

Word and Document Embeddings

Alessandro Ortis, PhD ortis@dmi.unict.it

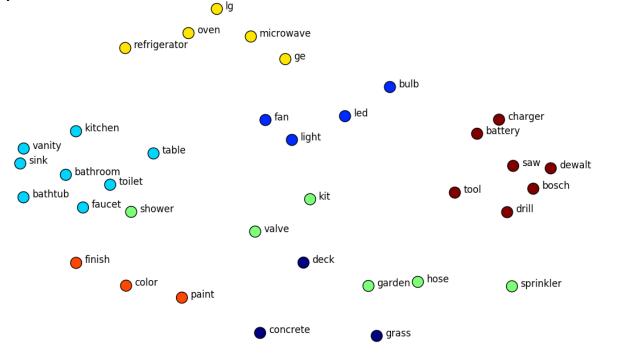
Word2vec is a neural network architecture used to produce word embeddings.

word ---- vector

Word2vec takes as its input a large corpus of text and produces a vector space in which each word is assigned to a corresponding vector in the space.

Word vectors are positioned in the vector space such that words that share <u>common contexts</u> in the corpus are located in close proximity to one another in the space.

Words that share <u>common contexts</u> in the corpus are located in close proximity to one another.



We need a way to compare words so that if two words are similar, then their representations are close.

•••

armchair man

bench woman

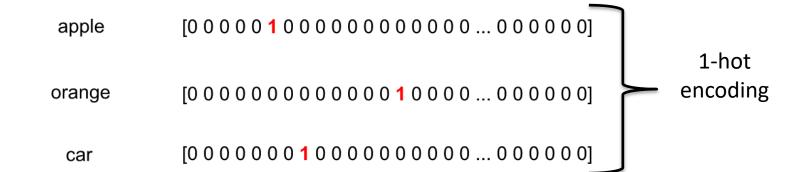
chair child

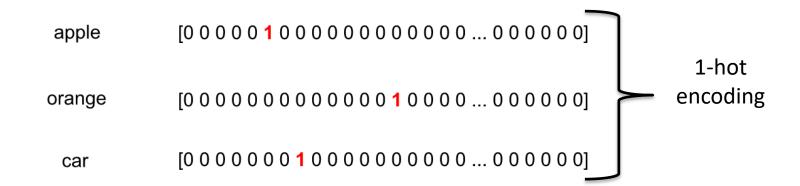
Next to the sofa is a desk, and a person is sitting behind it.

deck chair girl

seat boy

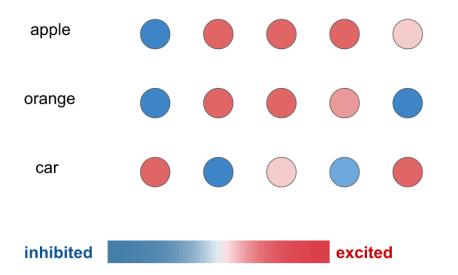
•••





apple juice _____ juice ?

Word is represented as continuous level of activations



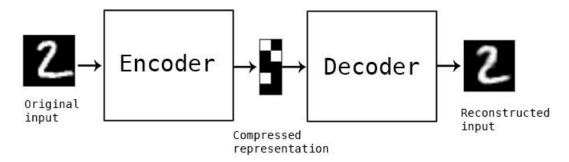
But we do not have word similarities (how to encode that the words *orange* and *apple* share the "context" juice?).

How do we learn the vectors? Use an auto-encoder

But we do not have word similarities (how to encode that the words *orange* and *apple* share the "context" juice?).

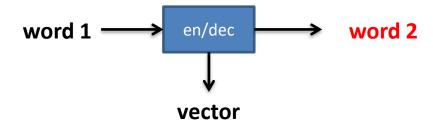
How do we learn the vectors? Use an *auto-encoder*

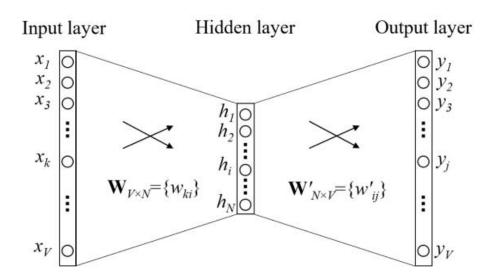
An auto-encoder learns a representation (encoding) for a set of data with the aim to use the representation to reconstruct the original data.

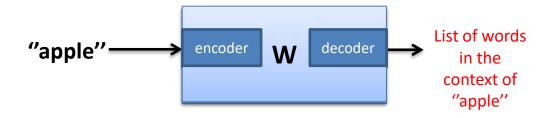


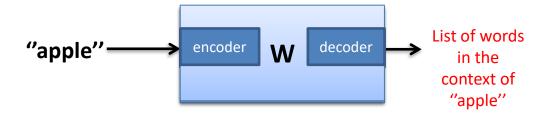
Like auto-encoders, we can train a system to perform a different task, and hope that similarity will emerge...

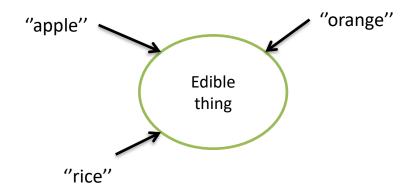
We will train a classifier to predict the words surrounding each word

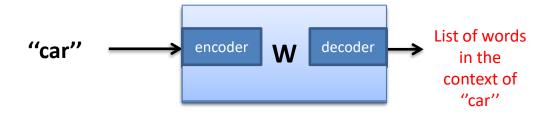




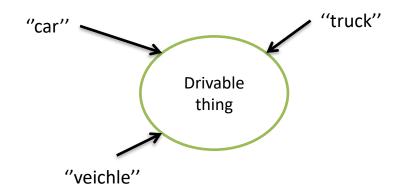


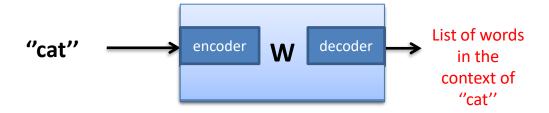




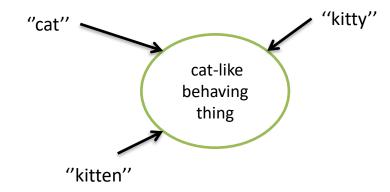


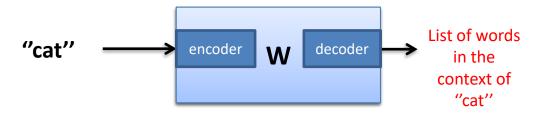
I eat an orange every day.



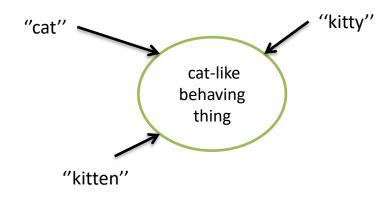


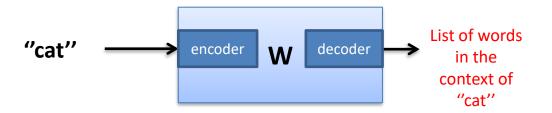
I eat an orange every day.



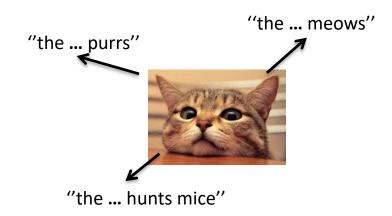


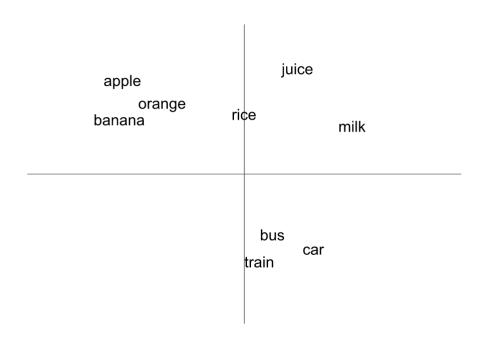
- Don't worry about the meaning of "cat", "kitty" or "kitten",
- The context gives you a strong idea that those words are similar
- You have to be "cat-like" to purr and hunt mice regardless whether you are a cat, a kitty or a kitten

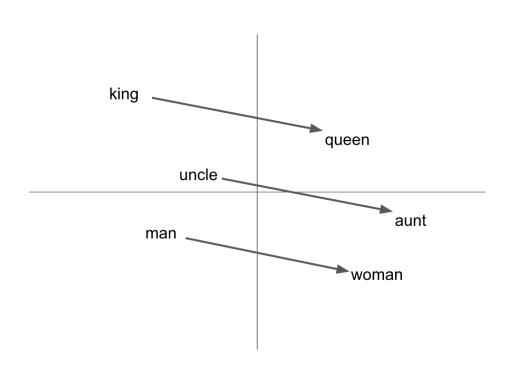




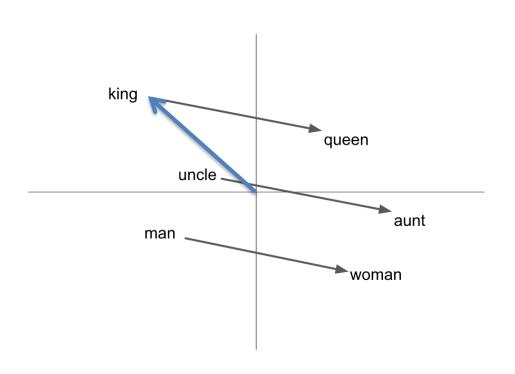
- Don't worry about the meaning of "cat", "kitty" or "kitten",
- The context gives you a strong idea that those words are similar
- You have to be "cat-like" to purr and hunt mice regardless whether you are a cat, a kitty or a kitten



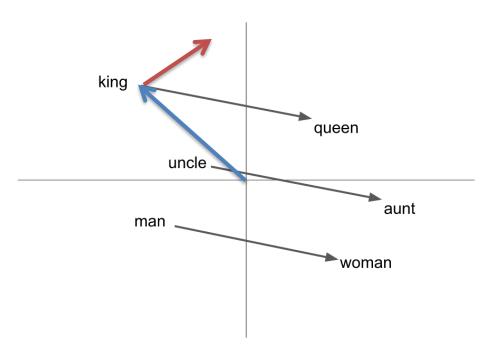




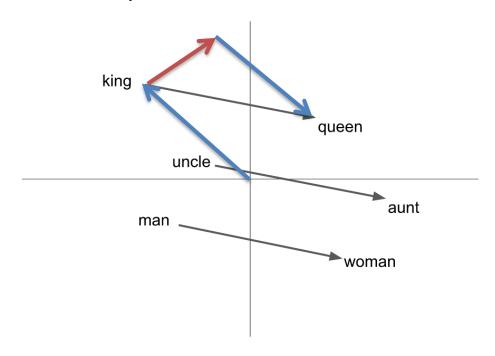
King



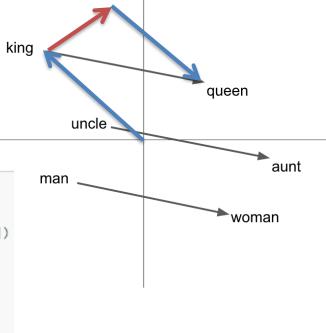
King - man



King – man + woman → queen



```
King – man + woman → queen
```

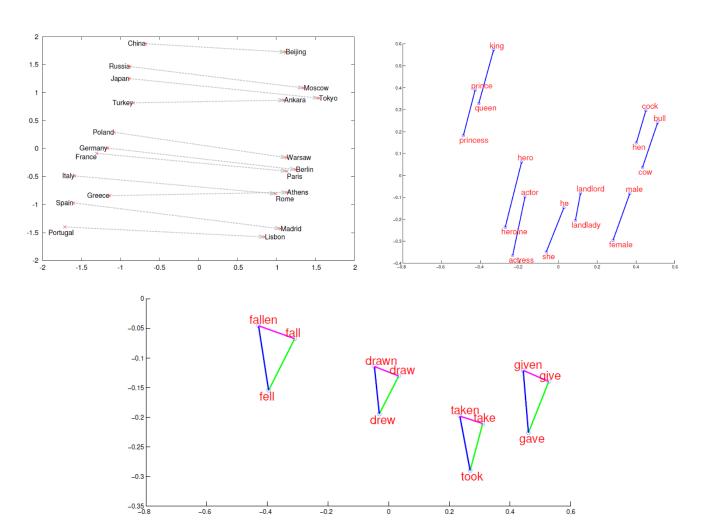


```
>>> model.wv.most_similar(positive=['woman', 'king'], negative=['man'])
[('queen', 0.50882536), ...]
>>> model.wv.most_similar_cosmul(positive=['woman', 'king'], negative=['man'])
[('queen', 0.71382287), ...]
>>> model.wv.doesnt_match("breakfast cereal dinner lunch".split())
'cereal'
>>> model.wv.similarity('woman', 'man')
0.73723527
```

Link to the python library

Expression	Nearest token
Paris - France + Italy	Rome
bigger - big + cold	colder
sushi - Japan + Germany	bratwurst
Cu - copper + gold	Au
Windows - Microsoft + Google Android	
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs

Expression	Nearest tokens
Czech + currency	koruna, Czech crown, Polish zloty, CTK
Vietnam + capital	Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese
German + airlines	airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa
Russian + river	Moscow, Volga River, upriver, Russia
French + actress	Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg



Word2vec provides a method to learn representations of words.

Doc2vec implements the same mechanism to learn representations of <u>documents</u> (named *Paragraph Vectors*).

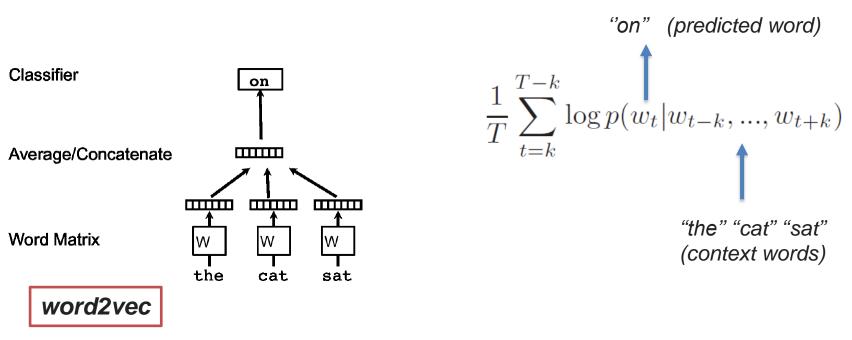
In particular, Doc2vec learns fixed-length feature representations of pieces of texts, such as:

- Sentences
- Paragraphs
- Documents
- Comments
- Tweets
- •

Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." *International Conference on Machine Learning*. 2014.

word2vec \rightarrow doc2vec

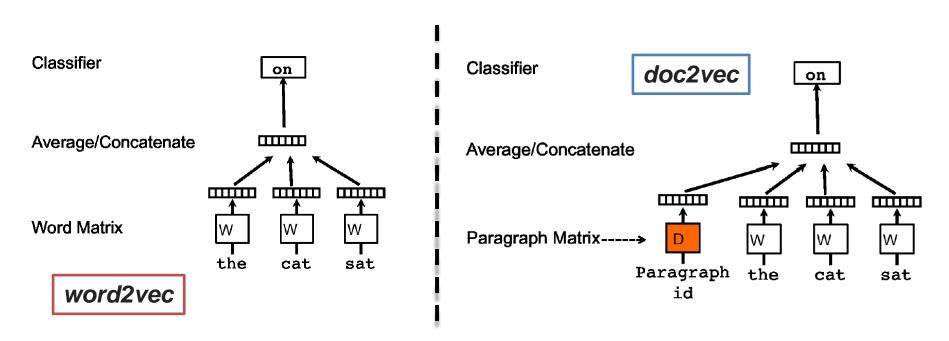
Input: "the cat sat on the sofa"



Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." *International Conference on Machine Learning*. 2014.

word2vec → doc2vec

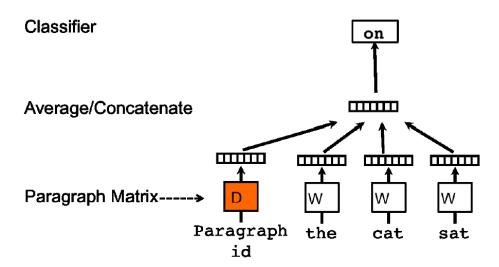
Input: "the cat sat on the sofa"



Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." *International Conference on Machine Learning*. 2014.

Training:

- A set of words (context) are used to predict one word in the same context
- The *document* gives a further context indication to the input words
- The model learns shared representations for words and unique paragraph vectors for documents



Training:

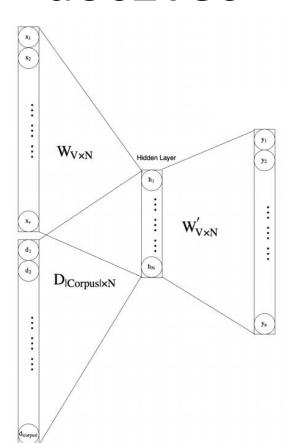
- A set of words (context) are used to predict one word in the same context
- The *document* gives a further context indication to the input words
- The model learns shared representations for words and unique paragraph vectors for documents

Inference:

 The paragraph vectors are inferred by fixing the word vectors and training the new paragraph vector until converge

Input words

Input document



Training

Output layer

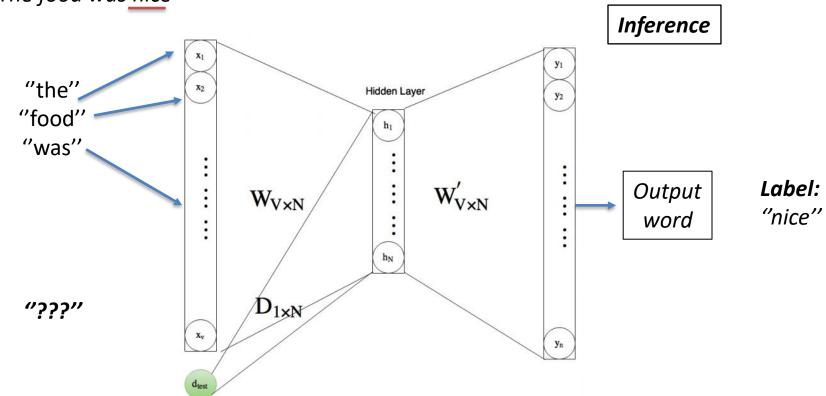
Doc1: "The food was nice" Training "the" "food" "was" $W_{V\times N}$ Hidden Layer $W_{V\times N}^{^{\prime}}$ "nice" $D_{|Corpus| \times N}$ "Doc1"

Doc1: "The food was nice" Training "the" "food" 'nice'' $W_{V\times N}$ Hidden Layer "was" $W_{V\times N}^{^{\prime}}$ $D_{|Corpus| \times N}$ "Doc1"

Doc1: "The food was nice" Training "the" 'was'' 'nice'' $W_{V\times N}$ Hidden Layer 'food'' $W_{V\times N}^{^{\prime}}$ $D_{|Corpus| \times N}$ "Doc1"

Inference y_1 \mathbf{x}_2 Input words Hidden Layer **y**2 $W_{V\times N}$ **Output layer** $\mathbf{D}_{1\times N}$ $\mathbf{x}_{\mathbf{v}}$ Test document d_{test}

???: "The food was nice"

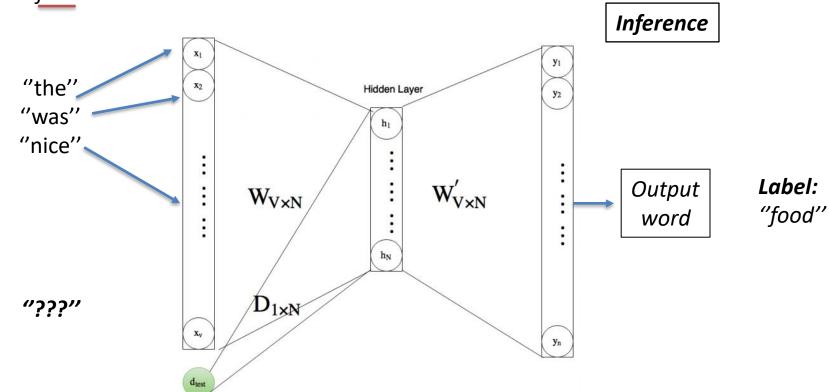


???: "The food was nice" Inference y_1 "the" x_2 Hidden Layer **y**2 "food" h_1 "was" fixed fixed Output Label: $W_{V\times N}$ "nice" word "???" $\mathbf{D}_{1\times N}$ **Backpropagation** $\mathbf{x}_{\mathbf{v}}$ yn Vector update

???: "The food was nice" Inference y_1 "the" Hidden Layer **y**2 "food" "nice" Label: Output $W'_{V\times N}$ $W_{V\times N}$ "was" word $D_{1\times N}$ "???" $\mathbf{x}_{\mathbf{v}}$ y_n

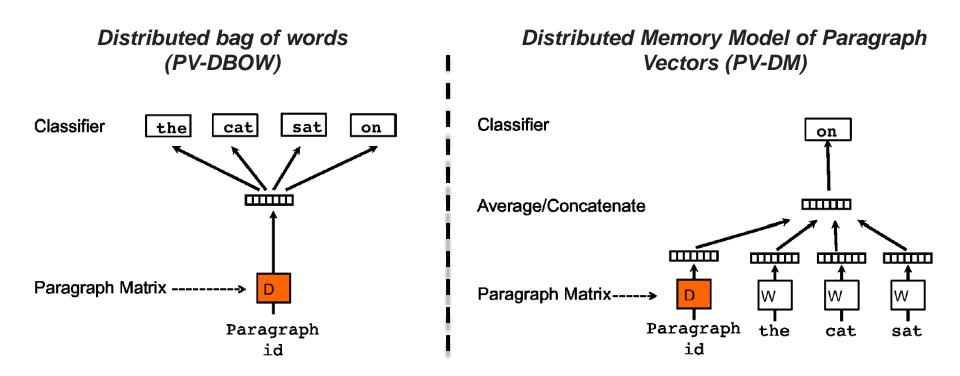
???: "The food was nice" Inference y_1 "the" x_2 Hidden Layer **y**2 "food" h_1 "nice" fixed fixed Output Label: $W_{V\times N}$ "was" word "???" $\mathbf{D}_{1\times N}$ **Backpropagation** $\mathbf{x}_{\mathbf{v}}$ yn Vector update

???: "The food was nice"



???: "The food was nice" Inference y_1 "the" x_2 Hidden Layer **y**2 "was" h_1 "nice" fixed fixed Output Label: $W_{V\times N}$ "food" word "???" $\mathbf{D}_{1\times N}$ **Backpropagation** $\mathbf{x}_{\mathbf{v}}$ yn Vector update

???: "The food was nice" Inference y_1 "the" x_2 Hidden Layer **y**2 "was" h_1 "nice" fixed fixed Output Label: $W_{V\times N}$ "food" word $D_{1\times N}$ "doc1" **Backpropagation** $\mathbf{x}_{\mathbf{v}}$ yn convergence



To sum up:

- A model able to learn fixed-length representations from variable-length pieces of texts
- Word representations (shared) are learned in conjunction with paragraph representations (unique)
- **PV-DM:** predicts a word given a words+doc context
- PV-DBOW: predicts a set of words given a document as a context
- Document inference: the model is trainied fixing the word vectors until convergence.

word2vec & doc2vec

Genism Python Library: https://radimrehurek.com/gensim/

```
>>> from gensim.test.utils import common_texts, get_tmpfile
>>> from gensim.models import Word2Vec
>>>
>>> path = get_tmpfile("word2vec.model")
>>>
>>> model = Word2Vec(common_texts, size=100, window=5, min_count=1, workers=4)
>>> model.save("word2vec.model")
```

```
>>> from gensim.test.utils import common_texts
>>> from gensim.models.doc2vec import Doc2Vec, TaggedDocument
>>>
>>> documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(common_texts)]
>>> model = Doc2Vec(documents, vector_size=5, window=2, min_count=1, workers=4)
```