06 - Sentiment Analysis (class exercise)

April 24, 2020

1 CountVectorizer and BoW

Analysis of Social Media Contents
Alessandro Ortis - University of Catania

1. Download movie reviews from the following URL (opinions about “The Da Vinci
Code”, "Harry Potter" and "Brokeback Mountain" movies labeled as positive or negative)
http:/ /www.dmi.unict.it/ ~ortis/PhDCourseSentiment/davincireviews.txt

2. Vectorize the text using tf-idf (Term Frequency — Inverse Document Frequency) skipping

stopwords

Split dataset in X_train, X_test, Y_train, Y_test (Y variable is 0 or 1)

Train a Naive Bayes classifier with X_train and Y_train

5. Test model with Y_test, X_test

Ll

In [1]: from pprint import pprint
file = open('davincireviews.txt','r"')
dataset = file.readlines()
ds_size = len(dataset)
print(ds_size)
pprint (dataset[:5])

7086

['1\tThe Da Vinci Code book is just awesome.\n',

"1\tthis was the first clive cussler i've ever read, but even books like "
'Relic, and Da Vinci code were more plausible than this.\n',
'1\ti liked the Da Vinci Code a lot.\n',
"1\ti liked the Da Vinci Code a lot.\n',

"1\tI liked the Da Vinci Code but it ultimatly didn't seem to hold it's "
'own.\n']

In [2]: R
S = [1 # sentiments
to_find = 1 # little trick for visualization of sentence examples

[1 # reviews

for r_i, review in enumerate(dataset):
review.replace('\n',"'")
[s_label, sentence] = review.split('\t')

R.append(sentence)
label = int(s_label)
S.append(label)
if r_i < 10:
print (" ("+s_label+")\t"+sentence)

(1 The Da Vinci Code book is just awesome.

(1 this was the first clive cussler i've ever read, but even books like Relic, and Da
(1) i liked the Da Vinci Code a lot.

¢D) i liked the Da Vinci Code a lot.

(1) I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

(1 that's not even an exaggeration) and at midnight we went to Wal-Mart to buy the Da
¢D) I loved the Da Vinci Code, but now I want something better and different!..

¢D) i thought da vinci code was great, same with kite runner.

¢D) The Da Vinci Code is actually a good movie...

(1 I thought the Da Vinci Code was a pretty good book.

In [3]: #Exzample of positive review
print (R[0])
first_negative_idx = S.index(0)
Example of negative review
print (R[first_negative_idx])

The Da Vinci Code book is just awesome.

da vinci code was a terrible movie.

In [4]: from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

stop_words = set(stopwords.words('english') + ['.', "', ', "=, "\, *"])
sentence = R[0]

print (sentence)
Tokenize the sentence

tok_sentence = word_tokenize(sentence)

Removing stop words (plus some punctuation)

f_sentence = [w for w in tok_sentence if not w in stop_words]
print (f_sentence)

Untokenize back the sentence

sentence = ' '.join(f_sentence)

print (sentence)

The Da Vinci Code book is just awesome.

['The', 'Da', 'Vinci', 'Code', 'book', 'awesome']
The Da Vinci Code book awesome

Now create a routine to do that.

In [5]: stop_words = set(stopwords.words('english') + ['.',', ", "', "5 '\ %'])
def sentence_preprocessing(sentence):
tok_sentence = word_tokenize(sentence)
f_sentence = [w for w in tok_sentence if not w in stop_words]
sentence = " ".join(f_sentence)
return sentence

In [6]: corpus = []
for s in R:
corpus.append (sentence_preprocessing(s))

pprint (corpus[:2])

['The Da Vinci Code book awesome',
"first clive cussler 've ever read even books like Relic Da Vinci code "
'plausible']

In [7]: from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer ()

X = vectorizer.fit_transform(corpus)

In [8]: # (sentences, words)
print (X.shape)
the representations are stored in form of dictionaries for computational/space effic
print (X[0])
example_vector = X[0].toarray().flatten()
print (len(example_vector))

(7086, 2087)
(0, 1830) 0.39595230139931936
(0, 431) 0.300116326497803

(0, 1971) 0.300116326497803

(0, 344) 0.3000500585611166

(0, 227) 0.6569832347943919

(0, 146) 0.3760653503210292
2087

In [9]: from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(X, S)

In [10]: docs_new = ['Da vinci code is awesome',
'da vinci code is horrible']
X new_tfidf = vectorizer.transform(docs _new)

predicted = clf.predict(X_new_tfidf)
print (predicted) # 1: positive, 0: negative

[1 0]

Now perform a more accurate inference.

In [11]: from sklearn.model_selection import train_test_split

y=>5
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state:
clf = MultinomialNB() .fit(X_train, y_train)

In [12]: from sklearn import metrics
test_predicted = clf.predict(X_test)

print(metrics.classification_report(y_test, test_predicted,
target_names=['neg', 'pos']))

precision recall fl-score support

neg 0.98 0.96 0.97 626

pos 0.97 0.99 0.98 792

accuracy 0.98 1418
macro avg 0.98 0.97 0.98 1418
weighted avg 0.98 0.98 0.98 1418

	CountVectorizer and BoW

