof tenthsof secondsit is mostusefulfor shortdelays.The
form dleept expectsthe delayto be givenin an integral numberof systemticks, it is
also most useful for short delays.

All formsreturn SYSERRIf the argumentis negativeor if the real time clock is not
enabled on the processor. Otherwise they delay for the specified time and return OK.

SEE ALSO
resume(1), recvtim(2), sleep(1), suspend(2), unsleep(2)

BUGS

The maximumsleepis 32767secondgabout546 minutes,or 9.1 hours).Seep
guarantees lower bound on delay, but since the systemmay delay processingof
interrupts at timesgleep cannot guarantee an upper bound.

65

sreset(2) sreset(2)

NAME
sreset - reset semaphore count

SYNOPSIS
int sreset(sem, count)
int sem;
int count;

DESCRIPTION

Seset freesprocessem the queuefor semaphoresem, andresetsits countto
count. This correspondgo the operationsof sdelete(sem) and sem= screate(count),
exceptthat it guaranteeshat the semaphored sem doesnot change.Sreset returns
SYSERRIf sem is not a valid semaphored. The currentcountin a semaphoraloes
not affect resetting it.

SEE ALSO
scount(2), screate(2), sdelete(2), signal(2), wait(2)

66

suspend(2) suspend(2)

NAME
suspend - suspend a process to keep it from executing

SYNOPSIS
int suspend(pid)
int pid;

DESCRIPTION

Suspend placesprocesspid in a stateof hibernation.If pid is illegal, or the
processis not currently running or on the ready list, suspend returns SYSERR.
Otherwiseit returnsthe priority of the suspendegrocess.A processmay suspend
itself, in which case the call returns the priority at which the process is resumed.

Note that hibernationdiffers from sleepingbecausea hibernatingprocesscan remain
on I/O or semaphore queues. A process can put anothdribetoation;a processan
only put itself to sleep.

SEE ALSO
resume(2), sleep(2), send(2), receive(2)

67

treceive(2) treceive(2)

NAME
treceive - establish a trap procedure

SYNOPSIS
int treceive(fp)
int (*fp)();

DESCRIPTION

Treceive setsthe trap function for the current processto fp. A subsequent
tsend to a processwill causethe trap functionto be executedvhenthat processnext
becomes the current process.

SEE ALSO
die(2), kill(2), tsend(2)

68

tsend(2) tsend(2)

NAME
tsend - trap another process

SYNOPSIS
int tsend(pid, arg)
int pid;
int arg;

DESCRIPTION

If pid is the currentprocesstsend clearsphastrap, immediatelyexecuteshe
trap function (with argumentarg) for thatprocessandthenreturnsOK. Otherwise jf
pid is valid andprocesgid hasno trap set,the argumentarg is depositedphastrap is
set TRUE, andtsend returnsOK. In all other casestsend returnsSYSERRand no
other action is taken.

If aprocesshasphastrap equalto TRUE, resched will clearphastrap andcall thetrap
function when that process next becomes the current process.

SEE ALSO
die(2), kill(2), treceive(2)

69

unmount(2) unmount(2)

NAME
unmount - remove an entry from the syntactic namespace mapping table

SYNOPSIS
int unmount(prefix)
char *prefix;

DESCRIPTION

Unmount searcheghe syntactic namespacenappingtable and removesthe
mappingwhich hasa prefix equalto the null-terminatedstring prefix. If no suchentry
exists,unmount returns SYSERR. Otherwise, it returns OK.

SEE ALSO
mount(1), mount(2), nam(4), nammap(2), namrepl(2), unmount(1)

70

unsleep(2) unsleep(2)

NAME
unsleep - remove a sleeping process from the clock queue prematurely

SYNOPSIS

int unsleep(pid)
int pid;

DESCRIPTION

Unsleep allowsoneprocesdo takeanotherout of the sleepingstatebeforethe
time limit hasexpired.Usually, only systemroutineslike RECVTIM(2) andKILL(2)
call undeep. User-levelprocessegan avoid using unsleep by arrangingprocesseso
cooperate using message passing primitives.

SEE ALSO
sleep(2), kill(2), recvtim(2)

71

wait(2) wait(2)

NAME
wait - block and wait until semaphore signalled

SYNOPSIS
int wait(sem)
int sem;

DESCRIPTION

Wait decrementshe countof semaphoresem, blocking the calling processf
the countgoesnegativeby enqueuingt in the queuefor sem. The only waysto get
free from a semaphoreueueare for someotherprocesso signalthe semaphoreor
for some other process to delete or resesémaphore Wait andSIGNAL(2) arethe
two basic synchronization primitives in the system.

Wait returnsSYSERRIf semis invalid. Otherwise,t returnsOK oncefreedfrom the
gueue.

SEE ALSO
scount(2), screate(2), sdelete(2), signal(2), sreset(2)

72

write(2) write(2)

NAME
write - write a sequence of characters from a buffer

SYNOPSIS
int write(dev, buf, count)
int dev;
char *buf;
int count;

DESCRIPTION

Write writes count charactergo the 1/0O devicegiven by dev, from sequential
locationsof the buffer, buf. Write returnsSYSERRIf dev or count is invalid, OK for a
successfulwrite. Write normally returnswheniit is safe for the userto changethe
contentsof the buffer. For somedevicesthis meansarite will wait for 1/0 to complete
before returning. On othelevicesthe datais copiedinto a kernelbuffer andthe write
returns while it is being transferred.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), read(2), seek(2)

BUGS

Write may not have exclusive use of the I/O device, so output from other
processes may be mixed in.

73

xdone(2) xdone(2)

NAME
xdone - print system termination message and terminate Xinu

SYNOPSIS
xdong()

DESCRIPTION

Xdone gracefullyterminatesXinu by flushing all disk buffers, closingall local
files, uninitializing all devices, restoring remappedinterrupt vectors, printing a
termination message, and executiaff to return to the underlying system.

SEE ALSO
dos(1), halt(2), init(2)

74

xfree(2) xfree(2)

NAME
xfree - free memory allocated with xmalloc or xcalloc

SYNOPSIS
int xfree(addr)
char *addr;

DESCRIPTION

Xfree will free a memory block allocated wikmalloc or xcalloc. Xfree returns
SYSERRIf addr doesnot point to a previously allocatedmemory block, otherwise
OK is returned. If the memory linkages are corryfyee callspanic to abort Xinu.

SEE ALSO
xmalloc(2)

75

xmalloc(2) xmalloc(2)

NAME
xmalloc, xcalloc - allocate memory using a malloc-like technique

SYNOPSIS
#include <mem.h>

char *xmalloc(nbytes)
int nbytes,

char *xcalloc(nbytes)
int nbytes,

DESCRIPTION

Xmalloc usesa malloc-like techniqueto allocatememory.Memory s allocated
on paragraplboundariesandchainedinto a linked list for later automaticdeallocation
whenthe requestingorocesss terminated Xmalloc returnsNULLPTR if the memory
requestcannot be satisfied. Otherwise,xmalloc returnsa pointer to the allocated
memory.

Xcalloc behaves exactly likemalloc, except that allocated memory is cleared.

SEE ALSO
kill(2), xfree(2)

76

