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ABSTRACT This research focuses on the vulnerability issues related to keystroke logging on a physical 

computer keyboard, known as Snooping Keystrokes. This category of attacks occurs recording an audio track 

with a smartphone while typing on the keyboard, and processing the audio to detect individual pressed keys. 

To address this issue, mathematical wavelet transforms have been tested, and key recognition has been 

implemented using the inference test of a deep learning model based on a Temporal Convolutional Network 

(TCN). The novelty of the proposed pipeline lies in its dynamic audio analysis and keystroke recognition, 

which splits the wave based on audio signal peaks generated by key presses. This approach enables an attack 

in real-world conditions without knowing the exact number of keystrokes typed by the user. Experimental 

results for the proposed pipeline show a peak accuracy of 98.3%. 

INDEX TERMS Acoustic side channel attack, Snooping keystroke attacks, Deep learning, User security 

and privacy, Laptop keystroke attacks, Zoom-based acoustic attacks 

I. INTRODUCTION 

The increasing use of smart devices in our daily lives and 

their growing importance in managing our sensitive 

personal data, have heightened attention to cybersecurity. 

Among various threats, Acoustic Side Channel Attacks 

(ASCAs) have emerged as a significant concern. These 

attacks exploit sound emissions from devices to extract 

sensitive information, such as pressed keys or 

conversations, compromising digital security and user 

privacy. This research focuses on a specific type of acoustic 

attack known as Snooping Keystrokes. This attack aims to 

retrieve information about pressed keys on a nearby 

computer's physical keyboard, thereby extracting sensitive 

information like private passwords for digital devices or 

accounts. 

In this study, the most relevant Snooping Keystrokes 

attacks have been analyzed in detail, including detecting 

individual clicks (using wavelet transform conversion of 

the audio track), segmenting the audio of pressed keys, 

extracting individual sound features representing the clicks, 

and recognizing the pressed keys using artificial 

intelligence techniques. Specifically, a Temporal 

Convolutional Network (TCN) [1, 19, 23, 31] model has 

been applied for classification. Through a series of 

experiments conducted on a comprehensive dataset, 

including various types of smart devices and attack 

scenarios, the performance of the detection and recognition 

model has been evaluated. The results demonstrate the 

effectiveness of the proposed method, achieving high 

precision, sensitivity, and specificity. Furthermore, the 

method's robustness and versatility in different real-world 

conditions are highlighted. The pipeline for acoustic attack 

on keyboards, is supported by a comparative evaluation 

with Harrison’s paper [2] and by exploiting new challenges 

on a collected dataset. The TCN facilitates the modeling of 

complex temporal dependencies, enabling extraction of 

latent patterns within the acoustic emissions during typing. 

The remainder of this paper is organized as follows: Section 

2 provides a summary of previous research works related 

to the topic, the proposed pipeline and the details of the 

developed deep learning model architecture in Section 3 

and the description of experimental result is presented in 

Section 4. Section 5 presents the conclusions based on the 

results, which confirmed the highly promising performance 

of the designed solution. 
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II. RELATED WORKS 

Traditional methodologies for keystroke acoustic attacks [8, 9] 

have often relied on simplistic analysis techniques, limited in 

their capacity to capture complex temporal dynamics inherent 

in typing sounds. The addressed task, received a significant 

increasing attention in the scientific literature of the last years 

as for example works [4, 23, 26]. The oldest paper on 

emanation-based side-channel attacks identified in this review 

was authored for the United States National Security Agency 

(NSA) in 1972 [8]. As discussed by authors in study [9], 

examines a more recent keyboard featuring a slightly recessed 

design. Despite this, the keycaps are still large and made of 

plastic, significantly differing from modern laptop keyboards. 

The authors acknowledge that testing laptop keyboards, might 

yield different results due to the absence of a 'release peak' in 

the waveform. In the Asonov et al. study [4] mentions that 

classified documents generated under the NSA’s side channel 

specification program (TEMPEST), are known to address 

acoustic emanations. Such work, often referred as the initial 

ASCA targeting a keyboard, was published in 2004. It 

criticized prominent plastic keyboards of that era. Despite its 

early position in the field, the paper successfully demon-

started attacks on an ATM keypad, a corded telephone, and 

two keys from a laptop keyboard. With the latest 

advancements in deep learning models, the possibility of an 

acoustic attack on keyboards seems increasingly plausible, as 

highlighted in recent studies [6] where authors, has examined 

the potential for Acoustic Side-Channel Attacks (ASCAs) on 

laptop keyboards, especially given that laptops are a prime 

target for such attacks. Laptops, being more portable than 

desktop computers, are often used in public places where 

keyboard sounds can be overheard, such as libraries, coffee 

shops, and study areas. 

In the research [23] authors discovered that several methods 

outperformed neural networks during testing, and attaining a 

keystroke accuracy of 74.3%, a result that was similarly 

reflected in [24]. In the paper [26] authors examined the 

feasibility and mechanics of acoustic side-channel attacks on 

keyboards, which arise from the sounds and vibrations created 

while typing. Authors investigated the unique sounds 

produced by different keys, considering the physics of 

keyboards and the various typing styles of users and 

emphasizing the practicality of these attack scenarios, 

showing that attackers can use both physical proximity and 

remote indirect methods, to record keystroke sounds. This 

study represents a significant threat to user security and 

privacy, as attackers can capture sensitive information without 

needing direct physical access to the victim’s device. 

The NSA document NACSIM 5000 [11], which was partially 

declassified, identified acoustic emanations as a potential 

security risk, in 1982. In the public domain, Acoustic Side 

Channel Attacks (ASCAs) have achieved different levels of 

success on contemporary keyboards, utilizing a wide range of 

techniques. In work [12] results indicating that the potential 

for a real world ASCA is the tendency of each classifier to 

group false classifications near the correct key. This 

characteristic, suggests that even incorrect classifications may 

provide clues about the true key's location on the keyboard, a 

feature that could be leveraged in future research. In reference 

to [13] author describe how, since 1950s, British spies 

utilizing acoustic emanation sound of the Hagelin encryption 

devices within the Egyptian embassy. As presented in the 

paper [14], the authors suggest two-factor authentication as an 

effective defense that has stood the test of time. This method 

involves using an additional device or biometric verification 

to access data. With the increasing inclusion of biometric 

scanners in laptops, the need to enter passwords via keyboard 

is significantly reduced, thereby diminishing the threat posed 

by ASCAs. Nonetheless, the risk persists that data other than 

passwords could still be obtained through ASCA. 

Recently, a deep learning model have been used in order to 

classify laptop keystrokes, just using a standard smartphone 

integrated microphone [2]. Experiments over multiple 

evaluation settings shown as related overall performances 

outperforms a significant pool of previous works [10, 22, 24]. 

The model presented in the work [2] has been trained on two 

different datasets [21] created with keystrokes recorded by a 

nearby phone and the video-conferencing software Zoom, 

whereas classifier achieved respectively a peak accuracy of 

95% and 93%. The authors exploited the CoAtNet model, a 

recent deep neural architecture based on attention mechanism 

[3].  

This paper presents a novel pipeline for acoustic attack on 

keyboards, supported by a comparative evaluation with 

Harrison’s study [2] and with our own other specially 

collected dataset. The novelty is due to the entire pipeline used 

and to exploitation of TCN models [1], usually applied on 

different tasks, for acoustic keyboard attack. The TCN 

facilitates the modeling of complex temporal dependencies, 

enabling extraction of latent patterns within the acoustic 

emissions during typing. Its core strength lies in the capability 

to capture and process sequential data, dynamically adapting 

to the variations in typing speed, rhythm, and inter-key 

intervals. This is a first step of larger research comprising 

benchmarking of several architectures and models. Other 

related approaches [6, 10, 23, 24] make use of different 

settings and methods, obtaining overall accuracy on different 

ranges. Addressing this challenge, this work focuses on a 

pipeline methodology for real world conditions scenarios of 

Keystroke Attacks.  

TCN offer significant advancements over existing methods in 

keystroke attack detection by addressing key challenges 

related to temporal dependencies and overfitting. Traditional 

models like RNN and LSTM, while powerful, often struggle 

with long-range dependencies and are prone to issues like 

vanishing gradients. TCN mitigate these problems with their 

architecture, which includes causal and dilated convolutions, 

allowing the model to efficiently capture long-term 

dependencies in keystroke data without the risk of information 

leakage from future inputs to past outputs. One of the key 
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strengths of TCN is their ability to handle sequences of 

varying lengths, which is crucial for accurately modeling 

keystroke dynamics. Unlike RNN that process inputs 

sequentially, TCN can process entire sequences in parallel, 

significantly speeding up training and inference. This 

parallelism also reduces the risk of overfitting by providing a 

more comprehensive understanding of the temporal structure 

within the data. Overfitting is a common challenge in deep 

learning, where a model performs well on training data but 

poorly on unseen data due to excessive complexity. TCN 

address this through their use of residual connections and 

dilated convolutions. Residual connections help maintain 

gradient flow during backpropagation, preventing the 

vanishing gradient problem and allowing for deeper networks. 

Dilated convolutions expand the receptive field exponentially 

without increasing the number of parameters, enabling TCN 

to capture patterns over longer time spans without overfitting. 

Furthermore, TCN are inherently designed to handle the 

irregularities and variability present in keystroke dynamics. 

By using a combination of causal and dilated convolutions, 

TCN can model both short-term and long-term dependencies 

more effectively than traditional RNN-based models. This 

capability is particularly useful in detecting keystroke patterns 

that may vary significantly between different typing styles and 

contexts. 

III. PROPOSED METHOD 

The proposed work exploits a TCN [1] methodology as a 

promising approach to counter such keystroke acoustic 

vulnerabilities.  

TCN is a convolutional neural network designed specifically 

for sequential data. They have gained popularity in tasks 

involving time series, such as audio processing, natural 

language processing, and any other sequence modeling 

problems. Key concepts of TCN are: causal convolutions, 

dilated convolution and sequence length flexibility. 

In a TCN, convolutions are causal, meaning the output at time  

t only depends on the inputs from time t and earlier. This 

ensures that the model respects the temporal order of the data, 

preventing information leakage from future to past. A TCN 

use dilated convolutions to allow the network to have a larger 

receptive field without increasing the number of parameters or 

the computational complexity significantly. Dilations 

introduce gaps between the filter taps, enabling the model to 

capture long-range dependencies efficiently.  

For these reasons, the TCN paradigm offers a groundbreaking 

solution by harnessing the power of deep learning and 

temporal convolutional architectures. This approach facilitates 

the modeling of complex temporal dependencies, enabling the 

extraction of latent patterns within the acoustic emissions 

during typing. The TCN's core strength lies in its capability to 

capture and process sequential data, as it can dynamically 

adapt to the variations in typing speed, rhythm, and inter-key 

intervals. By incorporating dilated convolutions, the TCN 

model can exponentially expand its receptive field, effectively 

integrating information from a wide temporal range. TCN not 

only facilitates accurate feature extraction from raw acoustic 

signals but also enhances the model's resilience against noise 

and variability. In order to provide a fair experimental 

comparison with respect to the state of the art, we employed 

the same dataset as in [2, 21, 29], as well as the same 

evaluation metrics. Experiments suggest that the TCN 

paradigm represents a promising avenue for advancing the 

field of cybersecurity against unconventional threats. Given a 

specific keyboard, the first step involves the creation of an 

audio dataset. Then, the entire attack system is composed by 

two phases: first data are properly processed in order to apply 

next a TCN training process on specific extracted features. 

During the initial experimentation phases, efforts were made 

to generalize the system as much as possible to demonstrate 

experimentally that even when imposing the worst-case 

scenario, excellent performance could still be achieved. 

A. PRE-PROCESSING PHASE 

This phase includes peak detection and splitting algorithm, 

followed by data augmentation. The visualization of the waves 

occurs using an Amplitude-Time graph. Below are two 

examples to visually understand how audio tracks appear. In 

Figure 1 and Figure 2, there has been observed several 

characteristics that will pose challenges to overcome during 

this discussion for the correct classification of click patterns. 

The peaks have very different values because obviously the 

clicks have non-uniform energy applied in the action of key 

pressing, and the structure of the click consisting in two peaks: 

the first, higher one is the actual click, and the second, 

generally lower, is the sound of releasing the key when we 

remove our finger. Analyzing the time between clicks, it is not 

homogeneous in terms of frequency; in a real case, keys are 

pressed at different frequencies from each other. Finally, the 

background noise is not always the same during audio 

recording and it is not negligible, especially in real cases of 

widespread ambient noise. A high level of background noise 

could compromise the attack. In Figure 3 the pseudo-code of 

peak detection and splitting algorithms: the Algorithm 1 

named “Peak Detection and Split” used for peak detection and 

split algorithm, get in input the path of recorded audio file, the 

type of wavelet transforms to apply and an output path were 

to write splitted audio files returned by the algorithm and call 

recursively the Algorithm 2 named “Split Audio” which get in 

input the path, the recorded audio file the average peak value, 

the average inter-click time during typing and the output file 

for each peak detected. 
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FIGURE 1. An audio wave with a single click recorded by a smartphone 
during experiments. 

 

FIGURE 2. An audio wave track with 25 clicks on the keyboard recorded 
by smartphone during experiments. 

 

FIGURE 3. The peak detection (top) and split algorithm (bottom) 
pseudocodes. 

 

FIGURE 4. A wavelet transforms of an audio wave sample with 25 
clicks. 

IV. WAVELET TRANSFORM AND THE NEW PIPELINE 

Mathematically, a wavelet [27, 28] must also satisfy the 

condition of admissibility in (1):  

 

∫ ψ(t)dt = 0
∞

−∞
   (1) 

 

This means that the wavelet has equal positive and negative 

areas, resulting in an average of zero. The Wavelet transform 

divides our track into many small segments and is therefore 

perfect for analyzing short and very steep peaks compared to 

background noise, which is the basic structure of the waves 

analyzed in this discussion (see Figure 4 and Figure 5). With 

their localized nature, wavelets can capture both frequency 

and time information. Three common examples of continuous 

wavelets are: 

• mexh (Mexican Hat): Excellent for signals with 

discontinuities and transients such as sudden spikes 

or short pulses, thanks to its effective temporal 

localization and ability to capture rapid variations: 

𝜓(𝑡) =  
2

√3 √𝜋4
𝑒𝑥𝑝−

𝑡2

2 (1 − 𝑡2)   (3) 

 

• cmor (Complex Morlet): Preferable for signals with 

well-defined frequency components, such as 

sinusoidal signals or those approximated by 

sinusoids, capable of effectively extracting 

dominant frequencies: 

 

𝜓(𝑡) =
2

√𝜋
𝑒𝑥𝑝−𝑡2

𝑒𝑥𝑝𝑗2𝜋𝑡    (4) 

 
• shan (Shannon): Useful for signals with information 

concentrated in well-defined frequency bands, such 

as signals with limited band characteristics like 

communication signals. Suppose be B bandwidth 

and C frequency: 

 

𝜓(𝑡) =  √𝐵
sin (𝜋𝐵𝑡)

𝜋𝐵𝑡
𝑒𝑥𝑝𝑗2𝜋𝐶𝑡       (5) 
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FIGURE 5. Waves functions, showing real and image parts. 

FIGURE 6. Data augmentation algorithm pseudocode for each audio 
file. 

These are the main continuous wavelets and their respective 

mathematical wave function formulas, although many others 

exist, and they are the 3 wavelets that have been used to test 

and develop the click detection algorithm. 

B. DATASET AND AUDIO SEGMENTATION 

Specifically, this paragraph describes the dataset and the audio 

segmentation algorithm, which essentially determines a start 

and end point for each cut to be made for every click, 

calculated relative to the temporal point where the peak is 

found. We have collected and created four different datasets, 

each recorded using the microphone of a smartphone, 

following the methodology established by Harrison et al. in 

[2]. The first dataset, containing audio keystrokes from a 

MacBook Pro keyboard recorded via smartphone, and it has 

been downloaded by github [21]. The other three datasets were 

created on the base of first dataset but changing the speed and 

energy during typing on the keyboards. Each of these three 

datasets consists of 900 audio files. These datasets contain 75 

.wav files for each of the 36 selected keys on the keyboard 

(letters a-z and numbers 0-9). After applying data 

augmentation techniques, the total number of audio files in 

each dataset increases to 2700. This comprehensive collection 

allows us to thoroughly compare the performance of various 

models and techniques in detecting and analyzing keystroke 

sounds, but using 3 different keyboards: matebook d14 

keyboard, a soft keyboard and a mechanical keyboard. These 

datasets have been collected recording audio keystrokes with 

smartphones at 3 different speed type: 0.1 sec, 0.5 sec and 1 

sec (see Fig. 13, 14, 15) and with different energy during the 

typing to create a real-world scenario. Relating to the 

segmentation algorithm, the start of the cut is set to the time of 

the peak found, while the end of the cut is set to the time of the 

click minus 1 second (these optimal data points were found 

experimentally). After each file is found, it is placed in the 

folder dedicated to splits, which will be our initial form of 

dataset.  

 

FIGURE 7. Representation of the same audio track with intensity graph 
(left) and dB spectrogram (right). 

The pseudocode for the algorithm is detailed in Figure 3 as 

Algorithm 2: Split Audio Algorithm. 

C. DATA AUGMENTATION 

In this section, a description of data augmentation techniques 

applied to audio files. It has been applied by adding random 

noise and generating additional versions of the original file. 

The goal is diversifying and increase the size of the dataset. 

This process is useful for improving robustness and is 

commonly used in machine learning models for recognition 

and classification tasks, especially in contexts where the 

amount of available data is limited [15, 16, 17, 18, 25]. First 

pseudocode step is iterate through the files present in the 

directory of the initial dataset with segmented files, then for 

each audio file, a specified number of augmented versions are 

generated (a parameter decided beforehand and provided as an 

input parameter to the function) and for each augmented 

version, a copy of the original audio is made, and finally 

random noise is applied to the copied audio using the add noise 

function, with a low noise factor randomly extracted from a 

specified range. In Figure 6 there is the pseudocode. 

D. TRAINING PHASE 

After creating the complete dataset with data augmentation 

and sorting it into a CSV file, we move on to the training 

phase. This phase is divided into:  

• feature extraction,  

• construction and definition of the TCN model,  

• training and evaluation,  

• metrics plot for the performance. 

Feature extraction step: the methods used for extracting audio 

features from sound signals is based on the spectrogram 

representation of our audio tracks [2]. These features are 

essential for analyzing and understanding the content of the 

audio signal and will be crucial for our subsequent analyses. 

Spectrograms are a visual representation of the content of an 

audio signal. They are widely used in audio analysis to detect 

temporal patterns. Using techniques like the Fourier 

transform, it is possible to transform the audio signal from the 

time domain to the frequency domain and then visualize it as 

a three-dimensional image, where the x-axis represents time, 

the y-axis represents frequency, and the color intensity 

represents the energy present at that frequency and at that  
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FIGURE 8. Implemented TCN model architecture. 

moment. In Figure 7 an example of the conversion to a dB 

Spectrogram. Another method to extract audio features is 

using the Mel-frequency Cepstral Coefficients (MFCC) [29, 

30]. MFCC are a compact representation of the spectral 

characteristics of an audio signal. These coefficients are 

calculated through a series of steps, including transforming the 

audio signal into the Mel scale and applying the Discrete 

Cosine Transform (DCT) to obtain the cepstral coefficients. 

MFCCs are widely used in speech analysis and recognition 

because they effectively capture spectral information relevant 

to human perception. For experiments presented in this paper 

it has been used Spectrograms and MFCC (see paragraph IV). 

E. TEMPORAL CONVOLUTIONAL NETWORK (TCN) 

This section, briefly describe the category of Temporal 

Convolutional Network (TCN) for the audio classification 

task on audio micro-details. Temporal Convolutional 

Networks (TCN) extend the concept of CNNs to handle 

temporal sequences through the use of dilated convolutional  

 

blocks. These blocks allow the network to acquire information 

at multiple temporal scales, enabling greater flexibility in 

capturing temporal patterns at different time scales. This 

makes them particularly suitable for audio classification tasks, 

where considering the temporal relationships between signals 

is crucial, as in our case of signals that are difficult to 

characterize as simple clicks. In a TCN models, causal 

convolution is calculated as in (6): 

 

𝑦𝑖 = ∑ 𝑐𝑗𝑥𝑗−1
𝑘−1
𝑗=0                         (6) 

where:  

• i ∈ ℕ represents the current time index for the 

output signal yi 

• xj is an input tensor at time index i,  

• yi is an output tensor at time index i,  

• k is the convolution kernel,  

• cj is a convolution weight for j ∈ [0, k-1].  

 

The proposed TCN method, has been implemented the 

following causal convolution with kernel k = 3 and padding 

equal to k -1. To perform causal convolution, we incorporate 

padding on the left side of the input tensor. To execute causal  

TABLE I 

TABLE 1. TCN MODEL HYPERPARAMETERS 

TCN Model parameters Values 

Number of layers 4 

Number of classes 36 

Number of filters 128 

Batch size 32 

Learning rate 0.001 

Num channels 7 

Kernel size 3 

Dropout 0.2 

Epochs 500 

Input size 1 

 

convolution, we employ classical 1-D convolution with 

padding and trim elements from the right side. Employing the 

dilation technique within a causal convolutional layer 

enhances the coverage of the input time series and 

substantially reduces computational costs. In the TCN 

architecture, it is assumed that the sequence of causal 

convolutional layers has a dilation factor of 2i-1. The overall 

configuration of proposed TCN model architecture, is reported 

in Table 1. Utilizing ReLU as the activation function for TCN 

is recommended [1, 20]. To address potential gradient 

propagation issues in the hidden layers, we employ weight 

normalization for each convolutional layer. Additionally, 

dropout regularization value 0.2 is applied after every 

convolutional layer within the central neural network layer of 

TCN. In a TCN model architecture (Figure 8) everything 

revolves around the concept of dilation and causal convolution 

with input and output tensors, which ultimately are sequential 

data describing the information we give to the model and the 

conclusions we derive after processing the model. For the 

processing of these tensors, we must pass through various 

residual blocks with parameters (kernel size and dilation) 

formed by different convolutional layers [1]. Let's describe 

these concepts more precisely: 

 

• Residual Block: The residual block is a basic unit 

within the TCN that helps mitigate the vanishing 

gradient problem during the training of deep neural 

networks. It consists of convolutional layers 

followed by a residual connection that adds the 

original input to the convoluted data. 

• Kernel Size: The kernel size defines the size of the 

input window on which convolutional filters are 

applied. A larger kernel size captures broader 

temporal patterns, while a smaller size can detect 

finer temporal details. 

• Dilation: Dilation refers to the spacing between 

elements of the convolution window. Dilated 

convolutions allow the TCN to capture temporal 

patterns at different scales without increasing the 

number of network parameters. 
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FIGURE 9. The prediction algorithm pseudocode. 

 

• Causal Convolutional Layer: The most important 

layer of the residual block. It is a convolutional layer 

that preserves the temporal order of the data during 

processing. It applies convolution only on past data 

(based on kernel size and dilation) and not on future 

data, which is essential for many time series tasks. 

 

In summary, a TCN uses residual blocks, dilated convolutions, 

and causal convolutional layers to model temporal 

dependencies in sequential data, enabling better prediction or 

classification of future events. When implementing the TCN 

for audio classification on micro-details, it is necessary to 

define the model and training parameters adequately. In Table 

1 there are the parameters used during experimental test. 

F. PREDICTION ALGORITHM 

The predict function takes as input the path of a directory and 

a prefix. This function is used to predict the word associated 

with the audio files present in the directory using a previously  

trained Temporal Convolutional Neural Network (TCN) 

model. The algorithm input parameters are: 

 

• directory path: The path of the directory containing 

the audio files. 

• prefix: The common prefix of the audio file names to 

be used. 

 

Algorithm steps: 

• The names of the audio files in the specified directory 

that start with the provided prefix are obtained and 

sorted based on the number extracted from the file 

name. 

• For each audio file in the sorted list: 

(a) The audio file is loaded. 

(b) MFCC (Mel-frequency Cepstral 

Coefficients) features are extracted from the 

audio. 

(c) The MFCC features are normalized and 

transformed into a format compatible with the 

model. 

(d) Prediction is made using the TCN model. 

(e) The predicted class is decoded using the label 

encoder object. 

(f) The predicted word is added to the list of all 

predictions. 

• The predicted password is printed by concatenating 

all the obtained predictions. 

In Figure 9 the pseudocode used for the Prediction algorithm. 

V. EXPERIMENTAL RESULTS 

For the experiments we have been considered the same dataset 

splitting and all experimental settings as done by authors in the 

work [2] to conduct a fair comparison. Moreover, we have 

been executed other experiments with different keyboards, 

and different smartphone position in order to measure the 

presented model accuracy in different experimental 

conditions. To contrast overfitting, we have pursued an in-

depth examination of phenomenon, prioritizing the model's 

generalization capability predicting keystroke in unseen data. 

Its core strength lies in the capability to capture and process 

sequential data, dynamically adapting to the variations in 

typing speed, rhythm, and inter-key intervals. This is a first 

step of larger research comprising benchmarking of several 

architectures and models. The experimentation part, has been 

inspired by an article dating back to August 2023 [2]. This 

article deals precisely with the acoustic attack capable of 

recognizing which keys have been clicked based on the sound 

emitted by the pressure of individual keys. The main 

limitations identified in their study are: the static splitting of 

audio tracks for dividing the entire file into individual click 

(25 clicks) files, a very high cleaning of the output audio files, 

and the artificial intelligence model used. CoAtNet, is a type 

of CNN that combines Convolution and Attention. The 

experimentation phase is divided into two sets of experiments 

with two very different tasks, generalization, and 

maximization. With our first phase of experiments, it has been 

tried to bring the system into a more ideal scenario by 

attempting to maximize the performance of the entire pipeline 

and the TCN model used, in order to achieve the state of the 

art regarding Keystrokes attacks. Whereas in the second 

phase, it has been studied the attack in more real-world 

contexts (wild), and therefore, we will focus on generalizing 

the entire process and seeing its physical limitations. In the 

experiment there will demonstrate that there are models that 

perform better under the same conditions and that slightly 

lower results can be achieved by significantly increasing the 

complexity and confusion of the data (a characteristic that 

distinguishes true real-world cases of potential attacks). 

Comparative tests have been performed with state-of-the-art 

models and results are shown in Figure 10, Table 2 and Table 

3. 

G. FIRST SERIES OF EXPERIMENTS - LAPTOP 
KEYBOARD IN NON-IDEAL CASES 

As briefly described in the section above, this series of 

experiments and tests could be perfectly described in the 

concept of generalization. In fact, we have just described the  
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TABLE 2. EXPERIMENTAL RESULTS ABOUT COATNET AND THE 

IMPLEMENTED TCN 

Model Precision Recall F1-Score 

CoAtNet [2] 0.960 0.950 0.950 

TCN [1] 0.980 0.983 0.983 

 

limitations of experiment conducted in paper [2], and in this 

phase, we will address all those limitations by trying to 

eliminate or at least improve them. This phase consists of 6 

experiments. In short: 1 experiment will focus on the use of a 

new CNN model (experiment no. 1), another experiment will 

focus on generalizing the recording context (experiment no. 

2), 2 experiments will study the hardware and software 

limitations of audio capture (experiments no. 3, 4), and finally, 

2 experiments will focus on the recognition and segmentation 

modes of audio tracks (experiments no. 5, 6). 

H. EXPERIMENT NO. 1 - TCN MODEL APPLIED TO 
SNOOPING KEYSTROKES ATTACK 

Let's start by saying that the treatment of this experiment has 

been described and transposed in study [29]. Begin the 

experiment by analyzing the context in which experiment in 

[2] was conducted: an iPhone 13 placed 17 cm to the left of a 

MacBook Pro. Clicks are made manually at intervals of 1 

second from each other. The CNN model used is CoAtNet. 

Initially, we only change the training pipeline by using 

Temporal Convolutional Networks (TCN) instead of 

Attentional Convolutional Networks (CoAtNet). We use the 

same dataset so that the results can be properly compared, and 

in our TCN test, we reduce the epochs to 500 for practicality. 

In Table 2 the results. From the observed results, it can be seen 

that indeed, across all fronts, the new implemented model 

performs better. It increases precision (correctly identified 

positive instances compared to all those identified as positive), 

sensitivity/recall (correctly identified positive instances 

compared to all actually positive instances in the dataset). 

Additionally, there are graphs showing the trend of accuracy 

and loss during training (see Figure 10), providing a visual 

demonstration of the improvement in results compared to 

Harrison’s research paper [2] and showed in Table 3. 

Additionally, an analysis can be performed on the 

unrecognized keys, and we were able to demonstrate that keys 

mistakenly identified are indeed close to each other, thus 

making the errors more understandable. This suggests the 

model's effectiveness in distinguishing between different 

acoustic keypress classes. Such precision attests to the model's 

ability to capture subtle distinctions in acoustic data, 

highlighting its potential in enhancing security measures. It is 

interesting to focus on the few misclassification cases to better 

understand the remaining challenges. The TCN outperforms 

CoAtNet in keystroke recognition due to its superior ability to 

capture long-range dependencies and temporal patterns in 

sequential data. TCN's architecture, which includes causal 

convolutions and dilation, allows it to effectively handle the 

sequential nature of audio signals, making it better suited for  

FIGURE 10. Plot on left shows experimental results applying CoAtNet 
(loss and accuracy), on the right the same metrics obtained with 
implemented TCN (train blue and validation red). 

 

FIGURE 11. Misclassified keystroke proximity. Arrows connect the true 
keystroke with the corresponding misclassified one predicted by the 
model. 

TABLE 3. OVERVIEW OF EXISTING RESEARCH PAPERS AND COMPARISON 

WITH OUR WORK.  

Method Accuracy validation peak 

TCN (our) 98.3% 

Harrison et al. [2] 95% 

Anindya et al. [10] 93.7% 

Compagno et al. [24] 91.7% 
Bai et al. [6] 91.2% 

Abhishek et [23] 74.3% 

Zhu et al [22] 72.2% 

 

recognizing keystrokes. TCN are superior as they inherently 

handle sequential data, making them adept at recognizing 

patterns in time-dependent signals like keystrokes. Their 

structure is designed for temporal tasks, ensuring efficient 

learning of temporal dependencies without the overhead of 

attention mechanisms, which may not be as beneficial for this 

specific application. When combined with wavelet transforms 

for dynamic audio segmentation, TCN can accurately isolate 

and classify keystrokes even in the presence of background 

noise and irregular typing patterns, leading to better 

experimental results compared to CoAtNet (a CNN with 

attention). The errors described in the Figure 11 are the 

recognition of "1" as "2," recognition of "3" as "E," 

recognition of "D" as "E," recognition of "M" as "4," 

recognition of "O" as "5," and recognition of "S" as "D". 
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I. EXPERIMENT NO.2 - DATASET FROM 100CM, 50CM, 
AND 17CM WITH LAPTOP 

In this experiment, we will analyze another aspect of the 

limitations highlighted in work [2], which is the restricted 

mode of recording the audio tracks. They describe the 

experiment by placing the recorder at 17 cm (i.e., very close) 

to the keyboard, and the keys are clicked at regular intervals 

of 1 second (unnatural typing interval). Indeed, we wondered 

what would happen in a real scenario, and there would be two 

variables: 

• Faster typing: the intervals were set at 0.1 seconds, 

0.5 seconds, and 1 second between clicks 

• Distance from the keyboard: three distances were 

chosen to provide a more general idea of the model's 

behavior under different and real circumstances. The 

distances considered are 100cm, 50cm, and 17cm. 

The experiment aims to create 9 different datasets from the 

combinations of these 3 distances with these 3 intervals. The 

datasets were created using an iPhone X as the recorder with 

the default iOS app "Voice Memos" and a MateBook D14 

(2020) for the keyboard’s laptop. The laptop is positioned (see 

Figure 12) with the screen facing the phone, which faces the 

laptop's base. The measurements generated files in the m4a 

format, which were subsequently converted to the wav format 

following the following specifications: 

• Audio codec: pcm_s16le 

• Audio bitrate: 320kbps 

• Audio channels: stereo 2.0 

• Sampling frequency: 48000 Hz 

• 36 audio files were generated for each data collection, 

each containing the pressure of a letter or number key on 

the keyboard 25 times. 

• Data collections were performed with different distances 

of the smartphone from the keyboard: 17 cm, 50 cm, 100 

cm. 

The difference between the tracks at 100 cm and 50 cm is not 

very remarkable; however, graphically, we can see a thinning 

of the background noise level, and in general, the peaks 

become higher, making them more easily distinguishable in 

the case of a peak recognition algorithm, which we will 

analyze later. The most noticeable differences are observed 

not so much in the track with 1-second intervals but in the 

track with 0.5 seconds intervals, where the peculiar shape of 

the sought-after wave can be discerned, and especially in the 

track with 0.1 seconds intervals, where the audio is more 

recognizable as a series of clicks rather than a confused sound 

where it's hard to distinguish where one click ends and another 

begins (see Figure 13, 14, 15). Before seeing the results of the 

recording at 17 cm, analyzing the spectrogram and the click’s 

patterns, and the difference between a click recognized by 

these recordings in wild cases compared to tracks recorded in  

an ideal environment as presented by Harrison et al. [2]. In 

Figure 13, 14, 15, it can be noted how our generalization study 

is proving to be correct as the two audios are significantly 

different in terms of readability. The last audio appears to have  

 

FIGURE 12. Experimental desktop setup with a laptop MateBook at 17 
cm 

 

FIGURE 13. Audio track and spectrogram: Matebook D14 and iPhone X 
at a distance of 100 cm with a typing speed of 1 second. 

 

FIGURE 14. Audio track and spectrogram: Matebook D14 and iPhone X 
at a distance of 50 cm with a typing speed of 1 second. 

 

FIGURE 15. Audio track and spectrogram: Macbook Pro and iPhone 13 
at a distance of 17 cm with a typing speed of 1 second as in [2]. 

 
TABLE 4. OVERVIEW OF TCN MODEL PERFORMANCE ON VARIOUS 

DATASETS (ALL WITH 1-SECOND TYPING INTERVALS) 

Distance (cm) Peak accuracy (%) Peak loss 

17 99.44 0.0624 
50 98.88 0.0923 

100 97.02 0.1244 

17 (dataset used in [2]) 98.30 0.1943 

 

no background noise, and its analysis by the model will 

perfectly extract its features, whereas on the left, we find a 

more challenging but decidedly more realistic case. Finally, 

we have the tracks at 17 cm where we can already imagine a 

very low background noise, more similar to the cleaner waves 

analyzed in [2]. These last tracks closely resemble the result 

found in [2], and in fact, even in the tracks recorded at 0.1 

seconds, the audio is very understandable. In the track  
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TABLE 5. RESULTS OF PEAKS FOUND IN THE COMPARISON BETWEEN LOSSY 

AND LOSSLESS ENCODING. 

Coding Key “0” Key “9” Key “Q” Key “W” 

Lossless (0.1 sec) 24/25 25/25 25/25 25/25 

Lossy (0.1 sec) 25/25 24/25 25/25 25/25 

Lossless (1 sec) 25/25 26/25 25/25 25/25 

Lossy (1 sec) 24/25 25/25 26/25 25/25 

 
TABLE 6. RESULTS OF THE INFERENCE TESTS COMPARED TO AUDIO 

DATASET FROM DIFFERENT DIRECTIONS. 

Audio Direction Peak Accuracy (%) 

East 99.44 

South 40.02 

West 20.45 

North 37.81 

recorded at 1 second, peaks reach amplitudes 7 times higher 

than those at 100 cm and 50 cm, and the background noise is 

even lower. To conclude the experiments, demonstrate that 

even by generalizing the recording environment, our model 

performs very well, we apply the TCN model we studied to 

test the accuracy and loss on our 3 datasets (plus the reference 

of applying our model in the same dataset used in [2]). The 

results obtained are showed in Table 4. 

J. EXPERIMENT NO. 3 - TEST OF COMPRESSED AND 
UNCOMPRESSED AUDIO 

The objective here is to understand, in the process of 

generalizing the attack context, the software limitations of 

recording audio tracks. Briefly describe how audio is digitized 

and then analyze and understand the two types of audio 

compression: lossy and lossless. During audio recording, the 

analog signal from a microphone is converted into a digital 

signal through a process called sampling. The analog signal is 

measured at regular intervals in time and converted into 

discrete digital values. Subsequently, each sample is 

approximated to a digitally representable discrete value, in a 

process called quantization. Finally, the quantized samples are 

encoded using an audio encoding format that represents the 

digital audio data in a form that can be stored and reproduced 

by digital devices. Lossless compression is a type of data 

compression that reduces the size of an audio file without loss 

of quality. This type of compression is reversible, meaning 

that the audio data can be fully restored to its original form 

without loss of information. On the other hand, lossy 

compression reduces the size of the audio file by eliminating 

some information considered less relevant to human listening. 

This leads to a permanent loss of data and lower audio quality 

compared to the original. Our tests focused on understanding 

whether differences are also observed at the level of track 

analysis for feature extraction. The tests were conducted with 

25 clicks performed at a distance of 17 cm for the following 

keys: 0, 9, Q, W. Measurements were taken both with clicks 

spaced 1 second apart and with clicks spaced 0.1 seconds 

apart. Lossy compression used was MP3, while lossless 

compression was WAV. From the tests showed in Table 5, it 

is evident that there are no significant differences between the 

compressed and uncompressed tracks. Some minor 

differences may arise due to the recordings not being identical, 

but the 16 tracks were recorded separately. Therefore, it 

appears that the compression applied does not affect the 

parameters we are able to analyze with our audio waveform 

research and study tools. 

K. EXPERIMENT NO. 4: TEST FOR MULTI DIRECTIONAL 
AUDIO SOURCES 

In this experiment, it has been conducted a trial on the physical 

limits of recording by changing the position of the smartphone 

on the desk relative to the keyboard. During presented study 

on generalization, it’s kind of a doubt regarding the 

dependence of the recorded sound on the direction of the 

sound source, so it has been conducted some experimental 

tests. Physically, sound is directional, and therefore, the same 

sound changes its characteristics according to the listener if it 

originates from a different position in space relative to it. The 

functioning of smartphone microphones follows physical 

laws, and as listeners of the sound phenomenon, they are also 

dependent on the direction of the source. However, we still 

conducted tests to see if our dataset recorded in the modes 

described by Figure 14. In terms of waveform, there isn't any 

change. However, when we extract the features and compare 

them with our dataset calibrated for a specific direction, the 

accuracy results plummet drastically. 

L. EXPERIMENT NO. 5 - DYNAMIC SPLIT AND 
WAVELET STUDY FOR IDEAL CASES 

This experiment addresses the limitation of static splitting 

found in Harrison's treatment [2]. Static peak splitting has a 

major limitation because it makes dependent on typing our 

password to be recognized at a fixed and unnatural typing 

frequency. Furthermore, with static splitting, false peak 

problems can occur due to human imprecision. Indeed, the 

password is typed by a human who may not click exactly once 

every second, resulting in clicking a key a bit earlier and thus 

having the audio cut, which should represent a single click, 

corrupted. This phenomenon is called overlapping, and it's a 

serious problem because during feature extraction, the model 

will perceive information that doesn't belong to the click but 

rather as part of the pattern to learn to recognize that click. 

Moreover, in research [2] splitting is based on exact static 

number of clicks which is 25 for every key. Hence, the study 

of Wavelets as an analysis tool for audio tracks to identify the 

moment when a peak is encountered in the track and cut it 

from the track. Initially, the peak detection algorithm 

contained three variables: 

• Window noise calculation: Represents the time window (in 

seconds) from which the background noise level is 

calculated. It represents the first x seconds where nothing has 

been clicked yet to recognize that noise as background noise. 

• Peak recognition scale: Multiplicative factor to set the peak 

recognition threshold relative to the background noise level.  
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(a) 

(b) 

FIGURE 16. Laboratory environment audio wave with low background 
noise and high peaks (a) and on the wild “real world” environment 
audio wave with high background noise and short peaks (b). 

 

Compared to the background noise, what can be considered 

a peak? A sound x time louder. 

• Click time: Represents the duration of the "click" caused by 

pressing the key, used to skip forward in the signal after 

finding a peak.  

Using continuous wavelet is essential to skip ahead because 

otherwise, it would find dozens and dozens of peaks in each 

click (depending on the sampling). Follow the tests carried out 

on different types of wavelets to see which ones perform better 

in our various cases. The tests are done with a distance of 17 

cm and at two typing intervals, 0.1 seconds and 1 second. 

There are different types of wavelets that fall into two main 

categories: continuous and discrete. We can even disregard the 

discrete wavelet type because in our case, we analyze tracks to 

be as continuous as possible, given that we are analyzing 

sounds from the real world [27]. Figure 16 shows of peak 

detection using mexh wavelet transforms. 

M. EXPERIMENT NO. 6 - PERFORMANCE TEST OF 
WAVELETS ON TRACKS WITH SEVERE BACKGROUND 
NOISE (WORST-CASE SCENARIO) 

Experiment results has shown that mexh (see paragraph IV) is 

the most versatile, simple, and accurate wavelet in an optimal 

scenario, but it has limitations. Conducting tests with tracks  

 

 

FIGURE 17. Peak recognition by the mexh Transform with a track with 
high background noise (peaks recognized: 1). The dashed vertical red 
line, identifies the unique peak detected in an audio wav with 25 clicks. 

 
TABLE 7. RESULTS OF THE ADAPTATION TESTS OF THE SHAN B-C 

TRANSFORM ON A TRACK OF 25 CLICKS WITH INTERVALS OF 1 SECOND 

WITH HIGH BACKGROUND NOISE. 

Wavelet type Threshold 
Click detection 

ratio 

shan1.0-1.0 0.0013423 37/25 

shan1.5-1.0 0.0024838 27/25 

shan2.0-1.5 0.0013383 39/25 

shan1.5-1.3 0.0014362 35/25 

shan1.7-1.0 0.0030474 22/25 

shan1.6-1.0 0.0027379 25/25 

 

with high background noise, the effectiveness of mexh drops 

drastically. In that case, more complex and customizable 

wavelet transforms like shan (see paragraph IV) make much 

more sense, which, in the ideal scenario without being tuned 

with the right parameters, performed really poorly. This 

experiment, therefore, aims to compare the performance of 

mexh to shan in a generalized and non-ideal audio case. In 

Figure 17 it is showed how mexh performs in a non-ideal 

scenario. So now, on the same track, we need to perform tests 

by changing the parameters of shan B-C, where we recall B 

represents bandwidth and C represents frequency, in order to 

adapt shan to the shape of these waves (Table 7). So, by setting 

shan1.6-1.0, we achieve correct peak detection in a less-than-

ideal scenario. Finally, to conclude this experiment, 

performance comparisons were calculated for the two Wavelet 

Transforms mexh and shan1.6-1.0 with different typing 

frequencies in a high background noise scenario. Moreover, 

experimental results, shows that application of wavelet 

transforms for audio segmentation mitigate the problem of 

different speed and energy during typing (see Figure 18). 

N. EXPERIMENT NO. 7 - 17CM DATASET ON 
MECHANICAL KEYBOARD ON WILD CONDITIONS 

This experiment has been divided into 3 parts: the description 

of the new data collection context, the update of the peak 

detection algorithm, and the results of the model applied to the 

new dataset. As already mentioned, the tools for this 

experiment are changing. Indeed, the recordings are made 

with an Android smartphone (Xiaomi Redmi Note 9S), and  
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FIGURE 18. Performance comparison of different wavelets transforms 
with click rate of 0.5 second and 1 second for audio wav files with 25 
clicks. 

FIGURE 19. Experiment desktop setup of the mechanical keyboard. 

the keyboard used as the source of key sound is an Akko 306B 

Plus ISO mechanical keyboard, with Akko CS jelly pink 

switches with the following construction characteristics: 

• Type: Linear 

• Operating Force: 45gf ± 5gf 

• Total Travel: 4.0 ± 0.3mm 

• Pre-Travel: 1.9 ± 0.3mm 

The recorded audio files are always in WAV format with pcm 

s16le codec, 320kbps bitrate, stereo 2.0 audio channel, and a 

sampling frequency of 48kHz. The dataset to be created will 

consist of only 25 clicks per key with keystrokes spaced 1 

second apart for the 36 alphanumeric keys on the keyboard. 

The keyboard and the recorder will be placed at a distance of 

17 cm, and the recorder will be positioned to the left of the 

keyboard as in Figure 19. In Figure 20 the wave plot shows 

that, there is background noise. Furthermore, this detail 

demonstrates its natural origin, as we are certain that nothing 

has been intentionally or unintentionally altered by any audio 

cleaning software or denoiser. Before delving into the 

performance results of the model, examine how the detection  

•  

 
 

FIGURE 20. Plot representation of the mechanical keyboard key press 
as a waveform (left) and as a spectrogram (right) 
 

FIGURE 21. Line (left) and bar (right) graphical representation of the 
comparison between predicted results and actual results. Section from 
35 epochs. 

algorithm has evolved from static to semi-dynamic to 

dynamic. Briefly reviewing the phases of the peak detection 

algorithm: 

• The version applied in [2, 29] wasn't exactly an 

algorithm but rather a static version of splitting based 

on the exact keystroke frequency. Issue: overlapping. 

• In experiment No. 5, three parameters were introduced 

to make the algorithm less static (window noise 

calculation, peak recognition, and click time). More 

versatile to adapt to very different waveforms but still 

dependent on some recording conditions. 

• In experiment No. 6, it was possible to eliminate the 

window noise calculation variable by calculating the 

background noise as half the average of the entire 

track, and peak recognition was set by adjusting the 

multiplier based on the keystroke frequency. Issue: not 

entirely dynamic because an approximate keystroke 

frequency still needs to be input. Pro: it works with any 

typing speed as long as you roughly know what it is. 

Now, in this latest phase of the algorithm, it's possible 

to be almost independent of keystroke frequency. 

Indeed, you can type at any speed as long as there is at 

least a 0.4 second gap between keystrokes or more. 

This result can be achieved precisely because we are in 

an ideal scenario. 

The latest version of the algorithm is presented in the 

paragraph 3.A, Figure 3 under the name "Algorithm 1 Peak 

Detection and Split Algorithm." Now, all the experimental 

training data follows to evaluate the model's performance 

applied to this ideal scenario. The graphs are in order: line 

graph (predictions vs. actual values), bar graph (predictions vs. 

actual values) in Figure 21 and confusion matrix, accuracy 

trend, loss trend, classification report in Figure 22. In Figure 

21 and Figure 22, experimental results show some interesting  
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FIGURE 22. Graphical representation of the loss trend (left) and 
accuracy trend (right) of the model with a mechanical keyboard. 

FIGURE 23. Graphical representation of the confusion matrix related to 
inference tests on the trained model (left) and its summary of some 
metrics on various classes (right). 

 

FIGURE 24. Graphical representation of the loss trend (left) and 
accuracy trend (right) of the model with a soft keyboard. 
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TABLE 8. RESULTS OF INFERENCES TESTS ON UNSEEN DATA FOR THE 

PRETRAINED TCN MODEL ON A MECHANICAL KEYBOARD.IN REAL WORLD 

SCENARIO 

Password Prediction Accuracy 

tesirusso2024 mesirusso2024 92.3% 

tesirusso2024 tesigussp2024 84.6% 

testnumero1 tesrm7mero1 72.7% 

testnumero2 tesmnumero2 90.9% 

15koalablu 15koalablu 100% 

cupertino2090 cupermino2090 92.3% 

orwell1984 prwell1994 80% 

budapesthotel budapesthotel 100% 

 

results. In the comparison graphs between predicted labels and 

true labels, we observe a seemingly perfect match. 

Furthermore, in the training history, we can see that after 

approximately 100 epochs, our model already achieves very 

high accuracy percentages. The same applies in the opposite 

direction for the trend of loss, which decreases to very low 

values close to zero. 

These data might lead us to think that our model is affected by 

a phenomenon called overfitting, meaning our model appears 

not to be learning to generalize features for prediction but 

rather seems to be memorizing the input data. From graphs in 

Figure 23, we can confidently state that our model, achieving 

an Accuracy of 99.00% and a Loss of just 0.0003, exhibits the 

phenomenon of overfitting. Performance metrics such as 

precision, recall, and F1 score were chosen to evaluate the 

model for their ability to measure precision which focuses 

specifically on the accuracy of positive predictions, 

calculating the proportion of true positive predictions out of all 

positive predictions (true positives and false positives), 

completeness (recall), and the balance between them (F1 

score), ensuring comprehensive assessment of the model's 

effectiveness in accurately identifying and differentiating 

keystrokes. Figure 24 shows loss and accuracy for the same 

setup, showed in Figure 19 with a soft keyboard model. 

Overfitting occurs when the model fits too closely to the 

training data, memorizing not only the general patterns present 

in the data but also the noise and specific characteristics of the 

training data. Consequently, the model may lose the ability to 

generalize properly to new data and may exhibit lower 

performance when exposed to unseen data. This phenomenon 

occurs especially in cases where the dataset is very small, as 

in our case: 75 clicks for each class where only 25 are captured 

wild and the others are augmented. However, before raising 

the white flag, it is prudent to conduct inference tests on 

unseen data to assess how the model performs. 

O. EXPERIMENT NO. 8 - INFERENCE TEST ON UNSEEN 
DATA 

This serves as the final test to determine whether our model, 

despite having a clear overfitting issue, can still be valid in 

predicting passwords recorded at a later time compared to the 

dataset recording, while remaining under the same recording 

conditions, of course. Although overfitting may raise concerns 

about the model's generalization ability, it's important to 

consider that in certain cases, an overfitted model can still be 

valid if it can produce accurate results on unseen data. If the 

overfitted model still shows significant accuracy on unseen 

data, this suggests that the model is capable of generalizing 

correctly and making accurate predictions on new data, despite 

overfitting on the training data. We have 8 passwords as an 

example, and as showed in Table 8, the model performs quite 

well with an achieved mean accuracy of 89.1%, considering 

what one might expect from an overfitted model. Of course, 

there is still room for improvement, and the limitations are 

known and described beforehand (same smartphone recording 

distance and position that during acquisition of dataset). With 

such a small dataset, we cannot expect too much, but once 

again, that 89.1% of mean accuracy on inference of unseen 

data for an overfitted model demonstrates its quality, validity, 

and cutting-edge performance. In Table 3 the experimental 

results demonstrate a significantly contributes to the existing 

knowledge by advancing the field of acoustic side-channel 

attacks. It introduces an innovative pipeline for keystroke 

snooping that surpasses previous methods in accuracy and 

robustness. This pipeline utilizes wavelet-based dynamic 

audio segmentation to precisely isolate individual keystrokes, 

even amidst irregular typing and background noise, and 

employs a TCN for enhanced key classification. Rigorous 

testing under realistic conditions highlights the effectiveness 

of this approach, offering valuable insights into understanding 

and mitigating this evolving security threat. 

P. ABLATION ON THE PROPOSED PIPELINE 
EXPERIMENTAL RESULTS 

To isolate the contributions of the proposed individual pipeline 

components, it has been conducted two ablation experiments 

on datasets recorded in real-world scenarios: changing the 

energy and speed during typing and with a background noise 

of an empty room.  

In the first ablation experiment it has been removed the smart 

segmentation of the recorded audio with wavelet transforms, 

leaving all other blocks of the pipeline unchanged. Changing 

the pipeline and removing the dynamic smart keystroke 

detection, and varying the typing speed and energy on the 

keyboard, returns a keystroke detection failure in the recorded 

audio and therefore it was impossible to carry out a 

classification of the audio keystrokes.  The only way to apply 

a static keystroke detection on a recorded audio track is press 

every key at the same speed and energy, as done by authors in 

study [2, 21]. But this is not a real world-scenario.  

In the second ablation experiment, it has been changed another 

block of the proposed pipeline, changing the features 

extraction method from MFCC to Mel-Spectrograms and 

leaving all other blocks of the pipeline unchanged. In Figure 

25, 26 have been reported accuracy and loss, in Figure 27 the 

inference between predicted and real values in a histogram 

plot, and in Figure 28 the precision, recall, F1-score metrics, 

and the confusion matrix. These experimental results, 

compared to the proposed pipeline, show a lower validation  
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FIGURE 25. Graphical representation of the accuracy trend of the 
model with a Mel-Spectrograms features extraction. 

 

FIGURE 26. Graphical representation of the loss trend of the model 
with a Mel-Spectrograms features extraction 

FIGURE 27. Histogram plot representation of the inference trend 
between predicted and true values with a Mel-Spectrograms features 
extraction 

peak accuracy (82%) and a higher validation error loss (1.17) 

and these values highlight the inference errors in Figure 27 

where some classes show differences between predicted and 

real values. Plots on Figure 28 have been demonstrated a lower 

precision, recall and F1-score and higher errors in each 

keystroke class on confusion matrix. 

Q. POTENTIAL DEFENSE MECHANISMS AGAINST 
KEYSTROKES ATTACK 

Simply typing keys in a room with a high-level ratio of 

background noise respect to the click audio signal, is an 

excellent defense strategy against Snooping Keyboard attacks. 

Although not explicitly suggested as a defense mechanism, 

imply that simply changing one's typing style could be enough 

to evade attacks. When touch typing was utilized, as noted in 

work [9] observed a reduction in keystroke recognition 

accuracy from 64% to 40%. While this accuracy is still 

notable, it may not be sufficient to accurately interpret 

complex inputs involving the shift key, backspace, and other 

non-alphanumeric keys. Moreover, altering typing style can 

be combined with other mitigation techniques discussed in 

various studies and does not require any additional software or 

hardware. Another straightforward defense against such 

attacks is using randomized passwords that include multiple 

cases. Given the effectiveness of language-based models as 

noted in study [7], passwords composed of full words may be 

more vulnerable to attacks. Furthermore, although several 

methods were able to recognize the press of the shift key, none 

of the surveyed papers succeeded in identifying the 'release 

peak' of the shift key amid the sounds of other keys. A deeper 

exploration of keystroke acoustics, particularly the 'release 

peak' (the sound made when a key is released) can 

significantly impact model performance. Understanding these 

subtle acoustic features helps improve attack accuracy. While 

pressing a key produces distinct sound patterns, the 'release 

peak' is less pronounced and often masked by other 

keystrokes, complicating recognition. Analyzing these release 

peaks alongside press sounds can refine models to better 

capture and differentiate these acoustic signatures, ultimately 

enhancing both attack precision and the development of robust 

countermeasures. This focus could bridge gaps in existing 

studies and lead to more effective keystroke detection and 

defense mechanisms. In order to solve this issue in the 

proposed pipeline it has been applied the wavelet transforms 

to smart detect signals of key press and key release (see 

Section IV). This doubles the potential search space for 

characters following a shift key press. The authors in research 

[37] tried to interfere with the acoustic characteristics of 

keystrokes by randomly altering the sound slightly whenever 

keystrokes were detected. This approach reduced the accuracy 

of FFT features to the level of random guessing, but it only 

slightly affected the MFCC features. 

Keystroke attacks pose significant security risks as they 

exploit the unique acoustic or behavioral patterns of typing to 

infer sensitive information. The threat extends beyond 

individual privacy breaches to organizational vulnerabilities, 

especially in environments where high-value data is entered 

manually. Attackers can deploy these methods remotely using 

smartphone’s microphones, making detection and prevention 

challenging. However, the generalizability of such attacks is 

limited by several factors. Variations in keyboard models, 

typing styles, ambient noise, and recording conditions can  
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FIGURE 28. Precision, recall and F1-score for all key classes with a 
Mel-Spectrograms features extraction (left) and confusion matrix of the 
model with a Mel-Spectrograms features extraction (right) 

 

reduce the accuracy of these methods. Additionally, attackers 

must overcome encryption methods and other security 

measures implemented in modern devices. While 

advancements in machine learning, such as TCN and wavelet-

based audio preprocessing, have improved recognition rates, 

these technologies also highlight a potential gap between 

controlled experimental conditions and real-world application 

scenarios. Real environments are far noisier and more 

variable, potentially limiting the effectiveness of trained 

models. Addressing these challenges requires robust 

adversarial training and contextual awareness models to 

minimize false positives and negatives. Despite these 

limitations, the increasing sophistication of keystroke attacks 

underscores the need for stronger countermeasures, such as 

typing pattern obfuscation or acoustic shielding, to mitigate 

the risks posed by these evolving threats. 

Future research could focus on automatically suppressing or 

removing keystroke sounds from VoIP applications, 

enhancing both security and user experience. In work [14], 

two-factor authentication (2FA) is recommended, utilizing 

secondary devices or biometric checks to access data. As more 

laptops incorporate biometric scanners, the need for keyboard 

input diminishes, reducing the risk of Acoustic Side Channel 

Attacks (ASCAs). Nonetheless, as [14] points out, other data 

besides passwords remain at risk. Interestingly, some 

previously effective countermeasures have become less viable 

over time. For instance, paper [4] suggested that touchscreen 

keyboards, being silent, could negate ASCAs. However, 

compromised smartphone microphones have since shown a 

concerning ability to infer text typed on touchscreens with 

high accuracy. Similarly, the recommendation to check for 

microphones in a room before typing sensitive information is  

 

 

 

 

 

now impractical due to the ubiquity of microphones in modern 

devices like smartphones, smartwatches, laptops, and smart 

speakers. The advice from study [24] to mute microphones or 

avoid typing during Skype calls has also become less feasible, 

especially with the increase in remote work and video 

conferencing during the COVID-19 pandemic. The growing 

prevalence of technology that facilitates these attacks raises 

concerns about the sufficiency of current countermeasures. 

VI. CONCLUSIONS AND FUTURE WORKS 

Throughout this research, we have succeeded in developing a 

keystroke prediction model with unprecedented accuracy 

compared to the methods previously explored by the scientific 

community. Our innovative approach is based on the use of 

Temporal Convolutional Networks, integrated with a dynamic 

keyboard click recognition algorithm. This combination has 

proven to be extremely effective in creating an advanced 

system to support an individual's privacy data attack. 

Generalizing the study of the problem, we have also 

maximized its potential by bringing our high-performing 

model even to ideal cases. Furthermore, it is a significant 

achievement to have brought such a high-performing and 

complex model to smartphones, demonstrating that espionage 

can also be carried out simply by pressing a button in an 

application created for this purpose. This raises concern as 

such attacks becomes potentially easier to execute and more 

accessible. The accuracy of the predictions made by the model 

discussed in this paper, especially in non-ideal scenarios and 

real-world contexts, raises awareness of the danger of the 

attack and draws attention to a real vulnerability regarding the 

category of acoustic password espionage attacks. Research in 

this field is still in development and offers significant potential 

for the future. With the increasingly widespread use of 
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artificial intelligence, it is likely that attack systems will 

become more sophisticated.  our dataset to address the issues 

mentioned and provide more comprehensive results. In our 

future studies, we plan to expand our dataset with adversarial 

testing to address the issues mentioned and provide more 

comprehensive results. Finally, it is important to emphasize 

that this discussion is by no means intended to promote or 

encourage attacks of this kind, but rather to highlight a 

vulnerability often overlooked in the cybersecurity landscape. 
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