
Recommender Systems

Alessandro Ortis
ortis@dmi.unict.it

mailto:atorrisi@dmi.unict.it

Recommender System: a system able to predict user ratings or preferences to
items. Recommender systems have become increasingly popular in recent
years, and are used in a variety of areas including movies, music, news, books,
research articles and products in general.

Examples:

• Offering news articles to on-line newspaper readers, based on a prediction
of reader interests (Google News)

• Offering customers of an on-line retailer suggestions about what they might
like to buy, based on their past history of purchases and/or product searches
(Amazon)

Introduction

Introduction

Introduction

Introduction
Traditional Retailers VS Online Market

• Shelf space is a scarce commodity for traditional retailers

• Web enables near-zero-cost dissemination of information

about products

• More choice necessitates better filters

Introduction
The Long Tail Phenomenom

Number
of

purchases

Items ranked by popularity

Introduction
The Long Tail Phenomenom

Number
of

purchases

Items ranked by popularity

Retail & online

Only online

Introduction
The Long Tail Phenomenom

Number
of

purchases

Items ranked by popularity

Retail & online

Only online

Traditional retail economics dictate that
stores only stock the likely hits, because
shelf space is expensive. But online
retailers can stock virtually everything, and
the number of available niche products
outnumber the hits by several orders of
magnitude.

Introduction
How Into Thin Air made Touching the Void a bestseller

1988 1997

Introduction
How Into Thin Air made Touching the Void a bestseller

Amazon recommendation software
noted patterns in buying behavior and
suggested that readers who liked Into
Thin Air would also like Touching the
Void. People took the suggestion,
agreed enthusiastically, wrote positive
reviews.

More sales, more feedback, more the
algorithm fueled recommendations…

1988 1997

Introduction
How Into Thin Air made Touching the Void a bestseller

Amazon recommendation software
noted patterns in buying behavior and
suggested that readers who liked Into
Thin Air would also like Touching the
Void. People took the suggestion,
agreed enthusiastically, wrote positive
reviews.

More sales, more feedback, more the
algorithm fueled recommendations…

…Touching the void became a movie!1988 1997

Introduction
Types of recommendations:

1. Editorial and hand curated
List of favorites
Lists of “essential” items

2. Simple aggregates
Top 10, Most Popular, Recent Uploads

3. Tailored to individual users
Amazon, Netflix, …

Introduction
Formal Model

X = set of Customers/Users

S = set of Items/Products

Utility function u: X × S→ R Utility Matrix: U = [u(x,i)]

x ∈ X, i ∈ S

R = set of ratings

R is a totally ordered set

e.g., 0-5 stars, real number in [0,1]

Introduction

0.4

10.2

0.30.5

0.21

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

Utility Matrix

Users

Items

Introduction

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

5 1
2 1

1 5
2

Utility Matrix

The utility matrix is sparse, meaning that most entries are unknown. That is,
we have no explicit information about the user’s preference for the item.

Introduction
The goal of recommendation systems:

would user A like Star Wars 2?

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Introduction

1. Gathering “known” ratings for matrix
How to collect the data in the utility matrix

2. Extrapolate unknown ratings from the known ones
Mainly interested in high unknown ratings.
We are not interested in knowing what you don’t like
but what you like.

3. Evaluating extrapolation methods
How to measure success/performance of
recommendation methods

Key problems

Introduction

Explicit
Ask people to rate items
Doesn’t work well in practice – people can’t be bothered

Implicit
Learn ratings from user actions

E.g., purchase implies high rating
What about low ratings?

Gathering ratings

Introduction

Key problem: Utility matrix U is sparse
Most people have not rated most items
Cold start:

New items have no ratings
New users have no history

Three approaches to recommender systems:
1) Content-based
2) Collaborative
3) Latent factor based

Extrapolating ratings

Contet Based
Recommendation Systems

Contet Based Recommendation Systems

Main idea: Recommend items to customer x similar to previous items
rated highly by x

Examples:

• Movie recommendations
Recommend movies with same actor(s), director, genre, …

• Websites, blogs, news
Recommend other sites with “similar” content

Contet Based Recommendation Systems

Main idea: Recommend items to customer x similar to previous items
rated highly by x

likes

Item profiles

Red

Circles

Triangles

User profile
match

recommend build

Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

• Movies: author, title, actor, director,…

• Books: author, genre, …

• Text: set of “important” words in document (e.g., TF-IDF)

Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

2. For each user, create a user profile

Examples:

• Average of rate item profiles

• Weighted average of rated item profiles with the ratings

• Weight by difference from average rating for item

Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

2. For each user, create a user profile

3. Prediction heuristic: given user profile x and item profile i, estimate

𝑢(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙 · 𝒊

| 𝒙 | ⋅ | 𝒊 |

Contet Based Recommendation Systems
Pros Cons

+: No need for data on other users
No cold-start or sparsity problems

+: Able to recommend to users with
unique tastes
+: Able to recommend new & unpopular
items

No first-rater problem
+: Able to provide explanations

Can provide explanations of
recommended items by listing
content-features that caused an item
to be recommended

–: Finding the appropriate features is
hard

E.g., images, movies, music
–: Recommendations for new users

How to build a user profile?
–: Overspecialization

Never recommends items outside
user’s content profile
People might have multiple interests
Unable to exploit quality judgments
of other users

Collaborative Filtering

Collaborative Filtering

Main Idea: harnessing quality judgments of other users.

These systems recommend items based on similarity measures between
users and/or items. The items recommended to a user are thoese preferred
by similar users.

Collaborative Filtering

• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx

Collaborative Filtering

• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

rA

rC

Collaborative Filtering

• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx

• Recommendation for a user y is made by looking at the users whose
rating vectors are most similar to ry

Collaborative Filtering

• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx

• Recommendation for a user y is made by looking at the users whose
rating vectors are most similar to ry

• This process of identifying similar users and recommending what similar
users like is called collaborative filtering

Collaborative Filtering

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Collaborative Filtering

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 5 1 ?

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Compare users A and C ratings

Collaborative Filtering

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 ? ? 5 1

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Compare users A and B ratings

Collaborative Filtering

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 ? ? 5 1

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Intuitively we want: sim(rA, rB) > sim(rA, rC)

Collaborative Filtering

Cosine Similarity: cos(rA, rB) =
rA · rB

| rA | ⋅ | rB |

Collaborative Filtering

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 0 0 5 1 0 0

B 5 5 4 0 0 0 0

C 0 0 0 2 4 5 0

D 0 3 0 0 0 0 3

Cosine Similarity:
(we can treat blanks as 0 values)

cos(rA, rB) =
rA · rB

| rA | ⋅ | rB |

Collaborative Filtering

sim(rA, rB) =
4×5

6,48×8,12
= 0,380

sim(rA, rC) =
5×2+1×4

6,48×6,71
= 0,322

we wanted sim(rA, rB) > sim(rA, rC)

This measure tells us that A is slightly closer
to B than C.

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 0 0 5 1 0 0

B 5 5 4 0 0 0 0

C 0 0 0 2 4 5 0

D 0 3 0 0 0 0 3

Collaborative Filtering

Subtract the (row) mean from each value in the utility matrix.

If we normalize ratings, we turn low ratings into negative numbers and high
ratings into positive numbers.

Cosine Similarity on normalized ratings:

Without normalization

sim(rA, rB) =
4×5

6,48×8,12
= 0,380

sim(rA, rC) =
5×2+1×4

6,48×6,71
= 0,322

With normalization
sim(rA, rB) = 0,092
sim(rA, rC) = −0,599

Collaborative Filtering

Cosine Similarity on normalized ratings:

This measure captures the intuition better, since A and C
disagree on the two movies they rated in common, while
A and B give similar scores to the one movie they rated in
common.

Harry
Potter 1

Harry
Potter 2

Harry
Potter 3

Twilight
Star

Wars 1
Star

Wars 2
Star

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

With normalization
sim(rA, rB) = 0,092
sim(rA, rC) = −0,599

Without norm.
sim(rA, rB) = 0,380
sim(rA, rC) = 0,322

Collaborative Filtering

Rating Prediction

Let rx be the vector of user x’s ratings
Let N be the set of k users most similar to x who have rated item i

Prediction for item s of user x:

𝑟𝑥𝑖 =
1

𝑘

𝑦∈𝑁

𝑟𝑦𝑖 𝑜𝑟 𝑟𝑥𝑖 =
σ𝑦∈𝑁 𝑠𝑖𝑚𝑥𝑦 ⋅ 𝑟𝑦𝑖
σ𝑦∈𝑁 𝑠𝑖𝑚𝑥𝑦

Collaborative Filtering

So far: user-user collaborative filtering
Dual approach: Item-item collaborative filtering

• For item i, find other similar items
• Estimate rating for item i based on ratings for similar items
• Can use same similarity metrics and prediction functions as in user-user model

=

);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

sij = similarity of items i and j

rxj = rating of user u on item j

N(i;x) = set items rated by x similar to i

Collaborative Filtering

In practice, it has been observed that item-item often works better than

user-user

Why? Items are simpler, users have multiple tastes. Intuitively. Items tend

to be classifiable in simple terms (e.g., music genre).

Latent Factor Methods

Latent Factor Methods

Features are very important in Machine Learning, the features you choose will
have a big effect on the performance of your learning algorithm.

There are algorithms that can try to automatically learn a good set of features
for you.

Rather than trying to hand design features, there are cases where you might be
able to have an algorithm which just learns what feature to use.

Latent Factor Methods

• Each item is represented by a feature vector x

• Each user is represented by a vector of parameters 𝜽

• Predict the rating of the user j to the item i as the product

𝜃𝑗
𝑇
𝑥𝑖

That is, we treat the prediction as a linear regression problem.

Two cases:

1. Given 𝑥1, 𝑥2,…., 𝑥𝑚 we can learn 𝜃𝑗 for each user j (i.e., content based)

2. Given 𝜃1, 𝜃2,…., 𝜃𝑛 we can learn 𝑥𝑖 for each item i (i.e., collaborative filtering)

Latent Factor Methods

Latent Factor Methods

Each item is
represented by a
feature vector x

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Latent Factor Methods

Each item is
represented by a
feature vector x

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Each user is represented by a vector of weights 𝜽

𝜃1 𝜃2 𝜃3 𝜃4

Latent Factor Methods

Each item is
represented by a
feature vector x

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Each user is represented by a vector of weights 𝜽

𝜃1 𝜃2 𝜃3 𝜃4

For user 3 (Carol) and movie 2 (Romance forever), the predicted rating is: 𝜃3 𝑇𝑥2

Latent Factor Methods

Linear Regression

to learn the parameter 𝜃𝑗(feature for user j):

to learn 𝜃1, 𝜃2,…., 𝜃𝑛:

𝑟 𝑖, 𝑗 = 1 if user j rated movie 𝑖

Latent Factor Methods

How to chose the features 𝑥1, 𝑥2,…., 𝑥𝑚 ?

Let’s change a bit the problem:

• Say that we know the user vector parameters 𝜃1, 𝜃2,…., 𝜃𝑛

• We can infer the values of 𝑥𝑖 for each movie

Latent Factor Methods

• Given 𝑥1, 𝑥2,…., 𝑥𝑚

we can estimate 𝜃1, 𝜃2,…., 𝜃𝑛

• Given 𝜃1, 𝜃2,…., 𝜃𝑛

we can estimate 𝑥1, 𝑥2,…., 𝑥𝑚

Latent Factor Methods

• Given 𝑥1, 𝑥2,…., 𝑥𝑚

we can estimate 𝜃1, 𝜃2,…., 𝜃𝑛

• Given 𝜃1, 𝜃2,…., 𝜃𝑛

we can estimate 𝑥1, 𝑥2,…., 𝑥𝑚

Unified cost function:

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Guess 𝜽

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Guess 𝜽→ infer 𝒙

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Guess 𝜽→ infer 𝒙→ infer (better) 𝜽

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Guess 𝜽→ infer 𝒙→ infer (better) 𝜽→ infer (better) 𝒙→ etc…

Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

3. for a user with parameters 𝜃 and movie with (learned) features 𝑥, predict a

rating of

𝜃 𝑇𝑥

References

• J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets

http://www.mmds.org

• Machine Learning - Stanford Course by Prof. Andrew Ng (on Coursera)

http://www.mmds.org/

