
06 - Sentiment Analysis (class exercise)

April 24, 2020

1 CountVectorizer and BoW

Analysis of Social Media Contents
Alessandro Ortis - University of Catania

1. Download movie reviews from the following URL (opinions about “The Da Vinci
Code”, "Harry Potter" and "Brokeback Mountain" movies labeled as positive or negative)
http://www.dmi.unict.it/~ortis/PhDCourseSentiment/davincireviews.txt

2. Vectorize the text using tf-idf (Term Frequency – Inverse Document Frequency) skipping
stopwords

3. Split dataset in X_train, X_test, Y_train, Y_test (Y variable is 0 or 1)
4. Train a Naive Bayes classifier with X_train and Y_train
5. Test model with Y_test, X_test

In [1]: from pprint import pprint
file = open('davincireviews.txt','r')
dataset = file.readlines()
ds_size = len(dataset)
print(ds_size)
pprint(dataset[:5])

7086
['1\tThe Da Vinci Code book is just awesome.\n',
"1\tthis was the first clive cussler i've ever read, but even books like "
'Relic, and Da Vinci code were more plausible than this.\n',
'1\ti liked the Da Vinci Code a lot.\n',
'1\ti liked the Da Vinci Code a lot.\n',
"1\tI liked the Da Vinci Code but it ultimatly didn't seem to hold it's "
'own.\n']

In [2]: R = [] # reviews
S = [] # sentiments
to_find = 1 # little trick for visualization of sentence examples
for r_i, review in enumerate(dataset):

review.replace('\n','')
[s_label, sentence] = review.split('\t')

1

R.append(sentence)
label = int(s_label)
S.append(label)
if r_i < 10:

print("("+s_label+")\t"+sentence)

(1) The Da Vinci Code book is just awesome.

(1) this was the first clive cussler i've ever read, but even books like Relic, and Da Vinci code were more plausible than this.

(1) i liked the Da Vinci Code a lot.

(1) i liked the Da Vinci Code a lot.

(1) I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

(1) that's not even an exaggeration) and at midnight we went to Wal-Mart to buy the Da Vinci Code, which is amazing of course.

(1) I loved the Da Vinci Code, but now I want something better and different!..

(1) i thought da vinci code was great, same with kite runner.

(1) The Da Vinci Code is actually a good movie...

(1) I thought the Da Vinci Code was a pretty good book.

In [3]: #Example of positive review
print(R[0])
first_negative_idx = S.index(0)
Example of negative review
print(R[first_negative_idx])

The Da Vinci Code book is just awesome.

da vinci code was a terrible movie.

In [4]: from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

stop_words = set(stopwords.words('english') + ['.',',',':',';','\'','*'])

sentence = R[0]
print(sentence)
Tokenize the sentence

2

tok_sentence = word_tokenize(sentence)
Removing stop words (plus some punctuation)
f_sentence = [w for w in tok_sentence if not w in stop_words]
print(f_sentence)
Untokenize back the sentence
sentence = ' '.join(f_sentence)
print(sentence)

The Da Vinci Code book is just awesome.

['The', 'Da', 'Vinci', 'Code', 'book', 'awesome']
The Da Vinci Code book awesome

Now create a routine to do that.

In [5]: stop_words = set(stopwords.words('english') + ['.',',',':',';','\'','*'])
def sentence_preprocessing(sentence):

tok_sentence = word_tokenize(sentence)
f_sentence = [w for w in tok_sentence if not w in stop_words]
sentence = " ".join(f_sentence)
return sentence

In [6]: corpus = []
for s in R:

corpus.append(sentence_preprocessing(s))

pprint(corpus[:2])

['The Da Vinci Code book awesome',
"first clive cussler 've ever read even books like Relic Da Vinci code "
'plausible']

In [7]: from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(corpus)

In [8]: # (sentences, words)
print(X.shape)
the representations are stored in form of dictionaries for computational/space efficiency
print(X[0])
example_vector = X[0].toarray().flatten()
print(len(example_vector))

(7086, 2087)
(0, 1830) 0.39595230139931936
(0, 431) 0.300116326497803

3

(0, 1971) 0.300116326497803
(0, 344) 0.3000500585611166
(0, 227) 0.6569832347943919
(0, 146) 0.3760653503210292

2087

In [9]: from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(X, S)

In [10]: docs_new = ['Da vinci code is awesome',
'da vinci code is horrible']

X_new_tfidf = vectorizer.transform(docs_new)

predicted = clf.predict(X_new_tfidf)
print(predicted) # 1: positive, 0: negative

[1 0]

Now perform a more accurate inference.

In [11]: from sklearn.model_selection import train_test_split

y = S
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state= 42)
clf = MultinomialNB().fit(X_train, y_train)

In [12]: from sklearn import metrics
test_predicted = clf.predict(X_test)

print(metrics.classification_report(y_test, test_predicted,
target_names=['neg','pos']))

precision recall f1-score support

neg 0.98 0.96 0.97 626
pos 0.97 0.99 0.98 792

accuracy 0.98 1418
macro avg 0.98 0.97 0.98 1418

weighted avg 0.98 0.98 0.98 1418

4

	CountVectorizer and BoW

