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Recommender System: a system able to predict user ratings or preferences to
items. Recommender systems have become increasingly popular in recent
years, and are used in a variety of areas including movies, music, news, books,
research articles and products in general.

Examples:

• Offering news articles to on-line newspaper readers, based on a prediction
of reader interests (Google News)

• Offering customers of an on-line retailer suggestions about what they might
like to buy, based on their past history of purchases and/or product searches
(Amazon)
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Introduction
Traditional Retailers VS Online Market

• Shelf space is a scarce commodity for traditional retailers

• Web enables near-zero-cost dissemination of information

about products

• More choice necessitates better filters



Introduction
The Long Tail Phenomenom

Number
of 

purchases

Items ranked by popularity



Introduction
The Long Tail Phenomenom

Number
of 

purchases

Items ranked by popularity

Retail & online

Only online



Introduction
The Long Tail Phenomenom

Number
of 

purchases

Items ranked by popularity

Retail & online

Only online

Traditional retail economics dictate that
stores only stock the likely hits, because
shelf space is expensive. But online
retailers can stock virtually everything, and
the number of available niche products
outnumber the hits by several orders of
magnitude.
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Introduction
How Into Thin Air made Touching the Void a bestseller

Amazon recommendation software
noted patterns in buying behavior and
suggested that readers who liked Into
Thin Air would also like Touching the
Void. People took the suggestion,
agreed enthusiastically, wrote positive
reviews.

More sales, more feedback, more the
algorithm fueled recommendations…

…Touching the void became a movie!1988 1997



Introduction
Types of recommendations:

1. Editorial and hand curated
List of favorites
Lists of “essential” items

2. Simple aggregates
Top 10, Most Popular, Recent Uploads

3. Tailored to individual users
Amazon, Netflix, …



Introduction
Formal Model

X = set of Customers/Users

S = set of Items/Products

Utility function u: X × S→ R Utility Matrix: U = [u(x,i)]

x ∈ X, i ∈ S

R = set of ratings

R is a totally ordered set

e.g., 0-5 stars, real number in [0,1]
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Avatar LOTR Matrix Pirates
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The utility matrix is sparse, meaning that most entries are unknown. That is,
we have no explicit information about the user’s preference for the item.



Introduction
The goal of recommendation systems:

would user A like Star Wars 2?
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Potter 1
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Potter 3

Twilight
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Wars 1
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Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3



Introduction

1. Gathering “known” ratings for matrix
How to collect the data in the utility matrix

2. Extrapolate unknown ratings from the known ones
Mainly interested in high unknown ratings.
We are not interested in knowing what you don’t like
but what you like.

3. Evaluating extrapolation methods
How to measure success/performance of
recommendation methods

Key problems



Introduction

Explicit
Ask people to rate items
Doesn’t work well in practice – people can’t be bothered

Implicit
Learn ratings from user actions

E.g., purchase implies high rating
What about low ratings?

Gathering ratings



Introduction

Key problem: Utility matrix U is sparse
Most people have not rated most items
Cold start: 

New items have no ratings
New users have no history

Three approaches to recommender systems:
1) Content-based
2) Collaborative
3) Latent factor based

Extrapolating ratings
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Contet Based Recommendation Systems

Main idea: Recommend items to customer x similar to previous items 
rated highly by x

Examples:

• Movie recommendations
Recommend movies with same actor(s), director, genre, …

• Websites, blogs, news
Recommend other sites with “similar” content



Contet Based Recommendation Systems

Main idea: Recommend items to customer x similar to previous items 
rated highly by x
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Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

• Movies: author, title, actor, director,…

• Books: author, genre, …

• Text: set of “important” words in document (e.g., TF-IDF)



Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

2. For each user, create a user profile

Examples:

• Average of rate item profiles

• Weighted average of rated item profiles with the ratings

• Weight by difference from average rating for item



Contet Based Recommendation Systems

1. For each item, create an item profile, that is a set (vector) of features

2. For each user, create a user profile

3. Prediction heuristic: given user profile x and item profile i, estimate

𝑢(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙 · 𝒊

| 𝒙 | ⋅ | 𝒊 |



Contet Based Recommendation Systems
Pros Cons

+: No need for data on other users
No cold-start or sparsity problems

+: Able to recommend to users with 
unique tastes
+: Able to recommend new & unpopular 
items

No first-rater problem
+: Able to provide explanations

Can provide explanations of 
recommended items by listing 
content-features that caused an item 
to be recommended

–: Finding the appropriate features is 
hard

E.g., images, movies, music
–: Recommendations for new users

How to build a user profile?
–: Overspecialization

Never recommends items outside 
user’s content profile
People might have multiple interests
Unable to exploit quality judgments 
of other users
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Collaborative Filtering

Main Idea: harnessing quality judgments of other users.

These systems recommend items based on similarity measures between
users and/or items. The items recommended to a user are thoese preferred
by similar users.
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• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx
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• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx
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Collaborative Filtering

• Represent users by their rows in the utility matrix (i.e., the set of ratings
given by the user)

For each user x, we define the user rating vector rx

• Recommendation for a user y is made by looking at the users whose
rating vectors are most similar to ry

• This process of identifying similar users and recommending what similar
users like is called collaborative filtering



Collaborative Filtering
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How to measure similarity between users rating vectors?



Collaborative Filtering

Harry 
Potter 1

Harry 
Potter 2

Harry 
Potter 3

Twilight
Star 

Wars 1
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Wars 2
Star 

Wars 3

A 4 5 1 ?

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Compare users A and C ratings



Collaborative Filtering

Harry 
Potter 1

Harry 
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Twilight
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A 4 ? ? 5 1
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C 2 4 5
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How to measure similarity between users rating vectors?

Compare users A and B ratings



Collaborative Filtering

Harry 
Potter 1

Harry 
Potter 2

Harry 
Potter 3

Twilight
Star 

Wars 1
Star 

Wars 2
Star 

Wars 3

A 4 ? ? 5 1

B 5 5 4

C 2 4 5

D 3 3

How to measure similarity between users rating vectors?

Intuitively we want: sim(rA, rB) > sim(rA, rC)



Collaborative Filtering

Cosine Similarity: cos(rA, rB) =
rA · rB

| rA | ⋅ | rB |



Collaborative Filtering

Harry 
Potter 1

Harry 
Potter 2

Harry 
Potter 3

Twilight
Star 

Wars 1
Star 

Wars 2
Star 

Wars 3

A 4 0 0 5 1 0 0

B 5 5 4 0 0 0 0

C 0 0 0 2 4 5 0

D 0 3 0 0 0 0 3

Cosine Similarity:
(we can treat blanks as 0 values)

cos(rA, rB) =
rA · rB

| rA | ⋅ | rB |



Collaborative Filtering

sim(rA, rB) = 
4×5

6,48×8,12
= 0,380

sim(rA, rC) = 
5×2+1×4

6,48×6,71
= 0,322

we wanted sim(rA, rB) > sim(rA, rC)

This measure tells us that A is slightly closer
to B than C.

Harry 
Potter 1

Harry 
Potter 2

Harry 
Potter 3

Twilight
Star 

Wars 1
Star 

Wars 2
Star 

Wars 3

A 4 0 0 5 1 0 0

B 5 5 4 0 0 0 0

C 0 0 0 2 4 5 0

D 0 3 0 0 0 0 3



Collaborative Filtering

Subtract the (row) mean from each value in the utility matrix.

If we normalize ratings, we turn low ratings into negative numbers and high 
ratings into positive numbers.

Cosine Similarity on normalized ratings:

Without normalization

sim(rA, rB) = 
4×5

6,48×8,12
= 0,380

sim(rA, rC) = 
5×2+1×4

6,48×6,71
= 0,322

With normalization
sim(rA, rB) = 0,092
sim(rA, rC) = −0,599



Collaborative Filtering

Cosine Similarity on normalized ratings:

This measure captures the intuition better, since A and C
disagree on the two movies they rated in common, while
A and B give similar scores to the one movie they rated in
common.

Harry 
Potter 1

Harry 
Potter 2

Harry 
Potter 3

Twilight
Star 

Wars 1
Star 

Wars 2
Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

With normalization
sim(rA, rB) = 0,092
sim(rA, rC) = −0,599

Without norm.
sim(rA, rB) = 0,380
sim(rA, rC) = 0,322



Collaborative Filtering

Rating Prediction

Let rx be the vector of user x’s ratings
Let N be the set of k users most similar to x who have rated item i

Prediction for item s of user x:

𝑟𝑥𝑖 =
1

𝑘


𝑦∈𝑁

𝑟𝑦𝑖 𝑜𝑟 𝑟𝑥𝑖 =
σ𝑦∈𝑁 𝑠𝑖𝑚𝑥𝑦 ⋅ 𝑟𝑦𝑖
σ𝑦∈𝑁 𝑠𝑖𝑚𝑥𝑦



Collaborative Filtering

So far: user-user collaborative filtering
Dual approach: Item-item collaborative filtering

• For item i, find other similar items
• Estimate rating for item i based on ratings for similar items
• Can use same similarity metrics and prediction functions as in user-user model










=

);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

sij = similarity of items i and j

rxj = rating of user u on item j

N(i;x) = set items rated by x similar to i



Collaborative Filtering

In practice, it has been observed that item-item often works better than 

user-user

Why? Items are simpler, users have multiple tastes. Intuitively. Items tend 

to be classifiable in simple terms (e.g., music genre).
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Latent Factor Methods

Features are very important in Machine Learning, the features you choose will
have a big effect on the performance of your learning algorithm.

There are algorithms that can try to automatically learn a good set of features
for you.

Rather than trying to hand design features, there are cases where you might be
able to have an algorithm which just learns what feature to use.



Latent Factor Methods

• Each item is represented by a feature vector x

• Each user is represented by a vector of parameters 𝜽

• Predict the rating of the user j to the item i as the product

𝜃𝑗
𝑇
𝑥𝑖

That is, we treat the prediction as a linear regression problem.

Two cases:

1. Given 𝑥1, 𝑥2,…., 𝑥𝑚 we can learn 𝜃𝑗 for each user j (i.e., content based)

2. Given 𝜃1, 𝜃2,…., 𝜃𝑛 we can learn 𝑥𝑖 for each item i (i.e., collaborative filtering)
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feature vector x
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Each item is
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feature vector x
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Each user is represented by a vector of weights 𝜽

𝜃1 𝜃2 𝜃3 𝜃4



Latent Factor Methods

Each item is
represented by a
feature vector x

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Each user is represented by a vector of weights 𝜽

𝜃1 𝜃2 𝜃3 𝜃4

For user 3 (Carol) and movie 2 (Romance forever), the predicted rating is: 𝜃3 𝑇𝑥2



Latent Factor Methods

Linear Regression

to learn the parameter 𝜃𝑗(feature for user j):

to learn 𝜃1, 𝜃2,…., 𝜃𝑛:

𝑟 𝑖, 𝑗 = 1 if user j rated movie 𝑖



Latent Factor Methods

How to chose the features 𝑥1, 𝑥2,…., 𝑥𝑚 ?

Let’s change a bit the problem:

• Say that we know the user vector parameters 𝜃1, 𝜃2,…., 𝜃𝑛

• We can infer the values of 𝑥𝑖 for each movie



Latent Factor Methods

• Given 𝑥1, 𝑥2,…., 𝑥𝑚

we can estimate 𝜃1, 𝜃2,…., 𝜃𝑛

• Given 𝜃1, 𝜃2,…., 𝜃𝑛

we can estimate 𝑥1, 𝑥2,…., 𝑥𝑚



Latent Factor Methods

• Given 𝑥1, 𝑥2,…., 𝑥𝑚

we can estimate 𝜃1, 𝜃2,…., 𝜃𝑛

• Given 𝜃1, 𝜃2,…., 𝜃𝑛

we can estimate 𝑥1, 𝑥2,…., 𝑥𝑚

Unified cost function:



Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize
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Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

Guess 𝜽→ infer 𝒙→ infer (better) 𝜽→ infer (better) 𝒙→ etc…



Latent Factor Methods
Procedure:

1. Initialize 𝑥1, 𝑥2,…., 𝑥𝑚 and 𝜃1, 𝜃2,…., 𝜃𝑛 to small random values

2. Minimize

3. for a user with parameters 𝜃 and movie with (learned) features 𝑥, predict a

rating of

𝜃 𝑇𝑥
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