
Section 2: Xinu System Calls

The Xinu operating system kernel consists of a set of run-time procedures to
implement operating system services on a microcomputer. The system supports
multiple processes, I/O, synchronization based on counting semaphores, preemptive
scheduling, and communications with other machines. Each page in this section
describes a system routine which can be called by a user process.

Each page describes one system call, giving the number and types of arguments which
must be passed to the procedure under the heading "SYNOPSIS" (by giving their
declaration in C syntax). The heading "SEE ALSO" suggests the names of other
system calls that may be related to the described function. For example, the "SEE
ALSO" entry for system call wait suggests that the programmer may want to look at
the page for signal because both routines operate on semaphores.

In general, Xinu blocks processes when requested services are not available. Unless the
manual page suggests otherwise, the programmer should assume that the process
requesting system services may be delayed until the request can be satisfied. For
example, calling read may cause an arbitrary delay until data can be obtained from the
device. During this delay, rescheduling will probably allow other processes to run.

Only non-blocking system functions should be called from within interrupt handling
routines.

1

access(2) access(2)

NAME
 access - determine whether a file is accessible

SYNOPSIS
 int access(filename, mode)
 char *filename;
 char *mode;

DESCRIPTION
 Access examines file with name filename to determine if it is accessible
according to the modes specified in the mode string mode. Valid characters in the
mode string are r (check for read access) w (check for write access), n (check to see if
a new file can be created), and o (check to see if file exists). If neither r nor w is
specified, both are assumed.

SEE ALSO
 open(2), rename(2), ckmode(3)

2

chdsk(2) chdsk(2)

NAME
chdsk - login a new floppy disk in DS0

SYNOPSIS
int chdsk(device)
int device;

DESCRIPTION
Chdsk logs in a new floppy disk in device (usually DS0). All Xinu floppy disk

I/O requires that a floppy disk (Xinu or DOS format) be present in PC drive A: at boot
time.

SEE ALSO
access(2), df(4), dir(1), dsk(4), format(2), remove(2), rename(2), stat(1)

3

chprio(2) chprio(2)

NAME
 chprio - change the priority of a process

SYNOPSIS
 int chprio(pid, newprio)
 int pid;
 int newprio;

DESCRIPTION
 Chprio changes the scheduling priority of process pid to newprio. Priorities are
positive integers. At any instant, the highest priority process that is ready will be
running. A set of processes with equal priority is scheduled round-robin.

If the new priority is invalid, or the process id is invalid chprio returns SYSERR.
Otherwise, it returns the old process priority. It is forbidden to change the priority of
the null process, which always remains zero.

SEE ALSO
 create(2), getprio(2), resume(2)

4

close(2) close(2)

NAME
 close - device independent close routine

SYNOPSIS
 int close(dev)
 int dev;

DESCRIPTION
 Close will disconnect I/O from the device given by dev. It returns SYSERR if
dev is incorrect, or is not opened for I/O. Otherwise, close returns OK.

Each device has a reference count that is incremented by the system call open and
decremented by the system call close. Thus, if the device has been opened n times, the
user must invoke close n times to close it.

Normally tty devices like the console do not have to be opened and closed.

SEE ALSO
 control(2), getc(2), open(2), putc(2), read(2), seek(2), setdev(2), write(2)

5

control(2) control(2)

NAME
 control - device independent control routine

SYNOPSIS
 int control(dev, function, arg1, arg2)
 int dev;
 int function;
 int arg1, arg2;

DESCRIPTION
 Control is the mechanism used to send control information to devices and
device drivers, or to interrogate their status. (Data normally flows through GETC(2),
PUTC(2), READ(2), and WRITE(2).)

Control returns SYSERR if dev is incorrect or if the function cannot be performed.
The values returned otherwise are device dependent. For example, there is a control
function for "tty" devices that returns the number of characters waiting in the input
queue.

SEE ALSO
 close(2), getc(2), open(2), putc(2), read(2), remove(2), rename(2), seek(2),

write(2)

6

create(2) create(2)

NAME
 create - create a new process

SYNOPSIS
 int create(caddr, ssize, prio, name, nargs[, argument]*)
 char *caddr;
 int ssize;
 int prio;
 char *name;
 int nargs;
 int argument;

DESCRIPTION
 Create creates a new process that will begin execution at location caddr, with a
stack of ssize bytes, initial priority prio, and identifying name name. Caddr should be
the address of a procedure or xmain program. If the creation is successful, the
(nonnegative) process id of the new process is returned to the caller. The created
process is left in the suspended state; it will not begin execution until started by a
resume command. If the arguments are incorrect, or if there are no free process slots,
the value SYSERR is returned. The new process has its own stack, but shares global
data with other processes according to the scope rules of C. Private global data can be
shared between processes using the pglob pointer contained in the process' process
table entry (see PGLOB(2)). If the procedure attempts to return, its process will be
terminated (see KILL(2)).

The caller can pass a variable number of arguments to the created process which are
accessed through formal parameters. The integer nargs specifies (in words) how many
argument values follow. Nargs values from the arguments list will be passed to the
created process. The type and number of such arguments is not checked; each is
treated as a single machine word. The user is cautioned against passing the address of
any dynamically allocated datum to a process because such objects may be deallocated
from the creator's run-time stack even though the created process retains a pointer.

SEE ALSO
 chprio(2), die(2), kill(2), pglob(2), resume(2)

7

die(2) die(2)

NAME
die - commit suicide

SYNOPSIS
int die()

DESCRIPTION
Die terminates the current process, removing all record of it from the system.

The following actions are performed: all standard I/O devices belonging to the current
process are closed, the next-of-kin process (if any) is notified by sending it a message
containing the pid of the current process, and any memory allocated with xmalloc or
xcalloc is freed.

Die then calls resched, so it never returns to its caller.

SEE ALSO
kill(2), treceive(2), tsend(2), xmalloc(2)

BUGS
Die does not free memory allocated with getmem. Such memory must be

deallocated with freemem before die is called. The preferred memory allocation
functions for user programs are xmalloc and xcalloc.

8

format(2) format(2)

NAME
format - initialize a floppy disk to Xinu format

SYNOPSIS
int format(device, id)
int device;
char *id;

DESCRIPTION
Format is used to format a floppy disk in drive device (usually DS0). Id is a

pointer to an id string.

SEE ALSO
format(1)

9

freebuf(2) freebuf(2)

NAME
 freebuf - free a buffer by returning it to its buffer pool

SYNOPSIS
 int freebuf(buf)
 char *buf;

DESCRIPTION
 Freebuf returns a previously allocated buffer to its buffer pool, making it
available for other processes to use. Freebuf returns SYSERR if the buffer address is
invalid or if the pool id has been corrupted (this version stores pool ids in the integer
preceding the buffer address).

SEE ALSO
 bpool(1), getbuf(2), mkpool(2), getmem(2), freemem(2)

10

freemem(2) freemem(2)

NAME
 freemem, freestk - deallocate a block of main memory

SYNOPSIS
 int freemem(addr, len)
 char *addr;
 int len;

 int freestk(addr, len)
 char *addr;
 int len;

DESCRIPTION
 In either form, freemem deallocates a contiguous block of memory previously
obtained with the getmem or getstk system calls GETMEM(2), and returns it to the
free list. Argument addr specifies the address of the block being deallocated, and
argument len specifies the length of the block in bytes. For memory allocated by getstk
argument addr specifies the highest word address of the block being deallocated; for
memory allocated by getmem argument addr specifies the lowest word address of the
block. These definitions are consistent with the addresses returned by calls to getstk
and getmem. In this version, memory is allocated in multiples of eight bytes to
guarantee that sufficient space is available in each block to link it onto the free list.
However, the length passed to both getmem and freemem is rounded automatically, so
the user need not be aware of any extra space in the allocated block.

SEE ALSO
 freebuf(2), getbuf(2), getmem(2), memstat(1)

11

getaddr(2) getaddr(2)

NAME
 getaddr, getiaddr - obtain the local machine's Internet (IP) address

SYNOPSIS
 int getaddr(ip)
 IPaddr ip;

int getiaddr(inum, ip)
int inum;
IPaddr ip;

DESCRIPTION
 Getaddr obtains the local machine's primary Internet (IP) address and places it
in the 4-byte array specified by argument ip. Calling getaddr may trigger a Reverse
Address Resolution Protocol (RARP) broadcast to find the address. If RARP
succeeds, the address is kept locally for successive lookup requests. If RARP fails,
getaddr calls panic to halt processing.

Getiaddr behaves as above, except that it obtains the IP address of the network
interface specified by inum.

SEE ALSO
 getname(2), getnet(2)

12

getbuf(2) getbuf(2)

NAME
 getbuf - obtain a buffer from a buffer pool

SYNOPSIS
#include <mem.h>

 char *getbuf(poolid)
 int poolid;

DESCRIPTION
 Getbuf obtains a free buffer from the pool given by argument poolid, and
returns a pointer to the first word of the buffer. If all buffers in the specified pool are
in use, the calling process will be blocked until a buffer becomes available. If the
argument poolid does not specify a valid pool, getbuf returns SYSERR.

SEE ALSO
 bpool(1), freebuf(2), getmem(2), freemem(2), mkpool(2)

13

getc(2) getc(2)

NAME
 getc - device independent character input routine

SYNOPSIS
 int getc(dev)
 int dev;

DESCRIPTION
 Getc will read the next character from the I/O device given by dev. It returns
SYSERR if dev is incorrect. A successful call may return a character (widened to an
integer) or the value EOF to denote end of file, depending on the device driver.

SEE ALSO
 close(2), control(2), open(2), putc(2), read(2), seek(2), write(2)

BUGS
 Not all devices report the end-of-file condition.

14

getdev(2) getdev(2)

NAME
getdev - get the device number from a character string name

SYNOPSIS
int getdev(cp)
char *cp;

DESCRIPTION
If cp points to a valid character string device name, getdev returns the device

number for that device. Otherwise, getdev returns SYSERR.

SEE ALSO
getpdev(2), setpdev(2)

15

getmem(2) getmem(2)

NAME
 getmem, getstk - get a block of main memory

SYNOPSIS
#include <mem.h>

 char *getmem(nbytes)
 long nbytes;

 char *getstk(nbytes)
 long nbytes;

DESCRIPTION
 In either form, getmem rounds the number of bytes, nbytes, to a multiple of 8
bytes, and allocates a block of nbytes bytes of memory for the caller. Getmem returns
the lowest word address in the allocated block; getstk returns the highest word address
in the allocated block. If less than nbytes bytes remain, the call returns SYSERR.

Getmem allocates memory starting with the end of the loaded program. Getstk
allocates memory from the stack area downward. The routines cooperate so they never
allocate overlapping regions.

User programs should use xmalloc or xcalloc to allocate memory because such
memory is automatically freed on process termination.

SEE ALSO
 freebuf(2), freemem(2) getbuf(2), memstat(1), xmalloc(2)

BUGS
 There is no way to protect memory, so the active stack may write into regions
returned by either call; allocations returned by getstk are more prone to disaster
because they lie closest to the dynamic stack areas of other processes.

16

getname(2) getname(2)

NAME
getname, getiname - get the Domain Name of this machine and place it where

 specified.

SYNOPSIS
int getname(nam)
char *nam;

int getiname(inum, nam)
int inum;
char *nam

DESCRIPTION
Getname obtains the Domain Name of the machine's primary network interface

and stores it as a null-terminated string in the array nam. Getname uses ip2name to
obtain the name. If the name cannot be resolved, getname returns SYSERR, otherwise
it returns OK.

Getiname behaves as above, except that it obtains the Domain Name of the network
interface specified by inum.

SEE ALSO
ip2name(2), name2ip(2)

BUGS
No check is done on the size of array nam, so overwriting will occur if the

length of a name exceeds the space available in array nam.

17

getnet(2) getnet(2)

NAME
 getnet - obtain the network portion of the Internet (IP) address of the local
machine's network

SYNOPSIS
 int getnet(ip)
 IPaddr ip;

int getinet(inum, ip)
int inum;
IPaddr ip;

DESCRIPTION
 Getnet obtains the network portion of the Internet (IP) address of the local
machine's primary network, and stores it in the 4-byte array specified by argument ip.
Calling getnet may trigger a Reverse Address Resolution Protocol (RARP) broadcast
to find the address. If RARP succeeds, the address is kept locally for successive
lookup requests. If RARP fails, getnet calls panic to halt processing.

Getinet behaves as above, except that it obtains the address of the network interface
specified by inum.

SEE ALSO
 getaddr(2), getname(2), getnet(2)

18

getnok(2) getnok(2)

NAME
getnok - get next-of-kin of a given process

SYNOPSIS
int getnok(pid)
int pid;

DESCRIPTION
If pid is valid, getnok returns the pid of the next-of-kin process of process pid.

Otherwise getnok returns SYSERR.

When a process dies, its next-of-kin process is sent a message containing the pid of the
deceased process.

SEE ALSO
die(2), setnok(2)

19

getpdev(2) getpdev(2)

NAME
 getpdev - return device descriptor to which a process' standard I/O maps

SYNOPSIS
 int getpdev(pid, siodev)
 int pid;
 int siodev;

DESCRIPTION
 Getpdev returns the device descriptor of the device to which a process'
standard I/O connects. Argument pid specifies a process, and argument siodev
specifies either the standard input device, the standard output device, or the standard
error device. Getpdev allows a process to identify the actual device being used for I/O,
even if the process inherits the device from the shell.

SEE ALSO
 open(2), setpdev(2)

20

getpid(2) getpid(2)

NAME
 getpid - return the process id of the currently running process

SYNOPSIS
 int getpid()

DESCRIPTION
 Getpid returns the process id of the currently executing process. It is necessary
to be able to identify one's self in order to perform some operations (e.g., change one's
scheduling priority).

21

getprio(2) getprio(2)

NAME
 getprio - return the scheduling priority of a given process

SYNOPSIS
 int getprio(pid)
 int pid;

DESCRIPTION
 Getprio returns the scheduling priority of process pid. If pid is invalid, getprio
returns SYSERR.

SEE ALSO
 chprio(2)

22

getstdio(2) getstdio(2)

NAME
getstdi, getstdo - return the device currently assigned as STDIN or STDOUT

SYNOPSIS
int getstdi()

int getstdo()

DESCRIPTION
Getstdi returns the device currently assigned as STDIN. Getstdo returns the

device currently assigned as STDOUT.

SEE ALSO
getpdev(2), setpdev(2)

BUGS
There is no function which returns the device currently assigned as STDERR.

23

gettime(2) gettime(2)

NAME
 gettime - obtain the current local time in seconds past the epoch date

SYNOPSIS
 int gettime(timvar)
 long *timvar;

DESCRIPTION
 Gettime obtains the local time measured in seconds past the epoch date, and places it
in the longword pointed to by argument timvar. The epoch is taken to be zero seconds
past Jan 1, 1970.

The correct time is usually kept by the Xinu real-time clock, but gettime may obtain
the time from the DOS clock if the local time has not been initialized.

If gettime cannot obtain the current time, it returns SYSERR to the caller. Otherwise,
gettime returns OK.

SEE ALSO
 getutim(2)

BUGS
 Local time computation does not take daylight savings into account. The local
clock may drift, especially under heavy CPU activity or activities that require the
operating system to mask interrupts for extended periods.

24

getutim(2) getutim(2)

NAME
 getutim - obtain current universal time in seconds past the epoch

SYNOPSIS
 int getutim(timvar)
 long *timvar;

DESCRIPTION
 Getutim obtains the current time measured in seconds past the epoch date, and
places it in the long word pointed to by argument timvar. The correct time is usually
kept by the real-time clock, but gettime may obtain the time from the DOS clock if the
local time has not been initialized.

The epoch is taken to be zero seconds past Jan 1, 1970. Universal time, formerly called
Greenwich Mean Time, is the mean solar time of the meridian in Greenwich, England,
and is used throughout the world as a standard for measuring time.

If getutim cannot obtain the current time, it returns SYSERR to the caller. Otherwise,
getutim returns OK.

SEE ALSO
 gettime(2)

BUGS
 The local clock may drift, especially under heavy CPU activity or activities that
require the operating system to mask interrupts for extended periods.

25

halt(2) halt(2)

NAME
 halt - halt Xinu and return to DOS

SYNOPSIS
 halt()

DESCRIPTION
 Halt aborts processing and returns to DOS. Because halt causes all processes
and devices to cease execution, it should only be called in emergencies. Internally, halt
calls the DOS Terminate Function (0x4c).

The correct way to terminate Xinu is by calling function xdone.

SEE ALSO
 xdone(2)

26

immortal(2) immortal(2)

NAME
immortal - make a process immortal

SYNOPSIS
int immortal(pid)
int pid;

DESCRIPTION
An immortal process can only commit suicide, it cannot be killed by other

processes. Invoking immortal with a valid, non-zero pid will make process pid
immortal and OK is returned. SYSERR is returned if pid is invalid. Invoking immortal
with a pid of zero will make the current process mortal and OK is returned.

SEE ALSO
kill(2)

27

init(2) init(2)

NAME
init - device independent initialization routine

SYNOPSIS
int init(dev, flag)
int dev;
int flag;

DESCRIPTION
If flag is non-zero, init will initialize the device given by dev. The actual

intialization of a particular device is performed by the function specified in the dvinit
field of the devsw structure for that device. That function should save state information
for configurable hardware devices (such as the serial ports and network interfaces) so
that device state can be restored when Xinu terminates.

If flag is zero, init will uninitialize the device given by dev. Uninitialization is used to
return the device to the state it was in before Xinu was executed.

Init returns SYSERR if dev is incorrect, or if the device specific initialization routine
detects errors. Otherwise, init returns OK.

SEE ALSO
 control(2), getc(2), open(2), putc(2), read(2), seek(2), setdev(2), write(2)

BUGS
The state of a network interface is contained in both the network adapter and

its foreign device driver. When uninitializing, Xinu should restart the foreign device
driver to ensure that both the hardware and the driver have consistent state
information.

28

ip2name(2) ip2name(2)

NAME
 ip2name - translate an Internet address to a host Domain Name

SYNOPSIS
 int ip2name(ip, name)
 IPaddr ip;
 char *name;

DESCRIPTION
 Ip2name accepts a 4-byte Internet (IP) address and returns the Domain Name
for that host by consulting a DARPA Domain nameserver to perform the translation.
Argument ip gives the address of a 4-byte host Internet address to be translated into a
name. Argument name points to an area of memory in which the domain name will be
written. The name is written as a null-terminated string with periods separating
domain name components.

Ip2name returns SYSERR if the Internet address is invalid, if the nameserver does not
respond, or if the translation fails. It returns OK otherwise.

SEE ALSO
 getname(2), getaddr(2)

BUGS
 There is no way to specify a long time delay, so name lookup that consults a
distant nameserver may timeout due to network delays. Also, there is no way to
specify a maximum name size.

29

kill(2) kill(2)

NAME
 kill - terminate a process

SYNOPSIS
 int kill(pid)
 int pid;

DESCRIPTION
The behaviour of kill depends on whether or not process pid is the current

process:

If pid refers to the current process, that process is terminated by a call to die and
control passes to the rescheduler.

If pid refers to any other valid, mortal process, the trap function (see TRECEIVE(2))
for that process is set to function die, the phastrap boolean in the process table entry
for that process is set to TRUE and kill returns OK. The trap function will be executed
when that process next becomes the current process.

If pid refers to a valid, immortal process, a TMSGKILL message is sent to that
process and kill returns 0. Process pid can decide on a course of action when it
receives the TMSGKILL message.

If pid is invalid, kill returns SYSERR.

SEE ALSO
 create(2), die(2), immortal(2), kill(1), setdev(2), setnok(2), treceive(2),

tsend(2), unsleep(2), xmalloc(2)

BUGS
Kill will not terminate a mortal process in the suspended state.

30

mark(2) mark(2)

NAME
 mark, unmarked - set and check initialization marks efficiently

SYNOPSIS
 #include <mark.h>

 int mark(mk)
 MARKER mk;

 int unmarked(mk)
 MARKER mk;

DESCRIPTION
 Mark sets mk to "initialized", and records its location in the system. It returns
0 if the location is already marked, OK if the marking was successful, and SYSERR if
there are too many marked locations.

Unmarked checks the contents and location of mk to see if it has been previously
marked with the mark procedure. It returns OK if and only if mk has not been marked,
0 otherwise. The key is that they work correctly after a reboot, no matter what was
left in the marked locations when the system stopped.

Both mark and unmarked operate efficiently (in a few instructions) to correctly
determine whether a location has been marked. They are most useful for creating self-
initializing procedures when the system will be restarted. Both the value in mk as well
as its location are used to tell if it has been marked.

Memory marking can be eliminated from Xinu by removing the definition of the
symbol MEMMARK from the Configuration file. Self-initializing library routines may
require manual initialization if MEMMARK is disabled.

BUGS
 Mark does not verify that the location given lies in the static data area before
marking it; to avoid having the system retain marks for locations on the stack after
procedure exit, do not mark automatic variables.

31

mkdir(2) mkdir(2)

NAME
mkdir, mkdirs - make an MSDOS directory or directory tree

SYNOPSIS
int mkdir(name)
char *name;

int mkdirs(name)
char *name;

DESCRIPTION
Mkdir creates the directory specified in string name on the device determined

by NAMESPACE mapping. Mkdirs performs the same operation for a directory tree.
Xinu can only create directories on MSDOS disk devices.

SEE ALSO
dos(4), nam(4), nammap(2), rmdir(2)

32

mkpool(2) mkpool(2)

NAME
 mkpool - create a buffer pool

SYNOPSIS
 int mkpool(bufsiz, numbufs)
 int bufsiz;
 int numbufs;

DESCRIPTION
 Mkpool creates a pool of numbufs buffers, each of size bufsiz, and returns an
integer identifying the pool. If no more pools can be created, or if the arguments are
incorrect, mkpool returns SYSERR.

SEE ALSO
 bpool(1), getbuf(2), freebuf(2)

BUGS
 At present there is no way to reclaim space from buffer pools once they are no
longer needed. Buffer pools should only be used by background processes such as
daemons, and not by transient processes started by a shell.

33

mount(2) mount(2)

NAME
 mount - add a prefix mapping to the namespace

SYNOPSIS
 int mount(prefix, dev, replace)
 char *prefix;
 int dev;
 char *replace;

DESCRIPTION
 Mount adds a prefix mapping to the syntactic namespace, inserting it just prior
to the last entry. Argument prefix points to a string that contains a null-terminated
prefix string, argument dev gives the device id of the device to which the prefix maps,
and argument replace points to a null-terminated replacement string. As a special case,
dev can specify the value SYSERR to indicate that names matching the prefix cannot
be mapped or accessed.

If the namespace table is full, or if the specified prefix or replacement strings exceed
the allowed size, mount returns SYSERR. Otherwise it returns OK.

SEE ALSO
 mount(1), nam(4), nammap(2), namrepl(2), open(2), unmount(2), unmount(1)

34

nammap(2) nammap(2)

NAME
 nammap - map a name through the syntactic namespace

SYNOPSIS
 int nammap(name, newname)
 char *name;
 char *newname;

DESCRIPTION
 Nammap uses the syntactic namespace to translate a name into a new name and
returns the id of a device to which the name maps. Names are mapped iteratively until
they map to a device other than the NAMESPACE.

Argument name points to a null-terminated string containing the name to be mapped.
Argument newname points to a string area large enough to hold the mapped version of
the name. If successful, nammap returns the device id of the device to which the
mapping corresponds. Otherwise, it returns SYSERR.

SEE ALSO
 mount(2), nam(4), namrepl(2), open(2), pwd(1), remove(2), unmount(2)

BUGS
 Nammap writes the mapped name into newname without checking to make
sure it fits. There is no way to distinguish errors such as string overflow from names
that map to device SYSERR.

35

namrepl(2) namrepl(2)

NAME
 namrepl - replace a name once using the syntactic namespace

SYNOPSIS
 int namrepl(name, newname)
 char *name;
 char *newname;

DESCRIPTION
 Namrepl uses the syntactic namespace to translate a name into a new name and
returns the id of a device to which the name maps. The name is translated exactly
once, independent of the device to which it maps. In particular, namrepl will return
the device id NAMESPACE without further mapping for those names that map
recursively through the syntactic namespace.

Argument name points to a null-terminated string containing the name to be mapped,
and argument newname points to a string area large enough to hold the mapped
version of the name. If successful, namrepl returns the device id of the device to
which the name maps. Otherwise, it returns SYSERR.

SEE ALSO
 mount(2), nam(4), nammap(2), open(2), pwd(1), unmount(2)

BUGS
 Namrepl writes the mapped name into newname without checking to make
sure it fits. There is no way to distinguish errors such as string overflow from names
that map to device SYSERR.

36

open(2) open(2)

NAME
 open - device independent open routine

SYNOPSIS
 int open(dev, name, mode)
 int dev;
 char *name;
 char *mode;

DESCRIPTION
 Open will establish connection with the device given by dev using the null-
terminated string name to name an object on that device, and null-terminated string
mode to specify the access mode for that object. Valid access mode characters include
r (read), w (write), o (old), and n (new) as specified in ACCESS(2).

Open returns SYSERR if dev is incorrect or cannot be opened. If successful, the value
returned by open depends on the device. Most calls to open return a device descriptor
that can be used in subsequent calls to read or write. For example, calling open on a
disk device with a file name as an argument produces a descriptor by which that file
can be accessed.

SEE ALSO
 access(2), close(2), control(2), ckmode(3), getdev(2), mount(2), nammap(2),

namrepl(2), nam(4), rename(2)

BUGS
 Not all devices produce meaningful return values for open.

37

panic(2) panic(2)

NAME
 panic - abort processing due to severe error

SYNOPSIS
 int panic(message)
 char *message;

DESCRIPTION
 Panic will print the character string message on the console, restore interrupt
vectors to DOS, uninitialize devices, and abort Xinu.

A related function _panic is invoked when any of the following exceptions occur:
divide by zero, single step, breakpoint, arithmetic overflow, unknown interrupt.
Function _panic prints the following information on the console before aborting Xinu:
an interrupt type message, machine register contents, the top few stack locations.

SEE ALSO
 xdone(2)

38

pcount(2) pcount(2)

NAME
 pcount - return the number of messages currently waiting at a port

SYNOPSIS
 int pcount(portid)
 int portid;

DESCRIPTION
 Pcount returns the message count associated with port portid.

A positive count p means that there are p messages available for processing. This
count includes the count of messages explicitly in the port and the count of the number
of processes which attempted to send messages to the queue but are blocked (because
the queue is full). A negative count p means that there are p processes awaiting
messages from the port. A zero count means that there are neither messages waiting
nor processes waiting to consume messages.

SEE ALSO
 pcreate(2), pdelete(2), preceive(2), preset(2), psend(2)

BUGS
 In this version there is no way to distinguish SYSERR (which has value -1)
from a legal port count.

39

pcreate(2) pcreate(2)

NAME
 pcreate - create a new port

SYNOPSIS
 int pcreate(count)
 int count;

DESCRIPTION
 Pcreate creates a port with count locations for storing message pointers, and
returns an integer identifying the port if successful. If no more ports can be allocated,
or if count is non-positive, pcreate returns SYSERR.

Ports are manipulated with PSEND(2) and PRECEIVE(2). Receiving from a port
returns a pointer to a message that was previously sent to the port.

SEE ALSO
 pcount(2), pdelete(2), pinit(2), preceive(2), preset(2), psend(2)

40

pdelete(2) pdelete(2)

NAME
 pdelete - delete a port

SYNOPSIS
 int pdelete(portid, dispose)
 int portid;
 int (*dispose)();

DESCRIPTION
 Pdelete deallocates port portid. The call returns SYSERR if portid is illegal or
is not currently allocated.

The command has several effects, depending on the state of the port at the time the call
is issued. If processes are waiting for messages from portid, they are made ready and
return SYSERR to their caller. If messages exist in the port, they are disposed of by
procedure dispose. If processes are waiting to place messages in the port, they are
made ready and given SYSERR indications (just as if the port never existed). Pdelete
performs the same function of clearing messages and processes from a port as
PRESET(2) except that pdelete also deallocates the port.

SEE ALSO
 pcount(2), pcreate(2), pinit(2), preceive(2), preset(2), psend(2)

41

pglob(2) pglob(2)

NAME
setpglob, getpglob - set or get a private global data pointer

SYNOPSIS
int setpglob(pid, memptr)
int pid;
char *memptr;

char *getpglob(pid)
int pid;

DESCRIPTION
Setpglob writes a pointer to a private global data structure memptr into the

pglob field of the process table entry for process pid. If pid is the current process, the
global variable _pglob is also set to memptr. If pid is invalid, setpglob returns
SYSERR, otherwise OK is returned.

Getpglob returns the private global data structure pointer contained in the process
table entry for process pid. If pid is invalid, SYSERR is returned. If process pid has no
private global data structure pointer, NULLPTR is returned.

Private global data structures can be used by groups of processes for interprocess
communications.

SEE ALSO
create(2)

42

pinit(2) pinit(2)

NAME
 pinit - initialize the ports table at system startup

SYNOPSIS
 int pinit(maxmsgs)
 int maxmsgs;

DESCRIPTION
 Pinit initializes the ports mechanism by clearing the ports table and allocating
memory for messages. It should be called only once (usually at system startup).
Argument maxmsgs specifies an upper bound on the number of simultaneously
outstanding messages at all ports.

SEE ALSO
 pcreate(2), pdelete(2), psend(2), preceive(2)

43

preceive(2) preceive(2)

NAME
 preceive, preceivi - get a message from a port

SYNOPSIS
 #include <ports.h>

char *preceive(portid)
 int portid;

char *preceivi(portid)
int portid;

DESCRIPTION
 Preceive retrieves the next message from the port portid, returning a pointer to
the message if successful, or SYSERR if portid is invalid. The sender and receiver
must agree on a convention for passing the message length.

The calling process is blocked if there are no messages available, and reawakened as
soon as a message arrives. The only ways to be released from a port queue are for
some other process to send a message to the port with PSEND(2) or for some other
process to delete or reset the port with PDELETE(2) or PRESET(2).

Preceivi is a non-blocking version of preceive. It returns NULLPTR if there are no
messages are available, otherwise it returns a pointer to the next message.

SEE ALSO
 pcount(2), pcreate(2), pdelete(2), pinit(2), preset(2), psend(2), receive(2)

44

preset(2) preset(2)

NAME
 preset - reset a port

SYNOPSIS
 int preset(portid, dispose)
 int portid;
 int (*dispose)();

DESCRIPTION
 Preset flushes all messages from a port and releases all processes waiting to
send or receive messages. Preset returns SYSERR if portid is not a valid port id.

Preset has several effects, depending on the state of the port at the time the call is
issued. If processes are blocked waiting to receive messages from port portid, they are
all made ready; each returns SYSERR to caller. If messages are in the port they are
disposed of by passing them to function dispose. If process are blocked waiting to
send messages they are made ready; each returns SYSERR to its caller (as though the
port never existed).

The effects of preset are the same as PDELETE(2) followed by PCREATE(2), except
that the port is not deallocated. The maximum message count remains unaltered.

BUGS
 There is no way to change the maximum message count when the port is reset.

SEE ALSO
 pcount(2), pcreate(2), pdelete(2), preceive(2), psend(2)

45

psend(2) psend(2)

NAME
 psend, psendi - send a message to a port

SYNOPSIS
 int psend(portid, message)
 int portid;
 char *message;

DESCRIPTION
 Psend adds the pointer message to the port portid. If successful, psend returns
OK; it returns SYSERR if portid is invalid. Note that only a pointer, not the entire
message, is enqueued, and that psend may return to the caller before the receiver has
consumed the message.

If the port is full at the time of the call, the sending process will be blocked until space
is available in the port for the message.

Psendi is a non-blocking version of psend. It returns SYSERR if the port is full or
portid is invalid. Otherwise, it enqueues the message and returns OK.

SEE ALSO
 pcount(2), pcreate(2), pdelete(2), pinit(2), preceive(2), preset(2), send(2)

46

putc(2) putc(2)

NAME
 putc - device independent character output routine

SYNOPSIS
 int putc(dev, ch)
 int dev;
 char ch;

DESCRIPTION
 Putc will write the character ch on the I/O device given by dev. It returns
SYSERR if dev is incorrect, OK otherwise.

By convention, printf calls putc on device STDOUT to write formatted output.
Usually, STDOUT refers to the process' output window.

SEE ALSO
 close(2), control(2), getc(2), open(2), read(2), seek(2), write(2)

47

read(2) read(2)

NAME
 read - device independent input routine

SYNOPSIS
 int read(dev, buffer, numchars)
 int dev;
 char *buffer;
 int numchars;

DESCRIPTION
 Read will read up to numchars bytes from the I/O device given by dev. It
returns SYSERR if dev is incorrect. It returns the number of characters read if
successful. If numchars is zero, read reads all bytes which are waiting and returns the
number of bytes read.

The number of bytes actually returned depends on the device. For example, when
reading from a device of type "tty", each read normally returns one line. For a disk,
however, each read returns one block and the argument numchars is taken to be the
index of the disk block desired.

SEE ALSO
 close(2), control(2), getc(2), open(2), putc(2), read(1), seek(2), write(2)

48

receive(2) receive(2)

NAME
 receive - receive a (longword) message

SYNOPSIS
 #include <kernel.h>

long receive()

DESCRIPTION
 Receive returns the longword message sent to a process using SEND(2). If no
messages are waiting, receive blocks until one appears.

SEE ALSO
 preceive(2), recvclr(2), recvtim(2), send(2), sendf(2)

49

recvclr(2) recvclr(2)

NAME
 recvclr - clear incoming message buffer asynchronously

SYNOPSIS
#include <kernel.h>

 long recvclr()

DESCRIPTION
 A process executes recvclr to clear its message buffer of any waiting message
in preparation for receiving messages. If a message is waiting, recvclr returns it to the
caller. If no messages are waiting, recvclr returns OK.

SEE ALSO
 preceive(2), receive(2), recvtim(2), send(2), sendf(2)

50

recvtim(2) recvtim(2)

NAME
 recvtim - receive a message with timeout

SYNOPSIS
 #include <kernel.h>

long recvtim(maxwait)
 int maxwait;

DESCRIPTION
 Recvtim allows a process to specify a maximum time limit it is willing to wait
for a message to arrive. Like RECEIVE(2), recvtim blocks the calling process until a
message arrives from SEND(2). Argument maxwait gives the maximum time to wait
for a message, specified in tenths of seconds.

Recvtim returns SYSERR if the argument is incorrect or if no clock is present. It
returns integer TIMEOUT if the time limit expires before a message arrives.
Otherwise, it returns the message.

SEE ALSO
 receive(2), recvclr(2), send(2), sendf(2), sleep10(2), sleep(2), unsleep(2)

BUGS
 There is no way to distinguish between messages that contain TIMEOUT or
SYSERR and errors reported by recvtim.

51

remove(2) remove(2)

NAME
 remove - remove a file from the file system

SYNOPSIS
 int remove(filename, key)
 char *filename;
 int key;

DESCRIPTION
 Remove takes a file name as an argument and destroys the named file (i.e.,
removes it from the file system). Argument filename specifies the name of a file to
remove, and the optional argument key gives a one-word protection key.

Remove uses the namespace to map the given file name to a new name, and invokes
CONTROL(2) on the underlying device to destroy the file. It returns SYSERR if the
name is illegal or cannot be mapped to an underlying device. It returns whatever
CONTROL(2) returns otherwise.

SEE ALSO
 control(2), nammap(2), nam(4)

52

rename(2) rename(2)

NAME
 rename - change the name of an object, usually a file

SYNOPSIS
 int rename(oldname, newname)
 char *oldname;
 char *newname;

DESCRIPTION
 Rename changes the name of an object. Argument oldname gives the name of
an existing object and argument newname gives a new name for that object. Rename
maps names through the syntactic namespace and then invokes the control function
FLRENAME on the underlying device. Note that rename does not provide for copying
of objects across device boundaries. The intent is to provide only for changing names
while objects stay resident on a given device and allow users to implement copy
operations separately if desired.

SEE ALSO
 access(2), control(2), open(2), nam(4)

53

resume(2) resume(2)

NAME
 resume - resume a suspended process

SYNOPSIS
 int resume(pid)
 int pid;

DESCRIPTION
 Resume takes process pid out of hibernation and allows it to resume execution.
If pid is invalid or process pid is not suspended, resume returns SYSERR; otherwise it
returns the priority at which the process resumed execution. Only suspended processes
may be resumed.

SEE ALSO
 chprio(2), create(2), sleep(2), suspend(2), send(2), receive(2)

54

rmdir(2) rmdir(2)

NAME
rmdir, rmdirs - remove a directory or directory tree from an MSDOS file

 system

SYNOPSIS
int rmdir(name)
char *name;

int rmdirs(name)
char *name;

DESCRIPTION
Rmdir uses the namespace to map string name to a device and directory name.

The directory is then removed. Rmdirs performs the same operation for a directory
tree.

SEE ALSO
mkdir(2)

55

scount(2) scount(2)

NAME
 scount - return the count associated with a semaphore

SYNOPSIS
 int scount(sem)
 int sem;

DESCRIPTION
 Scount returns the current count associated with semaphore sem. A count of
negative p means that there are p processes waiting on the semaphore; a count of
positive p means that at most p more calls to WAIT(2) can occur before a process will
be blocked (assuming no intervening sends occur).

SEE ALSO
 screate(2), sdelete(2), signal(2), sreset(2), wait(2)

BUGS
 In this version, there is no way to distinguish SYSERR from a legal semaphore
count of -1.

56

screate(2) screate(2)

NAME
 screate - create a new semaphore

SYNOPSIS
 int screate(count)
 int count;

DESCRIPTION
 Screate creates a counting semaphore and initializes it to count. If successful,
screate returns the integer identifier of the new semaphore. It returns SYSERR if no
more semaphores can be allocated or if count is less than zero.

Semaphores are manipulated with WAIT(2) and SIGNAL(2) to synchronize processes
and implement mutual exclusion. Waiting causes the semaphore count to be
decremented; decrementing a semaphore count past zero causes a process to be
blocked. Signaling a semaphore increases its count, freeing a blocked process if one is
waiting.

SEE ALSO
 scount(2), sdelete(2), signal(2), sreset(2), wait(2)

57

sdelete(2) sdelete(2)

NAME
 sdelete - delete a semaphore

SYNOPSIS
 int sdelete(sem)
 int sem;

DESCRIPTION
 Sdelete removes semaphore sem from the system and returns processes that
were waiting for it to the ready state. The call returns SYSERR if sem is not a legal
semaphore; it returns OK if the deletion was successful.

SEE ALSO
 scount(2), screate(2), signal(2), sreset(2), wait(2)

58

seek(2) seek(2)

NAME
 seek - device independent position seeking routine

SYNOPSIS
 int seek(dev, position)
 int dev;
 long position;

DESCRIPTION
 Seek will position the device given by dev after the position byte. It returns
SYSERR if dev is incorrect, or if it is not possible to position dev as specified.

Seek should only be used with disk file devices.

Note that the position argument is declared long rather than int.

SEE ALSO
 close(2), control(2), getc(2), open(2), putc(2), read(2), write(2)

59

send(2) send(2)

NAME
 send - send a (longword) message to a process

SYNOPSIS
 int send(pid, msg)
 int pid;
 long msg;

DESCRIPTION
 Send sends the longword message msg to the process with id pid. A process
may have at most one outstanding message that has not been received.

Send returns SYSERR if pid is invalid or if the process already has a message waiting
that has not been received. Otherwise, it sends the message and returns OK.

SEE ALSO
 preceive(2), psend(2), receive(2), recvtim(2), recvclr(2), sendf(2)

60

sendf(2) sendf(2)

NAME
 sendf - send a (longword) message to a process, forcing delivery

SYNOPSIS
 int sendf(pid, msg)
 int pid;
 long msg;

DESCRIPTION
 Sendf sends the longword message msg to the process with id pid. A process
may have at most one outstanding message that has not been received. Sendf returns
SYSERR if process id pid is invalid. Otherwise, it returns OK.

SEE ALSO
 preceive(2), psend(2), receive(2), recvtim(2), recvclr(2), send(2)

61

setnok(2) setnok(2)

NAME
 setnok - set next-of-kin for a specified process

SYNOPSIS
 int setnok(nok, pid)
 int nok;
 int pid;

DESCRIPTION
 Setnok sets nok to be the next-of-kin for process pid by recording nok in the
process table entry for process pid. A call to setnok overwrites any previous
information in the process table entry.

The next-of-kin for a process P is another process, Q, that the system notifies when P
dies (i.e., exits). Notification consists of a message sent to Q containing only the
process id, P.

Both arguments to setnok must be valid process ids. Setnok returns SYSERR to report
errors in its arguments, and OK otherwise.

SEE ALSO
 getnok(2), kill(2)

BUGS
 There is no check to ensure that the next-of-kin remains in existence between
the call to setnok and the termination of a process.

62

setpdev(2) setpdev(2)

NAME
 setpdev - set the standard input and output device ids for a process

SYNOPSIS
 int setpdev(pid, siodev, dev)
 int pid;
 int siodev;
 int dev;

DESCRIPTION
 Setpdev associates standard I/O device siodev with dev in the process table
entry for process pid so the system will automatically close the device when the
process exits. It is used primarily by the shell to record the process' standard input,
standard output, and standard error device ids.

SEE ALSO
 close(2), getpdev(2), kill(2), sio(4)

63

signal(2) signal(2)

NAME
 signal, signaln - signal a semaphore

SYNOPSIS
 int signal(sem)

int sem;

 int signaln(sem, count)
 int sem;
 int count;

DESCRIPTION
 In either form, signal signals semaphore sem and returns SYSERR if the
semaphore does not exist, OK otherwise. The form signal increments the count of sem
by 1 and frees the next process if any are waiting. The form signaln increments the
semaphore by count and frees up to count processes if that many are waiting. Note that
signaln(sem, x) is equivalent to executing signal(sem) x times.

SEE ALSO
 scount(2), screate(2), sdelete(2), sreset(2), wait(2)

64

sleep(2) sleep(2)

NAME
 sleep, sleep10, sleept - go to sleep for a specified time

SYNOPSIS
 int sleep(secs)
 int secs;

 int sleep10(tenths)
 int tenths;

int sleept(ticks)
int ticks;

DESCRIPTION
 In any form, sleep causes the current process to delay for a specified time and
then resume. The form sleep expects the delay to be given in an integral number of
seconds; it is most useful for longer delays. The form sleep10 expects the delay to be
given in an integral number of tenths of seconds; it is most useful for short delays. The
form sleept expects the delay to be given in an integral number of system ticks, it is
also most useful for short delays.

All forms return SYSERR if the argument is negative or if the real time clock is not
enabled on the processor. Otherwise they delay for the specified time and return OK.

SEE ALSO
 resume(1), recvtim(2), sleep(1), suspend(2), unsleep(2)

BUGS
 The maximum sleep is 32767 seconds (about 546 minutes, or 9.1 hours). Sleep
guarantees a lower bound on delay, but since the system may delay processing of
interrupts at times, sleep cannot guarantee an upper bound.

65

sreset(2) sreset(2)

NAME
 sreset - reset semaphore count

SYNOPSIS
 int sreset(sem, count)
 int sem;
 int count;

DESCRIPTION
 Sreset frees processes in the queue for semaphore sem, and resets its count to
count. This corresponds to the operations of sdelete(sem) and sem=screate(count),
except that it guarantees that the semaphore id sem does not change. Sreset returns
SYSERR if sem is not a valid semaphore id. The current count in a semaphore does
not affect resetting it.

SEE ALSO
 scount(2), screate(2), sdelete(2), signal(2), wait(2)

66

suspend(2) suspend(2)

NAME
 suspend - suspend a process to keep it from executing

SYNOPSIS
 int suspend(pid)
 int pid;

DESCRIPTION
 Suspend places process pid in a state of hibernation. If pid is illegal, or the
process is not currently running or on the ready list, suspend returns SYSERR.
Otherwise it returns the priority of the suspended process. A process may suspend
itself, in which case the call returns the priority at which the process is resumed.

Note that hibernation differs from sleeping because a hibernating process can remain
on I/O or semaphore queues. A process can put another into hibernation; a process can
only put itself to sleep.

SEE ALSO
 resume(2), sleep(2), send(2), receive(2)

67

treceive(2) treceive(2)

NAME
treceive - establish a trap procedure

SYNOPSIS
int treceive(fp)
int (*fp)();

DESCRIPTION
Treceive sets the trap function for the current process to fp. A subsequent

tsend to a process will cause the trap function to be executed when that process next
becomes the current process.

SEE ALSO
die(2), kill(2), tsend(2)

68

tsend(2) tsend(2)

NAME
tsend - trap another process

SYNOPSIS
int tsend(pid, arg)
int pid;
int arg;

DESCRIPTION
If pid is the current process, tsend clears phastrap, immediately executes the

trap function (with argument arg) for that process, and then returns OK. Otherwise, if
pid is valid and process pid has no trap set, the argument arg is deposited, phastrap is
set TRUE, and tsend returns OK. In all other cases, tsend returns SYSERR and no
other action is taken.

If a process has phastrap equal to TRUE, resched will clear phastrap and call the trap
function when that process next becomes the current process.

SEE ALSO
die(2), kill(2), treceive(2)

69

unmount(2) unmount(2)

NAME
 unmount - remove an entry from the syntactic namespace mapping table

SYNOPSIS
 int unmount(prefix)
 char *prefix;

DESCRIPTION
 Unmount searches the syntactic namespace mapping table and removes the
mapping which has a prefix equal to the null-terminated string prefix. If no such entry
exists, unmount returns SYSERR. Otherwise, it returns OK.

SEE ALSO
 mount(1), mount(2), nam(4), nammap(2), namrepl(2), unmount(1)

70

unsleep(2) unsleep(2)

NAME
 unsleep - remove a sleeping process from the clock queue prematurely

SYNOPSIS
 int unsleep(pid)
 int pid;

DESCRIPTION
 Unsleep allows one process to take another out of the sleeping state before the
time limit has expired. Usually, only system routines like RECVTIM(2) and KILL(2)
call unsleep. User-level processes can avoid using unsleep by arranging processes to
cooperate using message passing primitives.

SEE ALSO
 sleep(2), kill(2), recvtim(2)

71

wait(2) wait(2)

NAME
 wait - block and wait until semaphore signalled

SYNOPSIS
 int wait(sem)
 int sem;

DESCRIPTION
 Wait decrements the count of semaphore sem, blocking the calling process if
the count goes negative by enqueuing it in the queue for sem. The only ways to get
free from a semaphore queue are for some other process to signal the semaphore, or
for some other process to delete or reset the semaphore. Wait and SIGNAL(2) are the
two basic synchronization primitives in the system.

Wait returns SYSERR if sem is invalid. Otherwise, it returns OK once freed from the
queue.

SEE ALSO
 scount(2), screate(2), sdelete(2), signal(2), sreset(2)

72

write(2) write(2)

NAME
 write - write a sequence of characters from a buffer

SYNOPSIS
 int write(dev, buf, count)
 int dev;
 char *buf;
 int count;

DESCRIPTION
 Write writes count characters to the I/O device given by dev, from sequential
locations of the buffer, buf. Write returns SYSERR if dev or count is invalid, OK for a
successful write. Write normally returns when it is safe for the user to change the
contents of the buffer. For some devices this means write will wait for I/O to complete
before returning. On other devices, the data is copied into a kernel buffer and the write
returns while it is being transferred.

SEE ALSO
 close(2), control(2), getc(2), open(2), putc(2), read(2), seek(2)

BUGS
 Write may not have exclusive use of the I/O device, so output from other
processes may be mixed in.

73

xdone(2) xdone(2)

NAME
xdone - print system termination message and terminate Xinu

SYNOPSIS
xdone()

DESCRIPTION
Xdone gracefully terminates Xinu by flushing all disk buffers, closing all local

files, uninitializing all devices, restoring remapped interrupt vectors, printing a
termination message, and executing halt to return to the underlying system.

SEE ALSO
dos(1), halt(2), init(2)

74

xfree(2) xfree(2)

NAME
xfree - free memory allocated with xmalloc or xcalloc

SYNOPSIS
int xfree(addr)
char *addr;

DESCRIPTION
Xfree will free a memory block allocated with xmalloc or xcalloc. Xfree returns

SYSERR if addr does not point to a previously allocated memory block, otherwise
OK is returned. If the memory linkages are corrupt, xfree calls panic to abort Xinu.

SEE ALSO
xmalloc(2)

75

xmalloc(2) xmalloc(2)

NAME
xmalloc, xcalloc - allocate memory using a malloc-like technique

SYNOPSIS
#include <mem.h>

char *xmalloc(nbytes)
int nbytes;

char *xcalloc(nbytes)
int nbytes;

DESCRIPTION
Xmalloc uses a malloc-like technique to allocate memory. Memory is allocated

on paragraph boundaries and chained into a linked list for later automatic deallocation
when the requesting process is terminated. Xmalloc returns NULLPTR if the memory
request cannot be satisfied. Otherwise, xmalloc returns a pointer to the allocated
memory.

Xcalloc behaves exactly like xmalloc, except that allocated memory is cleared.

SEE ALSO
kill(2), xfree(2)

76

