
Sentiment Analysis

Alessandro Ortis, PhD

ortis@dmi.unict.it

mailto:atorrisi@dmi.unict.it

Outline

• Sentiment Analysis

• Introduction

• Natural Language Processing (NLP)

• Formalization

• Use of Machine Learning

• Lexical Resources

“Sentiment analysis is the computational study of people’s opinions, sentiments,
emotions, and attitudes. This fascinating problem is increasingly important in
business and society. It offers numerous research challenges but promises
insight useful to anyone interested in opinion analysis and social media analysis.”

“Sentiment Analysis: mining sentiments, opinions, and emotions”
Bing Liu

Cambridge University Press, June 2015

Introduction
Sentiment Analysis / Opinion Mining

Introduction
Sentiment Analysis / Opinion Mining

Introduction
Motivations

Introduction
Motivations

Introduction
Motivations

Social Media Monitoring: monitoring conversations happening on social
media channels about your brand/company.

Introduction
Motivations

Facebook Post ID: 421326344567984_1473525486014726

https://developers.facebook.com/tools/explorer/?method=GET&path=421326344567984_1473525486014726?fields%3Dpermalink_url&version=v2.11

Introduction

Facebook Post ID: 421326344567984_1473525486014726

https://developers.facebook.com/tools/explorer/?method=GET&path=421326344567984_1473525486014726?fields%3Dpermalink_url&version=v2.11

Introduction

Facebook Post ID: 421326344567984_1473525486014726

https://developers.facebook.com/tools/explorer/?method=GET&path=421326344567984_1473525486014726?fields%3Dpermalink_url&version=v2.11

SMM – GMF – A.A. 2016/2017

Introduction
Motivations

Negative
comments
about the
brand

Introduction
Motivations

Introduction
Motivations

Introduction
Motivations

Introduction
What is Sentiment Analysis of Social Posts?

Introduction
Problems

Introduction
How to perform Sentiment Analysis?

Introduction
How to perform Sentiment Analysis?

Machine Learning
&

Pattern Recognition

NLP

NLP

NLP

NLP

Introduction

• Sentence Segmentation
• Part-of-speech tagging
• Stemming&Lemmatizing
• Stop words removal

• Data Representation
• Sentiment Classification

Machine Learning
&

Pattern Recognition
Natural Language Processing (NLP)

Natural Language Processing

Tokenization: In Natural Language Processing (NLP), tokenization is the process of
breaking a stream of text up into words, phrases, symbols, or other meaningful
elements called tokens. The list of tokens becomes input for further processing
such as parsing or text mining. Tokenization is useful both in linguistics and in
computer science, where it forms part of lexical analysis.

Natural Language Processing

Part of Speech (POS): in corpus linguistics, part-of-speech tagging (POS tagging),
also called grammatical tagging or word-category disambiguation, is the process
of marking up a word in a text (corpus) as corresponding to a particular part of
speech, based on both its definition and its context—i.e., its relationship with
adjacent and related words in a phrase, sentence, or paragraph.

Natural Language Processing

Natural Language Processing

Stemming and Lemmatizing: In Natural Language Processing (NLP), the goal of
both stemming and lemmatization is to reduce inflectional forms and sometimes
derivationally related forms of a word to a common base form.

am, are, is→ be
car, cars, car's, cars’→ car
the boy's cars are different colors→ the boy car be differ color

Stemming usually refers to a crude heuristic process that chops off the ends of
words. Lemmatization refers to doing things properly with the use of a
vocabulary aiming to return the base or dictionary form of a word, which is
known as the lemma.

Natural Language Processing

Stop words removal: stop word is a commonly used word (such as “the”, “a”,
“an”, “in”) that a search engine has been programmed to ignore, both when
indexing entries for searching and when retrieving them as the result of a search
query. We can remove them easily, by storing a list of words that you consider to
be stop words.

NLTK(Natural Language Toolkit) in python has a list of stopwords stored in 16
different languages.

Output

Natural Language Processing

Tasks

Simplest task
– Is the attitude of the text positive or negative?

More complex
– Rank the attitude of the text from 1 to 5

Advanced
– Detect the target, holder, or complex attitude types

Simple algorithm for polarity detection
(step-by-step example)

• Preprocess the text (e.g. tokenize, split in sentences, and POS tags)

• Definition of dictionary of positive and negative expressions

• Tagging tokens with dictionaries

• Measure the sentiment

Simple algorithm for polarity detection

Input text:

”What can I say about this place. The staff of the restaurant is nice and
the eggplant is not bad.
Apart from that, very uninspired food, lack of atmosphere and too
expensive. I am a staunch vegetarian and was sorely disappointed with
the veggie options on the menu. Will be the last time I visit, I
recommend others to avoid.”

Simple algorithm for polarity detection

Breaking the text in sentences:

What can I say about this place.

The staff of the restaurant is nice and the eggplant is not bad.

Apart from that, very uninspired food, lack of atmosphere and too
expensive.

I am a staunch vegetarian and was sorely disappointed with the veggie
options on the menu.

Will be the last time I visit, I recommend others to avoid.

Simple algorithm for polarity detection

Sentiment dictionaries:

positive.yml
nice: [positive]
awesome: [positive]
cool: [positive]
superb: [positive]

negative.yml
bad: [negative]
uninspired: [negative]
expensive: [negative]
dissapointed: [negative]
avoid: [negative]

Simple algorithm for polarity detection

Apply dictionaries to detect positive/negative words:

What can I say about this place.

The staff of the restaurant is nice and the eggplant is not bad.

Apart from that, very uninspired food, lack of atmosphere and too
expensive.

I am a staunch vegetarian and was sorely disappointed with the veggie
options on the menu.

Will be the last time I visit, I recommend others to avoid.

Simple algorithm for polarity detection

Sentiment measure

• Simply counting how many positive and negative expressions we
detected, could be a (very naive) sentiment measure.

• Sentiment measure = -4, as there are 5 negative terms and 1 positive

(Nice +1) + (Bad -1) + (Uninspired -1) +
(Expensive -1) + (Disappointed -1) + (Avoid -1)

Simple algorithm for polarity detection

Incrementers and decrementers

The previous “sentiment score” was very basic: it only counts positive and
negative expressions and makes a sum, without taking into account that
maybe some expressions are more positive or more negative than others.

inc.yml
too: [inc]
very: [inc]
sorely: [inc]

dec.yml
barely: [dec]
little: [dec]

Simple algorithm for polarity detection

Updating Example

very uninspired ('very', 'very', ['inc', 'RB']), ('uninspired’,
'uninspire', ['negative', 'VBN']),

too expensive (('too', 'too', ['inc', 'RB']),
('expensive', 'expensive', ['negative', 'JJ']),

sorely disappointed ('sorely', 'sorely', ['inc', 'RB']),
('dissapointed', 'dissapoint', ['negative','VBN']),

Simple algorithm for polarity detection

New sentiment measure

Now, we could improve in some way our sentiment score. The idea is that
"good" has more strength than "barely good" but less than "very good".

New score is (Nice +1) + (Bad -1) + (Very uninspired -2) + (Too expensive -2) +
(Sorely disappointed -2) + (Avoid -1) = -7

Notice that the review is now considered more negative, due to the
appearance of expressions such as "very uninspired", "too expensive" and
"sorely dissapointed”.

Simple algorithm for polarity detection

Inverters and polarity flips

With the approach we've been following so far, some expressions could be
incorrectly tagged. For example, this part of our example review:

the eggplant is not bad

contains the word bad but the sentence is a positive opinion about the eggplant.
This is because the appearance of the negation word not, that flips the meaning of
the negative adjective bad. We could take into account these types of polarity flips
defining a dictionary of inverters:

inv.yml
lack of: [inv]
not: [inv]

Simple algorithm for polarity detection

New sentiment measure

New score is (Nice +1) + (Not bad +1) + (Very uninspired -2) + (Too expensive -
2) + (Sorely disappointed -2) + (Avoid -1) = -5

Easier and harder Problems

• Tweets from Twitter are probably the easiest, short and thus usually
straight to the point

• Reviews are next, entities are given (almost) and there is little noise

• Discussions, comments, and blogs are hard.
• Multiple entities, comparisons, noisy, sarcasm, etc
• Determining sentiments seems to be easier.
• Extracting entities and aspects is harder.
• Combining them is even harder.

A structure (i.e., formalization) of the problem is needed for harder tasks.

Example of Hard Problem

A structure (i.e., formalization) of the problem is needed for harder tasks.

Formalization

1. Opinion definition. What is an opinion?

o Can we provide a structured definition?

o If we cannot structure a problem, we probably do not understand

the problem.

2. Opinion summarization

o Opinions are subjective. An opinion from a single person is often

not sufficient for action.

o We need opinions from many people, and thus opinion

summarization.

User Id: Abc123, Date: 5-1-2008
Review:“I bought an iPhone a few days ago. It is such a nice phone. The touch
screen is really cool. The voice quality is clear too. It is much better than my old
Blackberry, which was a terrible phone and so difficult to type with its tiny keys.
However, my mother was mad with me as I did not tell her before I bought the
phone. She also thought the phone was too expensive, ...”

Different levels of granularity: one can look at this review/blog at the

1. document level, i.e., is this review + or – ?
2. sentence level, i.e., is each sentence + or - ?
3. entity and feature/aspect level

Formalization

Formalization

User Id: Abc123, Date: 5-1-2008
Review:“I bought an iPhone a few days ago. It is such a nice phone. The touch
screen is really cool. The voice quality is clear too. It is much better than my old
Blackberry, which was a terrible phone and so difficult to type with its tiny keys.
However, my mother was mad with me as I did not tell her before I bought the
phone. She also thought the phone was too expensive, ...”

What do we see?

• Opinion targets: entities and their features/aspects
• Sentiments: positive and negative
• Opinion holders: persons who hold the opinions
• Time: when opinions are expressed

Formalization
Opinion: an opinion has the following basic components

(gi, soijl, hi, tl),

where

• gj is a target (e.g., iPhone)
• soijl is the sentiment value of the opinion from opinion holder hi on target gj at

time tl.
• soijl is positive, negative or neutral, or a rating score
• hi is an opinion holder.
• tl is the time when the opinion is expressed.

Formalization
In some cases, opinion target is a single entity or topic.

“I love iPhone”

But in many other cases, it is more complex.

“I bought an iPhone a few days ago. It is such a nice phone. The touch screen is
really cool.”

Opinion target of the 3rd sentence is not just touch screen, but the “touch screen
of iPhone”. We decompose the opinion target in entity and aspects.

Formalization
Definition (entity): An entity e is a product, person, event, organization, or topic.
e is represented as

• a hierarchy of components, sub-components, and so on (e.g., touch screen)

• each node represents a component and is associated with a set of attributes
of the component (e.g., battery life, weight, size)

An opinion can be expressed on any node or attribute of the node.
For simplicity, we use the term aspects (features) to represent both components
(or parts) and attributes.

Formalization

The special aspect ‘’GENERAL’’ is
used when the sentiment is
expressed for the whole entity.

In this case, either the entity e
and the aspect a represent the
opinion target.

(iPhone)

Formalization
Opinion definition: an opinion is a quintuple

(ej, ajk, soijkl, hi, tl),
where

• ej is a target entity;

• ajk is an aspect/feature of the entity ej soijkl is the sentiment value of the

opinion from opinion holder hi on aspect ajk of entity ej at time tl. soijkl is

positive, negative or neutral, or a rating value;

• hi is an opinion holder;

• tl is the time when the opinion is expressed.

Formalization
User Id: Abc123, Date: 5-1-2008
Review:“I bought an iPhone a few days ago. It is such a nice phone. The touch
screen is really cool. The voice quality is clear too. It is much better than my old
Blackberry, which was a terrible phone and so difficult to type with its tiny keys.
However, my mother was mad with me as I did not tell her before I bought the
phone. She also thought the phone was too expensive, ...”

In quintuples (entity, aspect, sentiment, holder, time)

– (iPhone, GENERAL, +, Abc123, 5-1-2008)
– (iPhone, touch_screen, +, Abc123, 5-1-2008)
– (iPhone, GENERAL, -, my mother, 5-1-2008)
– ...

The Quintuple is hard to resolve

(ej, ajk, soijkl, hi, tl),

• ej → Named Entity Extraction

• ajk → Information Extraction

• soijkl → Sentiment Analysis

• hi → Information Extraction

• tl → Time Extraction

The most of these problems are yet unsolved in computer science (see Bing Liu)

The Quintuple is hard to resolve

The Quintuple is hard to resolve
Goal: Given an opinionated document

• Discover all quintuples
• Or, solve some simpler forms of the problem

• E.g., sentiment classification at the document or sentence level.

• With the quintuples,
– Unstructured Text → Structured Data
– Traditional data and visualization tools can be used to slice and visualize the
results.
– Enable qualitative and quantitative analysis.

Use of Machine Learning
Intro to NLTK and scikit-learn

Unsupervised Learning

Inferring a function to describe

hidden structure from unlabeled

data. The examples given to the

learner are unlabeled.

Supervised Learning

Inferring a function to describe

hidden structure from labeled data.

The training data consist of a set of

training examples (input object and

desired output value). SVM, Naive
Bayesian Classifiers, etc.

Use of Machine Learning
(step-by-step example)

First, we construct a list of documents, labeled with the appropriate categories. For
this example, choose the Movie Reviews Corpus (available in NLTK), which
categorizes each review as positive or negative.

>>> from nltk.corpus import movie_reviews

>>> documents = [(list(movie_reviews.words(fileid)), category)

... for category in movie_reviews.categories()

... for fileid in movie_reviews.fileids(category)]

>>> random.shuffle(documents)

http://www.nltk.org/

Use of Machine Learning
Next, we define a feature extractor for documents. We can define a feature for each
word, indicating whether the document contains that word.

To limit the number of, we consider a list of the 2000 most frequent words in the
overall corpus and define a feature extractor that simply checks whether each of
these words is present in a given document (0/1).

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())

word_features = list(all_words)[:2000]

def document_features(document):

document_words = set(document)

features = {}

for word in word_features:

features['contains({})'.format(word)] = (word in document_words)

return features

Use of Machine Learning
Now that we've defined our feature extractor, we can use it to train a classifier to
label new movie reviews.

To check how reliable the resulting classifier is, we compute its accuracy on the test
set. And once again, we can use show_most_informative_features() to find out
which features the classifier found to be most informative.

featuresets = [(document_features(d), c) for (d,c) in documents]

train_set, test_set = featuresets[100:], featuresets[:100]

classifier = nltk.NaiveBayesClassifier.train(train_set)

Use of Machine Learning
Apparently in this corpus, a review that mentions "Seagal" is almost 8 times more
likely to be negative than positive, while a review that mentions "Damon" is about 6
times more likely to be positive.

>>> print(nltk.classify.accuracy(classifier, test_set))

0.81

>>> classifier.show_most_informative_features(5)

Most Informative Features

contains(outstanding) = True pos : neg = 11.1 : 1.0

contains(seagal) = True neg : pos = 7.7 : 1.0

contains(wonderfully) = True pos : neg = 6.8 : 1.0

contains(damon) = True pos : neg = 5.9 : 1.0

contains(wasted) = True neg : pos = 5.8 : 1.0

Use of Machine Learning

A very common feature extraction procedures for sentences and

documents is the bag-of-words approach (BOW). In this approach,

we look at the histogram of the words within the text, i.e. considering

each word count as a feature.

Page 69 - Goldberg, Yoav. "Neural network methods for natural language processing." Synthesis Lectures on
Human Language Technologies 10.1 (2017): 1-309.

Bag of Words (BoW)

Use of Machine Learning
Bag of Words (BoW)

Once a vocabulary has been chosen, the occurrence of words in example documents
needs to be scored.

A very simple approach is a binary scoring of the presence or absence of words.

Some additional simple scoring methods include:
• Counts. Count the number of times each word appears in a document.
• Frequencies. Calculate the frequency that each word appears in a document out

of all the words in the document.

Use of Machine Learning

Documentation Link

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

Use of Machine Learning
Example

from sklearn.feature_extraction.text import CountVectorizer

corpus = [

'All my cats in a row',

'When my cat sits down, she looks like a Furby toy!',

'The cat from outer space',

'Sunshine loves to sit like this for some reason.'

]

vectorizer = CountVectorizer()

print(vectorizer.fit_transform(corpus))

print(vectorizer.vocabulary_)

Use of Machine Learning
TF-IDF (Term Frequency - Inverse Document Frequency): is a numerical statistic that is intended
to reflect how important a word is to a document in a collection or corpus.

Term frequency: the number of times a term occurs in a document.
Inverse Document Frequency: is a measure of how much information the word provides, that
is, whether the term is common or rare across all documents.

Use of Machine Learning

Documentation Link

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer

Use of Machine Learning
Another example (todo):

• Download movie reviews from the following URL (opinions about “The Da Vinci
Code” book and “Harry Potter” movie labeled as positive or negative)

http://www.dmi.unict.it/ortis/ PhDCourseSentiment/davincireviews.txt

• Vectorize the text using tf-idf (Term Frequency – Inverse Document Frequency)

skipping stopwords

• Split dataset in X_train, X_test, Y_train, Y_test (Y variable is 0 or 1)

• Train a Naive Bayes classifier with X_train and Y_train

• Test model with Y_test, X_test

http://www.dmi.unict.it/ortis/PhDCourseSentiment/davincireviews.txt

Lexical Resources

WordNet is a lexical database for the English language. It groups English words
into sets of synonyms called synsets, provides short definitions and usage
examples, and records a number of relations among these synonym sets or their
members. WordNet can thus be seen as a combination of dictionary and
thesaurus.

SentiWordNet is a lexical resource for opinion mining. SentiWordNet assigns to
each synset of WordNet three sentiment scores: positivity, negativity, objectivity.

Natural Language Processing
From text to sentiments

The extraction of sentiment is based on the detection (counting) of words with
certain positive or negative polarity by means of specific lexicons and linguistic
resources.

Lexical Resources

Resources

• Natural Language Toolkit: http://www.nltk.org

• WordNet: https://wordnet.princeton.edu

• SentiWordNet: http://sentiwordnet.isti.cnr.it

• SentiStrenght: http://sentistrength.wlv.ac.uk/

http://www.nltk.org/
https://wordnet.princeton.edu/
http://sentiwordnet.isti.cnr.it/
http://sentistrength.wlv.ac.uk/

