
Analysis of Social Media
Contents

Alessandro Ortis, PhD
ortis@dmi.unict.it

mailto:atorrisi@dmi.unict.it

Info&contacts

Alessandro Ortis, PhD

Email: ortis@dmi.unict.it
Personal webpage: http://www.dmi.unict.it/ortis/

http://www.dmi.unict.it/~ortis/

• The aim is to introduce methods, but also best practices
and practical tools in the field of social media content
analysis

• Alternating techniques and code snippets (slides) plus
complete code examples (Jupyter notebooks)

• All material will be provided

Aims & Approach

Outline

• Intro to photo-sharing platforms
• REST Web Services & Social Platform APIs
• OAUTH
• How to use APIs to extract info from social image

databases
– Flickr API
– Facebook API
– Instagram API
– Twitter API

What is a photo-sharing service?

• Photo sharing is the publishing or transfer of user's digital
photos online, thus enabling the user to share them with
others.

• This function is provided through both websites and
applications that facilitate to upload and display the images.

Social Media
Platforms

SMM – GMF – A.A. 2016/2017

• A lot of data!

• A lot of interaction!

• A lot of images!

• A lot of work for Data

Analysts!

Digital image metadata on social media

• Metadata is one of the most powerful tools you have:
– Camera’s info
– Geolocalized information
– Rating (e.g., likes)
– Comments
– Caption
– Keywords/tags
– …

• Services exposed on the Internet for a programmatic access through APIs.

Web Services

Web Services
• Services exposed on the Internet for a programmatic access through APIs.

• APIs: Application Programming Interface

Web Services
• Services exposed on the Internet for a programmatic access through APIs.

• APIs: Application Programming Interface

Client Code

Library

Library

Library

Web Services
• Services exposed on the Internet for a programmatic access through APIs.

• APIs: Application Programming Interface

Client Code

Library

Library

Library

Web Service

Library

Library

Library

Web Service

Web Services

• Services exposed on the Internet for a programmatic access through APIs.

• APIs: Application Programming Interface

• Protocol (Messages format) → REST (Representational State Transfer)

REST Web Services: “REST-compliant Web services allow requesting systems to

access and manipulate textual representations of web resources using a uniform

and predefined set of stateless operations.”

REST Web Services

Client
(browser)

Server
(website)

http://www.facebook.com

HTML+CSS

Client
(app)

Server
(Web Service)

http://graph.facebook.com

XML
JSON
Text

REST Web Services

Client
(app)

Server
(Web Service)

http://maps.googleapis.com

XML
JSON
Text

http://maps.googleapis.com/maps/api/geocode/json?address=catania&sensor=false

Protocol Server Resource Parameters

http://maps.googleapis.com/maps/api/geocode/json?address=catania&sensor=false

REST Web Services

OAUTH
• OAuth (Open Authentication) is an open standard for

authorization (access delegation)

– Allows sharing user’s resources (photos, videos, contact
lists) between different websites

– The user credentials (username and password) are not
shared

– Websites share tokens instead of credentials

– Each token grants access

• to a specific website

• for specific resources

• for a defined duration

OAUTH

Request Token

Authorization Token

Access Token

• Flickr is one of the most widely known photo sharing social

networks.

• It offers free image hosting and a great photo management
system where it is possible to organize your photos in albums
and generate comments on your photos from the community.

Flickr API
• Much of the success of Flickr is the open system that is

available to developers with API’s being free for non-
commercial use.

• The Flickr API provides the ability to view, manipulate and
search photo tags, display photos from a specific user or
group, retrieve tags to construct URLs to particular photos or
photo group.

• Almost all the functionality that runs flickr.com is available
through the API.

Exchangeable image file format - EXIF

• When you take a picture with a digital device, it

automatically saves EXIF data with the photo:

– Exposure time (Shutter speed)

– f-number

– ISO setting

– …

– Many devices also include GPS information

• The PNG and GIF image formats do not support EXIF data

Flickr API

https://www.flickr.com/services/developer/api/

https://www.flickr.com/services/developer/api/

Flickr API

https://www.flickr.com/services/api/

• There are already client libraries available for
most languages: PHP, Java, C, Perl, Python, …

https://www.flickr.com/services/api/

Flickr API

How to get an authorization token:

https://www.flickr.com/services/api/auth.oauth.html

https://www.flickr.com/services/api/auth.oauth.html

To visualize this interface go to
https://flickr.com/services/api/

And then click on “API keys”

https://flickr.com/services/api/

Example with Flickr

flickr.photos.search

• Return a list of photos matching somecriteria.

• Unauthenticated calls will only return public photos.

• To return private photos, the caller mustbe authenticated

with “read” privileges.

http://www.flickr.com/services/api/flickr.photos.search.html

http://www.flickr.com/services/api/flickr.photos.search.html

Flickr.photos.search - output
• page: the page requested by the user
• pages: total number of pages where the images are distributed
• perpage: each page contains “perpage” photos
• total: total number of images for the selected query
• photo: array of photos, each photo has the following features:

– Farm: id used to identify the flickr static sub domain name
– id: id used to identify the photo
– isfamily, isfriend, ispublic: Who can see the picture?
– owner: id used to identify the owner of the photo
– secret: id used as the photo secret code
– server: id used to identify the server where the photo is hosted
– title: title of the picture

Photo Source URLs
• You can construct the source URL to a photo once

you know its ID, server ID, farm ID and secret, as
returned by many APImethods.

• Example:
https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg

More info on photo URLs:

https://www.flickr.com/services/api/misc.urls.html

https://www.flickr.com/services/api/misc.urls.html

Flickr API

Flickr API Explorer

https://www.flickr.com/services/api/

https://www.flickr.com/services/api/

Flickr API

Source: https://www.flickr.com/services/developer/api/

https://www.flickr.com/services/developer/api/

• Facebook has implemented an API for basic database

manipulations named Graph API.

• The Graph API is the primary way to get data in and out of

Facebook's social graph.

• It's a low-level HTTP-based API that youcan use to query
data, post new stories, upload photos and a variety of
other tasks that an app might need to do.

https://developers.facebook.com

Facebook Graph API

https://developers.facebook.com

The Graph API is named after the idea of a “social graph”: a
representation of the information on Facebook composed of:

– nodes (basically "things" such as a User, a Photo, a Page, a
Comment)

– edges (the connections between those "things", such as a
Page's Photos, or a Photo's Comments)

– fields (info about those "things", such as the birthday of a
User, or the name of a Page).

Facebook Graph API

How the Graph API is structured
• Each node has a unique ID which is used to access it

via the Graph API.

• Here's how you'duse the ID to make a request: GET
graph.facebook.com

/{node-id}/{edge-name}

• Full list of root nodes of the Graph API:
https://developers.facebook.com/docs/graph-
api/reference/v2.2?locale=it_IT

How the Graph API is structured
def getPagePosts(ID,since,until):

ID = str(ID)

host = "https://graph.facebook.com/v2.8/"

path = ID +

"/posts?fields=id,full_picture,shares,

permalink_url,

message,created_time,

caption,description,

comments{from,comment_count,

id,message,created_time,

like_count,user_likes},

reactions{type,name,id}

&since=" + str(since) + "&until=" + str(until)

params = urllib.urlencode({"access_token":

ACCESS_TOKEN})

url = "{host}{path}&{params}".format(host=host,

path=path, params=params)

posts

- id

- full_picture

- …

- comments

- from

- message

- created_time

- like_count

- user_likes

- reactions

- type

- name

- id

How the Graph API is structured
def getPagePosts(ID,since,until):

ID = str(ID)

host = "https://graph.facebook.com/v2.8/"

path = ID +

"/posts?fields=id,full_picture,shares,

permalink_url,

message,created_time,

caption,description,

comments{from,comment_count,

id,message,created_time,

like_count,user_likes},

reactions{type,name,id}

&since=" + str(since) + "&until=" + str(until)

params = urllib.urlencode({"access_token":

ACCESS_TOKEN})

url = "{host}{path}&{params}".format(host=host,

path=path, params=params)

posts

- id

- full_picture

- …

- comments

- from

- message

- created_time

- like_count

- user_likes

- reactions

- type

- name

- id

Graph API
Explorer

https://developers.facebook.com
/tools/explorer/

https://developers.facebook.com/tools/explorer/
https://developers.facebook.com/tools/explorer/

Instagram API

http://instagram.com/developer

http://instagram.com/developer

Instagram API

http://instagram.com/developer

http://instagram.com/developer

Twitter API - Guidelines
1) Register your app to https://apps.twitter.com to get

the credentials needed to perform oauth
authentication.

2) Access full documentation of the Twitter
API https://dev.twitter.com/docs

https://apps.twitter.com/
https://dev.twitter.com/docs

Twitter API & Python
1) Tweepy API

2) TwitterSearch API

Twitter API & Python
Tweepy API

Tweepy API is an easy-to-use Python library for
accessing the Twitter API.

Twitter API & Python
Tweepy API

To get your own consumer key, consumer secret, access token and access
secret, create a Twitter application: https://apps.twitter.com/app/new.

https://apps.twitter.com/app/new

Twitter API & Python
Tweepy API

Tweepy makes it easier to use the twitter streaming api by
handling authentication, connection, creating and destroying the
session, reading incoming messages, and partially routing
messages.

The Twitter streaming API is used to download twitter messages
in real time. It is useful for obtaining a high volume of tweets, or
for creating a live feed using a site stream or user stream.

Twitter API & Python
Tweepy API

In Tweepy, an instance of tweepy.Stream establishes a streaming
session and routes messages to StreamListener instance.

The on_data method of a stream listener receives all messages
and calls functions according to the message type.

Twitter API & Python
Tweepy API

Therefore using the streaming api has three steps.

1. Create a class inheriting from StreamListener
2. Using that class create a Stream object
3. Connect to the Twitter API using the Stream.

Twitter API & Python
Tweepy API
Step 1: creating a StreamListener subclass

The on_data method of Tweepy’s StreamListener conveniently passes data
from statuses to the on_status method. We just create
class MyStreamListener inheriting from StreamListener and
override on_status method.

Twitter API & Python
Tweepy API
Step 2: creating a Stream (instance)

To create a Stream we need an api object (see authentication steps) and an
instance of Listener (MyStreamListener in the example).

Twitter API & Python
Tweepy API
Step 3: starting a Stream

We can filter the tweets containing some word (e.g., ‘python’) or related to a
specific user (e.g., with id = 2211149702).

Twitter API & Python
Tweepy API
More on Twitter Streaming API

Streams do not terminate unless the connection is closed. Tweepy offers a
is_async parameter on filter function, so the stream will run on a new thread
(no blocking code).

Twitter API & Python
Tweepy API
More on Twitter Streaming API

When using Twitter’s streaming API one must be careful of the dangers of rate
limiting.

If clients exceed a limited number of attempts to connect to the streaming API
in a window of time, they will receive error 420. The amount of time a client
has to wait after receiving error 420 will increase exponentially each time they
make a failed attempt.

Twitter API & Python
Tweepy API
More on Twitter Streaming API

Tweepy’s Stream Listener passes error codes to an on_error stub. The default
implementation returns False for all codes, but we can override it to allow
Tweepy to reconnect for some or all codes.

Twitter API & Python
Tweepy API

API Reference:
https://tweepy.readthedocs.io/en/latest/api.html#a
pi-reference

Tweepy Streaming API Reference:
http://docs.tweepy.org/en/latest/streaming_how_to
.html

https://tweepy.readthedocs.io/en/latest/api.html#api-reference
https://tweepy.readthedocs.io/en/latest/api.html#api-reference
http://docs.tweepy.org/en/latest/streaming_how_to.html
http://docs.tweepy.org/en/latest/streaming_how_to.html

Twitter API & Python
Twitter Search API

This library allows you easily create a search through the
Twitter API without having to know too much about the API
details.

Twitter API & Python
Twitter Search API – basic interfaces (Search, User)

tso = TwitterSearchOrder() # Basic class for API’s calls

tso.set_keywords(['game of thrones','finale’])

tso.set_language('en')

…

tuo = TwitterUserOrder(“Cristiano”) # Create a

TwitterUserOrder

…

Twitter API & Python
Twitter Search API - Advanced usage:

• TwitterUserOrder
https://twittersearch.readthedocs.io/en/latest/advan
ced_usage_tuo.html

• TwitterSearchOrder
https://twittersearch.readthedocs.io/en/latest/advan
ced_usage_tso.html#

https://twittersearch.readthedocs.io/en/latest/advanced_usage_tuo.html
https://twittersearch.readthedocs.io/en/latest/advanced_usage_tuo.html
https://twittersearch.readthedocs.io/en/latest/advanced_usage_tso.html
https://twittersearch.readthedocs.io/en/latest/advanced_usage_tso.html

Twitter API & Python
Twitter Search API – TwitterUserOrder

https://www.mongodb.com/it

MongoDB stores data in flexible, JSON-like documents,
meaning fields can vary from document to document and data
structure can be changed over time.

https://www.mongodb.com/it

https://www.mongodb.com/it

https://www.mongodb.com/it

References
• Flickr API: https://www.flickr.com/services/api/

• Instagram API:http://instagram.com/developer/api-console/

• Facebook API: https://developers.facebook.com/docs/graph-api/

• Twitter API:https://dev.twitter.com/docs

• MongoDB: https://www.mongodb.com/it

https://www.flickr.com/services/api/
http://instagram.com/developer/api-console/
https://dev.twitter.com/docs
https://www.mongodb.com/it

Practical Session

1) Crawling from Flickr

2) Crawling from Twitter

	Diapositiva 1: Analysis of Social Media Contents
	Diapositiva 2: Info&contacts
	Diapositiva 3: Aims & Approach
	Diapositiva 4: Outline
	Diapositiva 5: What is a photo-sharing service?
	Diapositiva 6: Social Media Platforms
	Diapositiva 7: Digital image metadata on social media
	Diapositiva 8: Web Services
	Diapositiva 9: Web Services
	Diapositiva 10: Web Services
	Diapositiva 11: Web Services
	Diapositiva 12: Web Services
	Diapositiva 13: REST Web Services
	Diapositiva 14: REST Web Services
	Diapositiva 15: REST Web Services
	Diapositiva 16: OAUTH
	Diapositiva 17: OAUTH
	Diapositiva 18
	Diapositiva 19: Flickr API
	Diapositiva 20: Exchangeable image file format - EXIF
	Diapositiva 21: Flickr API
	Diapositiva 22: Flickr API
	Diapositiva 23: Flickr API
	Diapositiva 24
	Diapositiva 25: Example with Flickr
	Diapositiva 26: flickr.photos.search
	Diapositiva 27: Flickr.photos.search - output
	Diapositiva 28: Photo Source URLs
	Diapositiva 29: Flickr API
	Diapositiva 30: Flickr API Explorer
	Diapositiva 31: Flickr API
	Diapositiva 32: Facebook Graph API
	Diapositiva 33: Facebook Graph API
	Diapositiva 34: How the Graph API is structured
	Diapositiva 35: How the Graph API is structured
	Diapositiva 36: How the Graph API is structured
	Diapositiva 37: Graph API Explorer
	Diapositiva 38
	Diapositiva 39: Instagram API
	Diapositiva 40: Instagram API
	Diapositiva 41: Twitter API - Guidelines
	Diapositiva 42: Twitter API & Python
	Diapositiva 43: Twitter API & Python
	Diapositiva 44: Twitter API & Python
	Diapositiva 45: Twitter API & Python
	Diapositiva 46: Twitter API & Python
	Diapositiva 47: Twitter API & Python
	Diapositiva 48: Twitter API & Python
	Diapositiva 49: Twitter API & Python
	Diapositiva 50: Twitter API & Python
	Diapositiva 51: Twitter API & Python
	Diapositiva 52: Twitter API & Python
	Diapositiva 53: Twitter API & Python
	Diapositiva 54: Twitter API & Python
	Diapositiva 55: Twitter API & Python
	Diapositiva 56: Twitter API & Python
	Diapositiva 57: Twitter API & Python
	Diapositiva 58: Twitter API & Python
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61: References
	Diapositiva 62: Practical Session

