

VOLUME XX, 2024 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.Doi Number

A New Pipeline for Snooping Keystroke Based
on Deep Learning Algorithm

Massimo Orazio Spata, Valerio Maria Russo, Alessandro Ortis, (Senior Member, IEEE),
Sebastiano Battiato, (Senior Member, IEEE)
Dipartimento di Matematica e Informatica, University of Catania, 95125 Catania, Italy

Corresponding author: Massimo Orazio Spata (massimo.spata@unict.it).

ABSTRACT This research focuses on the vulnerability issues related to keystroke logging on a physical

computer keyboard, known as Snooping Keystrokes. This category of attacks occurs recording an audio track

with a smartphone while typing on the keyboard, and processing the audio to detect individual pressed keys.

To address this issue, mathematical wavelet transforms have been tested, and key recognition has been

implemented using the inference test of a deep learning model based on a Temporal Convolutional Network

(TCN). The novelty of the proposed pipeline lies in its dynamic audio analysis and keystroke recognition,

which splits the wave based on audio signal peaks generated by key presses. This approach enables an attack

in real-world conditions without knowing the exact number of keystrokes typed by the user. Experimental

results for the proposed pipeline show a peak accuracy of 98.3%.

INDEX TERMS Acoustic side channel attack, Snooping keystroke attacks, Deep learning, User security

and privacy, Laptop keystroke attacks, Zoom-based acoustic attacks

I. INTRODUCTION

The increasing use of smart devices in our daily lives and

their growing importance in managing our sensitive

personal data, have heightened attention to cybersecurity.

Among various threats, Acoustic Side Channel Attacks

(ASCAs) have emerged as a significant concern. These

attacks exploit sound emissions from devices to extract

sensitive information, such as pressed keys or

conversations, compromising digital security and user

privacy. This research focuses on a specific type of acoustic

attack known as Snooping Keystrokes. This attack aims to

retrieve information about pressed keys on a nearby

computer's physical keyboard, thereby extracting sensitive

information like private passwords for digital devices or

accounts.

In this study, the most relevant Snooping Keystrokes

attacks have been analyzed in detail, including detecting

individual clicks (using wavelet transform conversion of

the audio track), segmenting the audio of pressed keys,

extracting individual sound features representing the clicks,

and recognizing the pressed keys using artificial

intelligence techniques. Specifically, a Temporal

Convolutional Network (TCN) [1, 19, 23, 31] model has

been applied for classification. Through a series of

experiments conducted on a comprehensive dataset,

including various types of smart devices and attack

scenarios, the performance of the detection and recognition

model has been evaluated. The results demonstrate the

effectiveness of the proposed method, achieving high

precision, sensitivity, and specificity. Furthermore, the

method's robustness and versatility in different real-world

conditions are highlighted. The pipeline for acoustic attack

on keyboards, is supported by a comparative evaluation

with Harrison’s paper [2] and by exploiting new challenges

on a collected dataset. The TCN facilitates the modeling of

complex temporal dependencies, enabling extraction of

latent patterns within the acoustic emissions during typing.

The remainder of this paper is organized as follows: Section

2 provides a summary of previous research works related

to the topic, the proposed pipeline and the details of the

developed deep learning model architecture in Section 3

and the description of experimental result is presented in

Section 4. Section 5 presents the conclusions based on the

results, which confirmed the highly promising performance

of the designed solution.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

II. RELATED WORKS

Traditional methodologies for keystroke acoustic attacks [8, 9]

have often relied on simplistic analysis techniques, limited in

their capacity to capture complex temporal dynamics inherent

in typing sounds. The addressed task, received a significant

increasing attention in the scientific literature of the last years

as for example works [4, 23, 26]. The oldest paper on

emanation-based side-channel attacks identified in this review

was authored for the United States National Security Agency

(NSA) in 1972 [8]. As discussed by authors in study [9],

examines a more recent keyboard featuring a slightly recessed

design. Despite this, the keycaps are still large and made of

plastic, significantly differing from modern laptop keyboards.

The authors acknowledge that testing laptop keyboards, might

yield different results due to the absence of a 'release peak' in

the waveform. In the Asonov et al. study [4] mentions that

classified documents generated under the NSA’s side channel

specification program (TEMPEST), are known to address

acoustic emanations. Such work, often referred as the initial

ASCA targeting a keyboard, was published in 2004. It

criticized prominent plastic keyboards of that era. Despite its

early position in the field, the paper successfully demon-

started attacks on an ATM keypad, a corded telephone, and

two keys from a laptop keyboard. With the latest

advancements in deep learning models, the possibility of an

acoustic attack on keyboards seems increasingly plausible, as

highlighted in recent studies [6] where authors, has examined

the potential for Acoustic Side-Channel Attacks (ASCAs) on

laptop keyboards, especially given that laptops are a prime

target for such attacks. Laptops, being more portable than

desktop computers, are often used in public places where

keyboard sounds can be overheard, such as libraries, coffee

shops, and study areas.

In the research [23] authors discovered that several methods

outperformed neural networks during testing, and attaining a

keystroke accuracy of 74.3%, a result that was similarly

reflected in [24]. In the paper [26] authors examined the

feasibility and mechanics of acoustic side-channel attacks on

keyboards, which arise from the sounds and vibrations created

while typing. Authors investigated the unique sounds

produced by different keys, considering the physics of

keyboards and the various typing styles of users and

emphasizing the practicality of these attack scenarios,

showing that attackers can use both physical proximity and

remote indirect methods, to record keystroke sounds. This

study represents a significant threat to user security and

privacy, as attackers can capture sensitive information without

needing direct physical access to the victim’s device.

The NSA document NACSIM 5000 [11], which was partially

declassified, identified acoustic emanations as a potential

security risk, in 1982. In the public domain, Acoustic Side

Channel Attacks (ASCAs) have achieved different levels of

success on contemporary keyboards, utilizing a wide range of

techniques. In work [12] results indicating that the potential

for a real world ASCA is the tendency of each classifier to

group false classifications near the correct key. This

characteristic, suggests that even incorrect classifications may

provide clues about the true key's location on the keyboard, a

feature that could be leveraged in future research. In reference

to [13] author describe how, since 1950s, British spies

utilizing acoustic emanation sound of the Hagelin encryption

devices within the Egyptian embassy. As presented in the

paper [14], the authors suggest two-factor authentication as an

effective defense that has stood the test of time. This method

involves using an additional device or biometric verification

to access data. With the increasing inclusion of biometric

scanners in laptops, the need to enter passwords via keyboard

is significantly reduced, thereby diminishing the threat posed

by ASCAs. Nonetheless, the risk persists that data other than

passwords could still be obtained through ASCA.

Recently, a deep learning model have been used in order to

classify laptop keystrokes, just using a standard smartphone

integrated microphone [2]. Experiments over multiple

evaluation settings shown as related overall performances

outperforms a significant pool of previous works [10, 22, 24].

The model presented in the work [2] has been trained on two

different datasets [21] created with keystrokes recorded by a

nearby phone and the video-conferencing software Zoom,

whereas classifier achieved respectively a peak accuracy of

95% and 93%. The authors exploited the CoAtNet model, a

recent deep neural architecture based on attention mechanism

[3].

This paper presents a novel pipeline for acoustic attack on

keyboards, supported by a comparative evaluation with

Harrison’s study [2] and with our own other specially

collected dataset. The novelty is due to the entire pipeline used

and to exploitation of TCN models [1], usually applied on

different tasks, for acoustic keyboard attack. The TCN

facilitates the modeling of complex temporal dependencies,

enabling extraction of latent patterns within the acoustic

emissions during typing. Its core strength lies in the capability

to capture and process sequential data, dynamically adapting

to the variations in typing speed, rhythm, and inter-key

intervals. This is a first step of larger research comprising

benchmarking of several architectures and models. Other

related approaches [6, 10, 23, 24] make use of different

settings and methods, obtaining overall accuracy on different

ranges. Addressing this challenge, this work focuses on a

pipeline methodology for real world conditions scenarios of

Keystroke Attacks.

TCN offer significant advancements over existing methods in

keystroke attack detection by addressing key challenges

related to temporal dependencies and overfitting. Traditional

models like RNN and LSTM, while powerful, often struggle

with long-range dependencies and are prone to issues like

vanishing gradients. TCN mitigate these problems with their

architecture, which includes causal and dilated convolutions,

allowing the model to efficiently capture long-term

dependencies in keystroke data without the risk of information

leakage from future inputs to past outputs. One of the key

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

strengths of TCN is their ability to handle sequences of

varying lengths, which is crucial for accurately modeling

keystroke dynamics. Unlike RNN that process inputs

sequentially, TCN can process entire sequences in parallel,

significantly speeding up training and inference. This

parallelism also reduces the risk of overfitting by providing a

more comprehensive understanding of the temporal structure

within the data. Overfitting is a common challenge in deep

learning, where a model performs well on training data but

poorly on unseen data due to excessive complexity. TCN

address this through their use of residual connections and

dilated convolutions. Residual connections help maintain

gradient flow during backpropagation, preventing the

vanishing gradient problem and allowing for deeper networks.

Dilated convolutions expand the receptive field exponentially

without increasing the number of parameters, enabling TCN

to capture patterns over longer time spans without overfitting.

Furthermore, TCN are inherently designed to handle the

irregularities and variability present in keystroke dynamics.

By using a combination of causal and dilated convolutions,

TCN can model both short-term and long-term dependencies

more effectively than traditional RNN-based models. This

capability is particularly useful in detecting keystroke patterns

that may vary significantly between different typing styles and

contexts.

III. PROPOSED METHOD

The proposed work exploits a TCN [1] methodology as a

promising approach to counter such keystroke acoustic

vulnerabilities.

TCN is a convolutional neural network designed specifically

for sequential data. They have gained popularity in tasks

involving time series, such as audio processing, natural

language processing, and any other sequence modeling

problems. Key concepts of TCN are: causal convolutions,

dilated convolution and sequence length flexibility.

In a TCN, convolutions are causal, meaning the output at time

t only depends on the inputs from time t and earlier. This

ensures that the model respects the temporal order of the data,

preventing information leakage from future to past. A TCN

use dilated convolutions to allow the network to have a larger

receptive field without increasing the number of parameters or

the computational complexity significantly. Dilations

introduce gaps between the filter taps, enabling the model to

capture long-range dependencies efficiently.

For these reasons, the TCN paradigm offers a groundbreaking

solution by harnessing the power of deep learning and

temporal convolutional architectures. This approach facilitates

the modeling of complex temporal dependencies, enabling the

extraction of latent patterns within the acoustic emissions

during typing. The TCN's core strength lies in its capability to

capture and process sequential data, as it can dynamically

adapt to the variations in typing speed, rhythm, and inter-key

intervals. By incorporating dilated convolutions, the TCN

model can exponentially expand its receptive field, effectively

integrating information from a wide temporal range. TCN not

only facilitates accurate feature extraction from raw acoustic

signals but also enhances the model's resilience against noise

and variability. In order to provide a fair experimental

comparison with respect to the state of the art, we employed

the same dataset as in [2, 21, 29], as well as the same

evaluation metrics. Experiments suggest that the TCN

paradigm represents a promising avenue for advancing the

field of cybersecurity against unconventional threats. Given a

specific keyboard, the first step involves the creation of an

audio dataset. Then, the entire attack system is composed by

two phases: first data are properly processed in order to apply

next a TCN training process on specific extracted features.

During the initial experimentation phases, efforts were made

to generalize the system as much as possible to demonstrate

experimentally that even when imposing the worst-case

scenario, excellent performance could still be achieved.

A. PRE-PROCESSING PHASE

This phase includes peak detection and splitting algorithm,

followed by data augmentation. The visualization of the waves

occurs using an Amplitude-Time graph. Below are two

examples to visually understand how audio tracks appear. In

Figure 1 and Figure 2, there has been observed several

characteristics that will pose challenges to overcome during

this discussion for the correct classification of click patterns.

The peaks have very different values because obviously the

clicks have non-uniform energy applied in the action of key

pressing, and the structure of the click consisting in two peaks:

the first, higher one is the actual click, and the second,

generally lower, is the sound of releasing the key when we

remove our finger. Analyzing the time between clicks, it is not

homogeneous in terms of frequency; in a real case, keys are

pressed at different frequencies from each other. Finally, the

background noise is not always the same during audio

recording and it is not negligible, especially in real cases of

widespread ambient noise. A high level of background noise

could compromise the attack. In Figure 3 the pseudo-code of

peak detection and splitting algorithms: the Algorithm 1

named “Peak Detection and Split” used for peak detection and

split algorithm, get in input the path of recorded audio file, the

type of wavelet transforms to apply and an output path were

to write splitted audio files returned by the algorithm and call

recursively the Algorithm 2 named “Split Audio” which get in

input the path, the recorded audio file the average peak value,

the average inter-click time during typing and the output file

for each peak detected.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 1. An audio wave with a single click recorded by a smartphone
during experiments.

FIGURE 2. An audio wave track with 25 clicks on the keyboard recorded
by smartphone during experiments.

FIGURE 3. The peak detection (top) and split algorithm (bottom)
pseudocodes.

FIGURE 4. A wavelet transforms of an audio wave sample with 25
clicks.

IV. WAVELET TRANSFORM AND THE NEW PIPELINE

Mathematically, a wavelet [27, 28] must also satisfy the

condition of admissibility in (1):

∫ ψ(t)dt = 0
∞

−∞
 (1)

This means that the wavelet has equal positive and negative

areas, resulting in an average of zero. The Wavelet transform

divides our track into many small segments and is therefore

perfect for analyzing short and very steep peaks compared to

background noise, which is the basic structure of the waves

analyzed in this discussion (see Figure 4 and Figure 5). With

their localized nature, wavelets can capture both frequency

and time information. Three common examples of continuous

wavelets are:

• mexh (Mexican Hat): Excellent for signals with

discontinuities and transients such as sudden spikes

or short pulses, thanks to its effective temporal

localization and ability to capture rapid variations:

𝜓(𝑡) =
2

√3 √𝜋4
𝑒𝑥𝑝−

𝑡2

2 (1 − 𝑡2) (3)

• cmor (Complex Morlet): Preferable for signals with

well-defined frequency components, such as

sinusoidal signals or those approximated by

sinusoids, capable of effectively extracting

dominant frequencies:

𝜓(𝑡) =
2

√𝜋
𝑒𝑥𝑝−𝑡2

𝑒𝑥𝑝𝑗2𝜋𝑡 (4)

• shan (Shannon): Useful for signals with information

concentrated in well-defined frequency bands, such

as signals with limited band characteristics like

communication signals. Suppose be B bandwidth

and C frequency:

𝜓(𝑡) = √𝐵
sin (𝜋𝐵𝑡)

𝜋𝐵𝑡
𝑒𝑥𝑝𝑗2𝜋𝐶𝑡 (5)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 5. Waves functions, showing real and image parts.

FIGURE 6. Data augmentation algorithm pseudocode for each audio
file.

These are the main continuous wavelets and their respective

mathematical wave function formulas, although many others

exist, and they are the 3 wavelets that have been used to test

and develop the click detection algorithm.

B. DATASET AND AUDIO SEGMENTATION

Specifically, this paragraph describes the dataset and the audio

segmentation algorithm, which essentially determines a start

and end point for each cut to be made for every click,

calculated relative to the temporal point where the peak is

found. We have collected and created four different datasets,

each recorded using the microphone of a smartphone,

following the methodology established by Harrison et al. in

[2]. The first dataset, containing audio keystrokes from a

MacBook Pro keyboard recorded via smartphone, and it has

been downloaded by github [21]. The other three datasets were

created on the base of first dataset but changing the speed and

energy during typing on the keyboards. Each of these three

datasets consists of 900 audio files. These datasets contain 75

.wav files for each of the 36 selected keys on the keyboard

(letters a-z and numbers 0-9). After applying data

augmentation techniques, the total number of audio files in

each dataset increases to 2700. This comprehensive collection

allows us to thoroughly compare the performance of various

models and techniques in detecting and analyzing keystroke

sounds, but using 3 different keyboards: matebook d14

keyboard, a soft keyboard and a mechanical keyboard. These

datasets have been collected recording audio keystrokes with

smartphones at 3 different speed type: 0.1 sec, 0.5 sec and 1

sec (see Fig. 13, 14, 15) and with different energy during the

typing to create a real-world scenario. Relating to the

segmentation algorithm, the start of the cut is set to the time of

the peak found, while the end of the cut is set to the time of the

click minus 1 second (these optimal data points were found

experimentally). After each file is found, it is placed in the

folder dedicated to splits, which will be our initial form of

dataset.

FIGURE 7. Representation of the same audio track with intensity graph
(left) and dB spectrogram (right).

The pseudocode for the algorithm is detailed in Figure 3 as

Algorithm 2: Split Audio Algorithm.

C. DATA AUGMENTATION

In this section, a description of data augmentation techniques

applied to audio files. It has been applied by adding random

noise and generating additional versions of the original file.

The goal is diversifying and increase the size of the dataset.

This process is useful for improving robustness and is

commonly used in machine learning models for recognition

and classification tasks, especially in contexts where the

amount of available data is limited [15, 16, 17, 18, 25]. First

pseudocode step is iterate through the files present in the

directory of the initial dataset with segmented files, then for

each audio file, a specified number of augmented versions are

generated (a parameter decided beforehand and provided as an

input parameter to the function) and for each augmented

version, a copy of the original audio is made, and finally

random noise is applied to the copied audio using the add noise

function, with a low noise factor randomly extracted from a

specified range. In Figure 6 there is the pseudocode.

D. TRAINING PHASE

After creating the complete dataset with data augmentation

and sorting it into a CSV file, we move on to the training

phase. This phase is divided into:

• feature extraction,

• construction and definition of the TCN model,

• training and evaluation,

• metrics plot for the performance.

Feature extraction step: the methods used for extracting audio

features from sound signals is based on the spectrogram

representation of our audio tracks [2]. These features are

essential for analyzing and understanding the content of the

audio signal and will be crucial for our subsequent analyses.

Spectrograms are a visual representation of the content of an

audio signal. They are widely used in audio analysis to detect

temporal patterns. Using techniques like the Fourier

transform, it is possible to transform the audio signal from the

time domain to the frequency domain and then visualize it as

a three-dimensional image, where the x-axis represents time,

the y-axis represents frequency, and the color intensity

represents the energy present at that frequency and at that

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 8. Implemented TCN model architecture.

moment. In Figure 7 an example of the conversion to a dB

Spectrogram. Another method to extract audio features is

using the Mel-frequency Cepstral Coefficients (MFCC) [29,

30]. MFCC are a compact representation of the spectral

characteristics of an audio signal. These coefficients are

calculated through a series of steps, including transforming the

audio signal into the Mel scale and applying the Discrete

Cosine Transform (DCT) to obtain the cepstral coefficients.

MFCCs are widely used in speech analysis and recognition

because they effectively capture spectral information relevant

to human perception. For experiments presented in this paper

it has been used Spectrograms and MFCC (see paragraph IV).

E. TEMPORAL CONVOLUTIONAL NETWORK (TCN)

This section, briefly describe the category of Temporal

Convolutional Network (TCN) for the audio classification

task on audio micro-details. Temporal Convolutional

Networks (TCN) extend the concept of CNNs to handle

temporal sequences through the use of dilated convolutional

blocks. These blocks allow the network to acquire information

at multiple temporal scales, enabling greater flexibility in

capturing temporal patterns at different time scales. This

makes them particularly suitable for audio classification tasks,

where considering the temporal relationships between signals

is crucial, as in our case of signals that are difficult to

characterize as simple clicks. In a TCN models, causal

convolution is calculated as in (6):

𝑦𝑖 = ∑ 𝑐𝑗𝑥𝑗−1
𝑘−1
𝑗=0 (6)

where:

• i ∈ ℕ represents the current time index for the

output signal yi

• xj is an input tensor at time index i,

• yi is an output tensor at time index i,

• k is the convolution kernel,

• cj is a convolution weight for j ∈ [0, k-1].

The proposed TCN method, has been implemented the

following causal convolution with kernel k = 3 and padding

equal to k -1. To perform causal convolution, we incorporate

padding on the left side of the input tensor. To execute causal

TABLE I

TABLE 1. TCN MODEL HYPERPARAMETERS

TCN Model parameters Values

Number of layers 4

Number of classes 36

Number of filters 128

Batch size 32

Learning rate 0.001

Num channels 7

Kernel size 3

Dropout 0.2

Epochs 500

Input size 1

convolution, we employ classical 1-D convolution with

padding and trim elements from the right side. Employing the

dilation technique within a causal convolutional layer

enhances the coverage of the input time series and

substantially reduces computational costs. In the TCN

architecture, it is assumed that the sequence of causal

convolutional layers has a dilation factor of 2i-1. The overall

configuration of proposed TCN model architecture, is reported

in Table 1. Utilizing ReLU as the activation function for TCN

is recommended [1, 20]. To address potential gradient

propagation issues in the hidden layers, we employ weight

normalization for each convolutional layer. Additionally,

dropout regularization value 0.2 is applied after every

convolutional layer within the central neural network layer of

TCN. In a TCN model architecture (Figure 8) everything

revolves around the concept of dilation and causal convolution

with input and output tensors, which ultimately are sequential

data describing the information we give to the model and the

conclusions we derive after processing the model. For the

processing of these tensors, we must pass through various

residual blocks with parameters (kernel size and dilation)

formed by different convolutional layers [1]. Let's describe

these concepts more precisely:

• Residual Block: The residual block is a basic unit

within the TCN that helps mitigate the vanishing

gradient problem during the training of deep neural

networks. It consists of convolutional layers

followed by a residual connection that adds the

original input to the convoluted data.

• Kernel Size: The kernel size defines the size of the

input window on which convolutional filters are

applied. A larger kernel size captures broader

temporal patterns, while a smaller size can detect

finer temporal details.

• Dilation: Dilation refers to the spacing between

elements of the convolution window. Dilated

convolutions allow the TCN to capture temporal

patterns at different scales without increasing the

number of network parameters.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 9. The prediction algorithm pseudocode.

• Causal Convolutional Layer: The most important

layer of the residual block. It is a convolutional layer

that preserves the temporal order of the data during

processing. It applies convolution only on past data

(based on kernel size and dilation) and not on future

data, which is essential for many time series tasks.

In summary, a TCN uses residual blocks, dilated convolutions,

and causal convolutional layers to model temporal

dependencies in sequential data, enabling better prediction or

classification of future events. When implementing the TCN

for audio classification on micro-details, it is necessary to

define the model and training parameters adequately. In Table

1 there are the parameters used during experimental test.

F. PREDICTION ALGORITHM

The predict function takes as input the path of a directory and

a prefix. This function is used to predict the word associated

with the audio files present in the directory using a previously

trained Temporal Convolutional Neural Network (TCN)

model. The algorithm input parameters are:

• directory path: The path of the directory containing

the audio files.

• prefix: The common prefix of the audio file names to

be used.

Algorithm steps:

• The names of the audio files in the specified directory

that start with the provided prefix are obtained and

sorted based on the number extracted from the file

name.

• For each audio file in the sorted list:

(a) The audio file is loaded.

(b) MFCC (Mel-frequency Cepstral

Coefficients) features are extracted from the

audio.

(c) The MFCC features are normalized and

transformed into a format compatible with the

model.

(d) Prediction is made using the TCN model.

(e) The predicted class is decoded using the label

encoder object.

(f) The predicted word is added to the list of all

predictions.

• The predicted password is printed by concatenating

all the obtained predictions.

In Figure 9 the pseudocode used for the Prediction algorithm.

V. EXPERIMENTAL RESULTS

For the experiments we have been considered the same dataset

splitting and all experimental settings as done by authors in the

work [2] to conduct a fair comparison. Moreover, we have

been executed other experiments with different keyboards,

and different smartphone position in order to measure the

presented model accuracy in different experimental

conditions. To contrast overfitting, we have pursued an in-

depth examination of phenomenon, prioritizing the model's

generalization capability predicting keystroke in unseen data.

Its core strength lies in the capability to capture and process

sequential data, dynamically adapting to the variations in

typing speed, rhythm, and inter-key intervals. This is a first

step of larger research comprising benchmarking of several

architectures and models. The experimentation part, has been

inspired by an article dating back to August 2023 [2]. This

article deals precisely with the acoustic attack capable of

recognizing which keys have been clicked based on the sound

emitted by the pressure of individual keys. The main

limitations identified in their study are: the static splitting of

audio tracks for dividing the entire file into individual click

(25 clicks) files, a very high cleaning of the output audio files,

and the artificial intelligence model used. CoAtNet, is a type

of CNN that combines Convolution and Attention. The

experimentation phase is divided into two sets of experiments

with two very different tasks, generalization, and

maximization. With our first phase of experiments, it has been

tried to bring the system into a more ideal scenario by

attempting to maximize the performance of the entire pipeline

and the TCN model used, in order to achieve the state of the

art regarding Keystrokes attacks. Whereas in the second

phase, it has been studied the attack in more real-world

contexts (wild), and therefore, we will focus on generalizing

the entire process and seeing its physical limitations. In the

experiment there will demonstrate that there are models that

perform better under the same conditions and that slightly

lower results can be achieved by significantly increasing the

complexity and confusion of the data (a characteristic that

distinguishes true real-world cases of potential attacks).

Comparative tests have been performed with state-of-the-art

models and results are shown in Figure 10, Table 2 and Table

3.

G. FIRST SERIES OF EXPERIMENTS - LAPTOP
KEYBOARD IN NON-IDEAL CASES

As briefly described in the section above, this series of

experiments and tests could be perfectly described in the

concept of generalization. In fact, we have just described the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 2. EXPERIMENTAL RESULTS ABOUT COATNET AND THE

IMPLEMENTED TCN

Model Precision Recall F1-Score

CoAtNet [2] 0.960 0.950 0.950

TCN [1] 0.980 0.983 0.983

limitations of experiment conducted in paper [2], and in this

phase, we will address all those limitations by trying to

eliminate or at least improve them. This phase consists of 6

experiments. In short: 1 experiment will focus on the use of a

new CNN model (experiment no. 1), another experiment will

focus on generalizing the recording context (experiment no.

2), 2 experiments will study the hardware and software

limitations of audio capture (experiments no. 3, 4), and finally,

2 experiments will focus on the recognition and segmentation

modes of audio tracks (experiments no. 5, 6).

H. EXPERIMENT NO. 1 - TCN MODEL APPLIED TO
SNOOPING KEYSTROKES ATTACK

Let's start by saying that the treatment of this experiment has

been described and transposed in study [29]. Begin the

experiment by analyzing the context in which experiment in

[2] was conducted: an iPhone 13 placed 17 cm to the left of a

MacBook Pro. Clicks are made manually at intervals of 1

second from each other. The CNN model used is CoAtNet.

Initially, we only change the training pipeline by using

Temporal Convolutional Networks (TCN) instead of

Attentional Convolutional Networks (CoAtNet). We use the

same dataset so that the results can be properly compared, and

in our TCN test, we reduce the epochs to 500 for practicality.

In Table 2 the results. From the observed results, it can be seen

that indeed, across all fronts, the new implemented model

performs better. It increases precision (correctly identified

positive instances compared to all those identified as positive),

sensitivity/recall (correctly identified positive instances

compared to all actually positive instances in the dataset).

Additionally, there are graphs showing the trend of accuracy

and loss during training (see Figure 10), providing a visual

demonstration of the improvement in results compared to

Harrison’s research paper [2] and showed in Table 3.

Additionally, an analysis can be performed on the

unrecognized keys, and we were able to demonstrate that keys

mistakenly identified are indeed close to each other, thus

making the errors more understandable. This suggests the

model's effectiveness in distinguishing between different

acoustic keypress classes. Such precision attests to the model's

ability to capture subtle distinctions in acoustic data,

highlighting its potential in enhancing security measures. It is

interesting to focus on the few misclassification cases to better

understand the remaining challenges. The TCN outperforms

CoAtNet in keystroke recognition due to its superior ability to

capture long-range dependencies and temporal patterns in

sequential data. TCN's architecture, which includes causal

convolutions and dilation, allows it to effectively handle the

sequential nature of audio signals, making it better suited for

FIGURE 10. Plot on left shows experimental results applying CoAtNet
(loss and accuracy), on the right the same metrics obtained with
implemented TCN (train blue and validation red).

FIGURE 11. Misclassified keystroke proximity. Arrows connect the true
keystroke with the corresponding misclassified one predicted by the
model.

TABLE 3. OVERVIEW OF EXISTING RESEARCH PAPERS AND COMPARISON

WITH OUR WORK.

Method Accuracy validation peak

TCN (our) 98.3%

Harrison et al. [2] 95%

Anindya et al. [10] 93.7%

Compagno et al. [24] 91.7%
Bai et al. [6] 91.2%

Abhishek et [23] 74.3%

Zhu et al [22] 72.2%

recognizing keystrokes. TCN are superior as they inherently

handle sequential data, making them adept at recognizing

patterns in time-dependent signals like keystrokes. Their

structure is designed for temporal tasks, ensuring efficient

learning of temporal dependencies without the overhead of

attention mechanisms, which may not be as beneficial for this

specific application. When combined with wavelet transforms

for dynamic audio segmentation, TCN can accurately isolate

and classify keystrokes even in the presence of background

noise and irregular typing patterns, leading to better

experimental results compared to CoAtNet (a CNN with

attention). The errors described in the Figure 11 are the

recognition of "1" as "2," recognition of "3" as "E,"

recognition of "D" as "E," recognition of "M" as "4,"

recognition of "O" as "5," and recognition of "S" as "D".

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

I. EXPERIMENT NO.2 - DATASET FROM 100CM, 50CM,
AND 17CM WITH LAPTOP

In this experiment, we will analyze another aspect of the

limitations highlighted in work [2], which is the restricted

mode of recording the audio tracks. They describe the

experiment by placing the recorder at 17 cm (i.e., very close)

to the keyboard, and the keys are clicked at regular intervals

of 1 second (unnatural typing interval). Indeed, we wondered

what would happen in a real scenario, and there would be two

variables:

• Faster typing: the intervals were set at 0.1 seconds,

0.5 seconds, and 1 second between clicks

• Distance from the keyboard: three distances were

chosen to provide a more general idea of the model's

behavior under different and real circumstances. The

distances considered are 100cm, 50cm, and 17cm.

The experiment aims to create 9 different datasets from the

combinations of these 3 distances with these 3 intervals. The

datasets were created using an iPhone X as the recorder with

the default iOS app "Voice Memos" and a MateBook D14

(2020) for the keyboard’s laptop. The laptop is positioned (see

Figure 12) with the screen facing the phone, which faces the

laptop's base. The measurements generated files in the m4a

format, which were subsequently converted to the wav format

following the following specifications:

• Audio codec: pcm_s16le

• Audio bitrate: 320kbps

• Audio channels: stereo 2.0

• Sampling frequency: 48000 Hz

• 36 audio files were generated for each data collection,

each containing the pressure of a letter or number key on

the keyboard 25 times.

• Data collections were performed with different distances

of the smartphone from the keyboard: 17 cm, 50 cm, 100

cm.

The difference between the tracks at 100 cm and 50 cm is not

very remarkable; however, graphically, we can see a thinning

of the background noise level, and in general, the peaks

become higher, making them more easily distinguishable in

the case of a peak recognition algorithm, which we will

analyze later. The most noticeable differences are observed

not so much in the track with 1-second intervals but in the

track with 0.5 seconds intervals, where the peculiar shape of

the sought-after wave can be discerned, and especially in the

track with 0.1 seconds intervals, where the audio is more

recognizable as a series of clicks rather than a confused sound

where it's hard to distinguish where one click ends and another

begins (see Figure 13, 14, 15). Before seeing the results of the

recording at 17 cm, analyzing the spectrogram and the click’s

patterns, and the difference between a click recognized by

these recordings in wild cases compared to tracks recorded in

an ideal environment as presented by Harrison et al. [2]. In

Figure 13, 14, 15, it can be noted how our generalization study

is proving to be correct as the two audios are significantly

different in terms of readability. The last audio appears to have

FIGURE 12. Experimental desktop setup with a laptop MateBook at 17
cm

FIGURE 13. Audio track and spectrogram: Matebook D14 and iPhone X
at a distance of 100 cm with a typing speed of 1 second.

FIGURE 14. Audio track and spectrogram: Matebook D14 and iPhone X
at a distance of 50 cm with a typing speed of 1 second.

FIGURE 15. Audio track and spectrogram: Macbook Pro and iPhone 13
at a distance of 17 cm with a typing speed of 1 second as in [2].

TABLE 4. OVERVIEW OF TCN MODEL PERFORMANCE ON VARIOUS

DATASETS (ALL WITH 1-SECOND TYPING INTERVALS)

Distance (cm) Peak accuracy (%) Peak loss

17 99.44 0.0624
50 98.88 0.0923

100 97.02 0.1244

17 (dataset used in [2]) 98.30 0.1943

no background noise, and its analysis by the model will

perfectly extract its features, whereas on the left, we find a

more challenging but decidedly more realistic case. Finally,

we have the tracks at 17 cm where we can already imagine a

very low background noise, more similar to the cleaner waves

analyzed in [2]. These last tracks closely resemble the result

found in [2], and in fact, even in the tracks recorded at 0.1

seconds, the audio is very understandable. In the track

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 5. RESULTS OF PEAKS FOUND IN THE COMPARISON BETWEEN LOSSY

AND LOSSLESS ENCODING.

Coding Key “0” Key “9” Key “Q” Key “W”

Lossless (0.1 sec) 24/25 25/25 25/25 25/25

Lossy (0.1 sec) 25/25 24/25 25/25 25/25

Lossless (1 sec) 25/25 26/25 25/25 25/25

Lossy (1 sec) 24/25 25/25 26/25 25/25

TABLE 6. RESULTS OF THE INFERENCE TESTS COMPARED TO AUDIO

DATASET FROM DIFFERENT DIRECTIONS.

Audio Direction Peak Accuracy (%)

East 99.44

South 40.02

West 20.45

North 37.81

recorded at 1 second, peaks reach amplitudes 7 times higher

than those at 100 cm and 50 cm, and the background noise is

even lower. To conclude the experiments, demonstrate that

even by generalizing the recording environment, our model

performs very well, we apply the TCN model we studied to

test the accuracy and loss on our 3 datasets (plus the reference

of applying our model in the same dataset used in [2]). The

results obtained are showed in Table 4.

J. EXPERIMENT NO. 3 - TEST OF COMPRESSED AND
UNCOMPRESSED AUDIO

The objective here is to understand, in the process of

generalizing the attack context, the software limitations of

recording audio tracks. Briefly describe how audio is digitized

and then analyze and understand the two types of audio

compression: lossy and lossless. During audio recording, the

analog signal from a microphone is converted into a digital

signal through a process called sampling. The analog signal is

measured at regular intervals in time and converted into

discrete digital values. Subsequently, each sample is

approximated to a digitally representable discrete value, in a

process called quantization. Finally, the quantized samples are

encoded using an audio encoding format that represents the

digital audio data in a form that can be stored and reproduced

by digital devices. Lossless compression is a type of data

compression that reduces the size of an audio file without loss

of quality. This type of compression is reversible, meaning

that the audio data can be fully restored to its original form

without loss of information. On the other hand, lossy

compression reduces the size of the audio file by eliminating

some information considered less relevant to human listening.

This leads to a permanent loss of data and lower audio quality

compared to the original. Our tests focused on understanding

whether differences are also observed at the level of track

analysis for feature extraction. The tests were conducted with

25 clicks performed at a distance of 17 cm for the following

keys: 0, 9, Q, W. Measurements were taken both with clicks

spaced 1 second apart and with clicks spaced 0.1 seconds

apart. Lossy compression used was MP3, while lossless

compression was WAV. From the tests showed in Table 5, it

is evident that there are no significant differences between the

compressed and uncompressed tracks. Some minor

differences may arise due to the recordings not being identical,

but the 16 tracks were recorded separately. Therefore, it

appears that the compression applied does not affect the

parameters we are able to analyze with our audio waveform

research and study tools.

K. EXPERIMENT NO. 4: TEST FOR MULTI DIRECTIONAL
AUDIO SOURCES

In this experiment, it has been conducted a trial on the physical

limits of recording by changing the position of the smartphone

on the desk relative to the keyboard. During presented study

on generalization, it’s kind of a doubt regarding the

dependence of the recorded sound on the direction of the

sound source, so it has been conducted some experimental

tests. Physically, sound is directional, and therefore, the same

sound changes its characteristics according to the listener if it

originates from a different position in space relative to it. The

functioning of smartphone microphones follows physical

laws, and as listeners of the sound phenomenon, they are also

dependent on the direction of the source. However, we still

conducted tests to see if our dataset recorded in the modes

described by Figure 14. In terms of waveform, there isn't any

change. However, when we extract the features and compare

them with our dataset calibrated for a specific direction, the

accuracy results plummet drastically.

L. EXPERIMENT NO. 5 - DYNAMIC SPLIT AND
WAVELET STUDY FOR IDEAL CASES

This experiment addresses the limitation of static splitting

found in Harrison's treatment [2]. Static peak splitting has a

major limitation because it makes dependent on typing our

password to be recognized at a fixed and unnatural typing

frequency. Furthermore, with static splitting, false peak

problems can occur due to human imprecision. Indeed, the

password is typed by a human who may not click exactly once

every second, resulting in clicking a key a bit earlier and thus

having the audio cut, which should represent a single click,

corrupted. This phenomenon is called overlapping, and it's a

serious problem because during feature extraction, the model

will perceive information that doesn't belong to the click but

rather as part of the pattern to learn to recognize that click.

Moreover, in research [2] splitting is based on exact static

number of clicks which is 25 for every key. Hence, the study

of Wavelets as an analysis tool for audio tracks to identify the

moment when a peak is encountered in the track and cut it

from the track. Initially, the peak detection algorithm

contained three variables:

• Window noise calculation: Represents the time window (in

seconds) from which the background noise level is

calculated. It represents the first x seconds where nothing has

been clicked yet to recognize that noise as background noise.

• Peak recognition scale: Multiplicative factor to set the peak

recognition threshold relative to the background noise level.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

(a)

(b)

FIGURE 16. Laboratory environment audio wave with low background
noise and high peaks (a) and on the wild “real world” environment
audio wave with high background noise and short peaks (b).

Compared to the background noise, what can be considered

a peak? A sound x time louder.

• Click time: Represents the duration of the "click" caused by

pressing the key, used to skip forward in the signal after

finding a peak.

Using continuous wavelet is essential to skip ahead because

otherwise, it would find dozens and dozens of peaks in each

click (depending on the sampling). Follow the tests carried out

on different types of wavelets to see which ones perform better

in our various cases. The tests are done with a distance of 17

cm and at two typing intervals, 0.1 seconds and 1 second.

There are different types of wavelets that fall into two main

categories: continuous and discrete. We can even disregard the

discrete wavelet type because in our case, we analyze tracks to

be as continuous as possible, given that we are analyzing

sounds from the real world [27]. Figure 16 shows of peak

detection using mexh wavelet transforms.

M. EXPERIMENT NO. 6 - PERFORMANCE TEST OF
WAVELETS ON TRACKS WITH SEVERE BACKGROUND
NOISE (WORST-CASE SCENARIO)

Experiment results has shown that mexh (see paragraph IV) is

the most versatile, simple, and accurate wavelet in an optimal

scenario, but it has limitations. Conducting tests with tracks

FIGURE 17. Peak recognition by the mexh Transform with a track with
high background noise (peaks recognized: 1). The dashed vertical red
line, identifies the unique peak detected in an audio wav with 25 clicks.

TABLE 7. RESULTS OF THE ADAPTATION TESTS OF THE SHAN B-C

TRANSFORM ON A TRACK OF 25 CLICKS WITH INTERVALS OF 1 SECOND

WITH HIGH BACKGROUND NOISE.

Wavelet type Threshold
Click detection

ratio

shan1.0-1.0 0.0013423 37/25

shan1.5-1.0 0.0024838 27/25

shan2.0-1.5 0.0013383 39/25

shan1.5-1.3 0.0014362 35/25

shan1.7-1.0 0.0030474 22/25

shan1.6-1.0 0.0027379 25/25

with high background noise, the effectiveness of mexh drops

drastically. In that case, more complex and customizable

wavelet transforms like shan (see paragraph IV) make much

more sense, which, in the ideal scenario without being tuned

with the right parameters, performed really poorly. This

experiment, therefore, aims to compare the performance of

mexh to shan in a generalized and non-ideal audio case. In

Figure 17 it is showed how mexh performs in a non-ideal

scenario. So now, on the same track, we need to perform tests

by changing the parameters of shan B-C, where we recall B

represents bandwidth and C represents frequency, in order to

adapt shan to the shape of these waves (Table 7). So, by setting

shan1.6-1.0, we achieve correct peak detection in a less-than-

ideal scenario. Finally, to conclude this experiment,

performance comparisons were calculated for the two Wavelet

Transforms mexh and shan1.6-1.0 with different typing

frequencies in a high background noise scenario. Moreover,

experimental results, shows that application of wavelet

transforms for audio segmentation mitigate the problem of

different speed and energy during typing (see Figure 18).

N. EXPERIMENT NO. 7 - 17CM DATASET ON
MECHANICAL KEYBOARD ON WILD CONDITIONS

This experiment has been divided into 3 parts: the description

of the new data collection context, the update of the peak

detection algorithm, and the results of the model applied to the

new dataset. As already mentioned, the tools for this

experiment are changing. Indeed, the recordings are made

with an Android smartphone (Xiaomi Redmi Note 9S), and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 18. Performance comparison of different wavelets transforms
with click rate of 0.5 second and 1 second for audio wav files with 25
clicks.

FIGURE 19. Experiment desktop setup of the mechanical keyboard.

the keyboard used as the source of key sound is an Akko 306B

Plus ISO mechanical keyboard, with Akko CS jelly pink

switches with the following construction characteristics:

• Type: Linear

• Operating Force: 45gf ± 5gf

• Total Travel: 4.0 ± 0.3mm

• Pre-Travel: 1.9 ± 0.3mm

The recorded audio files are always in WAV format with pcm

s16le codec, 320kbps bitrate, stereo 2.0 audio channel, and a

sampling frequency of 48kHz. The dataset to be created will

consist of only 25 clicks per key with keystrokes spaced 1

second apart for the 36 alphanumeric keys on the keyboard.

The keyboard and the recorder will be placed at a distance of

17 cm, and the recorder will be positioned to the left of the

keyboard as in Figure 19. In Figure 20 the wave plot shows

that, there is background noise. Furthermore, this detail

demonstrates its natural origin, as we are certain that nothing

has been intentionally or unintentionally altered by any audio

cleaning software or denoiser. Before delving into the

performance results of the model, examine how the detection

•

FIGURE 20. Plot representation of the mechanical keyboard key press
as a waveform (left) and as a spectrogram (right)

FIGURE 21. Line (left) and bar (right) graphical representation of the
comparison between predicted results and actual results. Section from
35 epochs.

algorithm has evolved from static to semi-dynamic to

dynamic. Briefly reviewing the phases of the peak detection

algorithm:

• The version applied in [2, 29] wasn't exactly an

algorithm but rather a static version of splitting based

on the exact keystroke frequency. Issue: overlapping.

• In experiment No. 5, three parameters were introduced

to make the algorithm less static (window noise

calculation, peak recognition, and click time). More

versatile to adapt to very different waveforms but still

dependent on some recording conditions.

• In experiment No. 6, it was possible to eliminate the

window noise calculation variable by calculating the

background noise as half the average of the entire

track, and peak recognition was set by adjusting the

multiplier based on the keystroke frequency. Issue: not

entirely dynamic because an approximate keystroke

frequency still needs to be input. Pro: it works with any

typing speed as long as you roughly know what it is.

Now, in this latest phase of the algorithm, it's possible

to be almost independent of keystroke frequency.

Indeed, you can type at any speed as long as there is at

least a 0.4 second gap between keystrokes or more.

This result can be achieved precisely because we are in

an ideal scenario.

The latest version of the algorithm is presented in the

paragraph 3.A, Figure 3 under the name "Algorithm 1 Peak

Detection and Split Algorithm." Now, all the experimental

training data follows to evaluate the model's performance

applied to this ideal scenario. The graphs are in order: line

graph (predictions vs. actual values), bar graph (predictions vs.

actual values) in Figure 21 and confusion matrix, accuracy

trend, loss trend, classification report in Figure 22. In Figure

21 and Figure 22, experimental results show some interesting

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 22. Graphical representation of the loss trend (left) and
accuracy trend (right) of the model with a mechanical keyboard.

FIGURE 23. Graphical representation of the confusion matrix related to
inference tests on the trained model (left) and its summary of some
metrics on various classes (right).

FIGURE 24. Graphical representation of the loss trend (left) and
accuracy trend (right) of the model with a soft keyboard.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 8. RESULTS OF INFERENCES TESTS ON UNSEEN DATA FOR THE

PRETRAINED TCN MODEL ON A MECHANICAL KEYBOARD.IN REAL WORLD

SCENARIO

Password Prediction Accuracy

tesirusso2024 mesirusso2024 92.3%

tesirusso2024 tesigussp2024 84.6%

testnumero1 tesrm7mero1 72.7%

testnumero2 tesmnumero2 90.9%

15koalablu 15koalablu 100%

cupertino2090 cupermino2090 92.3%

orwell1984 prwell1994 80%

budapesthotel budapesthotel 100%

results. In the comparison graphs between predicted labels and

true labels, we observe a seemingly perfect match.

Furthermore, in the training history, we can see that after

approximately 100 epochs, our model already achieves very

high accuracy percentages. The same applies in the opposite

direction for the trend of loss, which decreases to very low

values close to zero.

These data might lead us to think that our model is affected by

a phenomenon called overfitting, meaning our model appears

not to be learning to generalize features for prediction but

rather seems to be memorizing the input data. From graphs in

Figure 23, we can confidently state that our model, achieving

an Accuracy of 99.00% and a Loss of just 0.0003, exhibits the

phenomenon of overfitting. Performance metrics such as

precision, recall, and F1 score were chosen to evaluate the

model for their ability to measure precision which focuses

specifically on the accuracy of positive predictions,

calculating the proportion of true positive predictions out of all

positive predictions (true positives and false positives),

completeness (recall), and the balance between them (F1

score), ensuring comprehensive assessment of the model's

effectiveness in accurately identifying and differentiating

keystrokes. Figure 24 shows loss and accuracy for the same

setup, showed in Figure 19 with a soft keyboard model.

Overfitting occurs when the model fits too closely to the

training data, memorizing not only the general patterns present

in the data but also the noise and specific characteristics of the

training data. Consequently, the model may lose the ability to

generalize properly to new data and may exhibit lower

performance when exposed to unseen data. This phenomenon

occurs especially in cases where the dataset is very small, as

in our case: 75 clicks for each class where only 25 are captured

wild and the others are augmented. However, before raising

the white flag, it is prudent to conduct inference tests on

unseen data to assess how the model performs.

O. EXPERIMENT NO. 8 - INFERENCE TEST ON UNSEEN
DATA

This serves as the final test to determine whether our model,

despite having a clear overfitting issue, can still be valid in

predicting passwords recorded at a later time compared to the

dataset recording, while remaining under the same recording

conditions, of course. Although overfitting may raise concerns

about the model's generalization ability, it's important to

consider that in certain cases, an overfitted model can still be

valid if it can produce accurate results on unseen data. If the

overfitted model still shows significant accuracy on unseen

data, this suggests that the model is capable of generalizing

correctly and making accurate predictions on new data, despite

overfitting on the training data. We have 8 passwords as an

example, and as showed in Table 8, the model performs quite

well with an achieved mean accuracy of 89.1%, considering

what one might expect from an overfitted model. Of course,

there is still room for improvement, and the limitations are

known and described beforehand (same smartphone recording

distance and position that during acquisition of dataset). With

such a small dataset, we cannot expect too much, but once

again, that 89.1% of mean accuracy on inference of unseen

data for an overfitted model demonstrates its quality, validity,

and cutting-edge performance. In Table 3 the experimental

results demonstrate a significantly contributes to the existing

knowledge by advancing the field of acoustic side-channel

attacks. It introduces an innovative pipeline for keystroke

snooping that surpasses previous methods in accuracy and

robustness. This pipeline utilizes wavelet-based dynamic

audio segmentation to precisely isolate individual keystrokes,

even amidst irregular typing and background noise, and

employs a TCN for enhanced key classification. Rigorous

testing under realistic conditions highlights the effectiveness

of this approach, offering valuable insights into understanding

and mitigating this evolving security threat.

P. ABLATION ON THE PROPOSED PIPELINE
EXPERIMENTAL RESULTS

To isolate the contributions of the proposed individual pipeline

components, it has been conducted two ablation experiments

on datasets recorded in real-world scenarios: changing the

energy and speed during typing and with a background noise

of an empty room.

In the first ablation experiment it has been removed the smart

segmentation of the recorded audio with wavelet transforms,

leaving all other blocks of the pipeline unchanged. Changing

the pipeline and removing the dynamic smart keystroke

detection, and varying the typing speed and energy on the

keyboard, returns a keystroke detection failure in the recorded

audio and therefore it was impossible to carry out a

classification of the audio keystrokes. The only way to apply

a static keystroke detection on a recorded audio track is press

every key at the same speed and energy, as done by authors in

study [2, 21]. But this is not a real world-scenario.

In the second ablation experiment, it has been changed another

block of the proposed pipeline, changing the features

extraction method from MFCC to Mel-Spectrograms and

leaving all other blocks of the pipeline unchanged. In Figure

25, 26 have been reported accuracy and loss, in Figure 27 the

inference between predicted and real values in a histogram

plot, and in Figure 28 the precision, recall, F1-score metrics,

and the confusion matrix. These experimental results,

compared to the proposed pipeline, show a lower validation

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 25. Graphical representation of the accuracy trend of the
model with a Mel-Spectrograms features extraction.

FIGURE 26. Graphical representation of the loss trend of the model
with a Mel-Spectrograms features extraction

FIGURE 27. Histogram plot representation of the inference trend
between predicted and true values with a Mel-Spectrograms features
extraction

peak accuracy (82%) and a higher validation error loss (1.17)

and these values highlight the inference errors in Figure 27

where some classes show differences between predicted and

real values. Plots on Figure 28 have been demonstrated a lower

precision, recall and F1-score and higher errors in each

keystroke class on confusion matrix.

Q. POTENTIAL DEFENSE MECHANISMS AGAINST
KEYSTROKES ATTACK

Simply typing keys in a room with a high-level ratio of

background noise respect to the click audio signal, is an

excellent defense strategy against Snooping Keyboard attacks.

Although not explicitly suggested as a defense mechanism,

imply that simply changing one's typing style could be enough

to evade attacks. When touch typing was utilized, as noted in

work [9] observed a reduction in keystroke recognition

accuracy from 64% to 40%. While this accuracy is still

notable, it may not be sufficient to accurately interpret

complex inputs involving the shift key, backspace, and other

non-alphanumeric keys. Moreover, altering typing style can

be combined with other mitigation techniques discussed in

various studies and does not require any additional software or

hardware. Another straightforward defense against such

attacks is using randomized passwords that include multiple

cases. Given the effectiveness of language-based models as

noted in study [7], passwords composed of full words may be

more vulnerable to attacks. Furthermore, although several

methods were able to recognize the press of the shift key, none

of the surveyed papers succeeded in identifying the 'release

peak' of the shift key amid the sounds of other keys. A deeper

exploration of keystroke acoustics, particularly the 'release

peak' (the sound made when a key is released) can

significantly impact model performance. Understanding these

subtle acoustic features helps improve attack accuracy. While

pressing a key produces distinct sound patterns, the 'release

peak' is less pronounced and often masked by other

keystrokes, complicating recognition. Analyzing these release

peaks alongside press sounds can refine models to better

capture and differentiate these acoustic signatures, ultimately

enhancing both attack precision and the development of robust

countermeasures. This focus could bridge gaps in existing

studies and lead to more effective keystroke detection and

defense mechanisms. In order to solve this issue in the

proposed pipeline it has been applied the wavelet transforms

to smart detect signals of key press and key release (see

Section IV). This doubles the potential search space for

characters following a shift key press. The authors in research

[37] tried to interfere with the acoustic characteristics of

keystrokes by randomly altering the sound slightly whenever

keystrokes were detected. This approach reduced the accuracy

of FFT features to the level of random guessing, but it only

slightly affected the MFCC features.

Keystroke attacks pose significant security risks as they

exploit the unique acoustic or behavioral patterns of typing to

infer sensitive information. The threat extends beyond

individual privacy breaches to organizational vulnerabilities,

especially in environments where high-value data is entered

manually. Attackers can deploy these methods remotely using

smartphone’s microphones, making detection and prevention

challenging. However, the generalizability of such attacks is

limited by several factors. Variations in keyboard models,

typing styles, ambient noise, and recording conditions can

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 28. Precision, recall and F1-score for all key classes with a
Mel-Spectrograms features extraction (left) and confusion matrix of the
model with a Mel-Spectrograms features extraction (right)

reduce the accuracy of these methods. Additionally, attackers

must overcome encryption methods and other security

measures implemented in modern devices. While

advancements in machine learning, such as TCN and wavelet-

based audio preprocessing, have improved recognition rates,

these technologies also highlight a potential gap between

controlled experimental conditions and real-world application

scenarios. Real environments are far noisier and more

variable, potentially limiting the effectiveness of trained

models. Addressing these challenges requires robust

adversarial training and contextual awareness models to

minimize false positives and negatives. Despite these

limitations, the increasing sophistication of keystroke attacks

underscores the need for stronger countermeasures, such as

typing pattern obfuscation or acoustic shielding, to mitigate

the risks posed by these evolving threats.

Future research could focus on automatically suppressing or

removing keystroke sounds from VoIP applications,

enhancing both security and user experience. In work [14],

two-factor authentication (2FA) is recommended, utilizing

secondary devices or biometric checks to access data. As more

laptops incorporate biometric scanners, the need for keyboard

input diminishes, reducing the risk of Acoustic Side Channel

Attacks (ASCAs). Nonetheless, as [14] points out, other data

besides passwords remain at risk. Interestingly, some

previously effective countermeasures have become less viable

over time. For instance, paper [4] suggested that touchscreen

keyboards, being silent, could negate ASCAs. However,

compromised smartphone microphones have since shown a

concerning ability to infer text typed on touchscreens with

high accuracy. Similarly, the recommendation to check for

microphones in a room before typing sensitive information is

now impractical due to the ubiquity of microphones in modern

devices like smartphones, smartwatches, laptops, and smart

speakers. The advice from study [24] to mute microphones or

avoid typing during Skype calls has also become less feasible,

especially with the increase in remote work and video

conferencing during the COVID-19 pandemic. The growing

prevalence of technology that facilitates these attacks raises

concerns about the sufficiency of current countermeasures.

VI. CONCLUSIONS AND FUTURE WORKS

Throughout this research, we have succeeded in developing a

keystroke prediction model with unprecedented accuracy

compared to the methods previously explored by the scientific

community. Our innovative approach is based on the use of

Temporal Convolutional Networks, integrated with a dynamic

keyboard click recognition algorithm. This combination has

proven to be extremely effective in creating an advanced

system to support an individual's privacy data attack.

Generalizing the study of the problem, we have also

maximized its potential by bringing our high-performing

model even to ideal cases. Furthermore, it is a significant

achievement to have brought such a high-performing and

complex model to smartphones, demonstrating that espionage

can also be carried out simply by pressing a button in an

application created for this purpose. This raises concern as

such attacks becomes potentially easier to execute and more

accessible. The accuracy of the predictions made by the model

discussed in this paper, especially in non-ideal scenarios and

real-world contexts, raises awareness of the danger of the

attack and draws attention to a real vulnerability regarding the

category of acoustic password espionage attacks. Research in

this field is still in development and offers significant potential

for the future. With the increasingly widespread use of

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

artificial intelligence, it is likely that attack systems will

become more sophisticated. our dataset to address the issues

mentioned and provide more comprehensive results. In our

future studies, we plan to expand our dataset with adversarial

testing to address the issues mentioned and provide more

comprehensive results. Finally, it is important to emphasize

that this discussion is by no means intended to promote or

encourage attacks of this kind, but rather to highlight a

vulnerability often overlooked in the cybersecurity landscape.

REFERENCES
1. Hatice Vildan Dudukcu, Murat Taskiran, Zehra Gülru Çam Taskiran,

Tulay Yildirim: Temporal Convolutional Networks with RNN

approach for chaotic time series prediction. Appl. Soft Comput. 133:

109945 (2023).
2. J. Harrison, E. Toreini and M. Mehrnezhad, "A Practical Deep

Learning-Based Acoustic Side Channel Attack on Keyboards," in

2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), Delft, Netherlands, (2023) pp. 270-280.

3. ZihangDai, HanxiaoLiu, QuocV.Le, MingxingTan “Coatnet:

Marrying convolution and attention for all data sizes”. In: Advances
in Neural Information Processing Systems 34 (2021).

4. Dmitri Asonov and Rakesh Agrawal. “Keyboard acoustic
emanations”. In: IEEE Symposium on Security and Privacy, 2004.

Proceedings. 2004. IEEE. 2004, pp. 3–11.

5. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., & Sporleder, C.
‘Acoustic Side-Channel Attacks on Printers’. USENIX Security

Symposium. (2010).

6. Jia-Xuan Bai, Bin Liu, and Luchuan Song. “I Know Your Keyboard

Input: A Robust Key-stroke Eavesdropper Based-on Acoustic

Signals”. In: Proceedings of the 29th ACM Inter-national Conference

on Multimedia. 2021, pp. 1239–1247.
7. Yigael Berger, Avishai Wool, and Arie Yeredor. “Dictionary attacks

using keyboard acoustic emanations”. In: Proceedings of the 13th

ACM conference on Computer and communications security. 2006,
pp. 245–254.

8. Jeffrey Friedman. “Tempest: A signal problem”. In: NSA Cryptologic

Spectrum 35 (1972), p. 76.
9. Tzipora Halevi and Nitesh Saxena. “Keyboard acoustic side channel

attacks: exploring realistic and security-sensitive scenarios”. In:

International Journal of Information Security 14.5 (2015), pp. 443–
456.

10. Maiti, A., Armbruster, O., Jadliwala, M., & He, J. Smartwatch-Based

Keystroke Inference Attacks and Context-Aware Protection
Mechanisms. Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security. (2016)

11. NSA NACSIM. “5000: Tempest Fundamentals”. In: National Security
Agency (1982).

12. Ehsan Toreini, Brian Randell, and Feng Hao. “An acoustic side

channel attack on enigma”. In: School of Computing Science
Technical Report Series (2015).

13. Peter Wright. “Spycatcher: The Candid Autobiography of a Senior

Intelligence Officer”. In: New York: Viking (1987).
14. Li Zhuang, Feng Zhou, and J Doug Tygar. “Keyboard acoustic

emanations revisited”. In: ACM Transactions on Information and

System Security (TISSEC) 13.1 (2009), pp. 1–26.
15. Park, D.S., Chan, W., Zhang, Y., Chiu, C., Zoph, B., Cubuk, E.D., &

Le, Q.V. SpecAugment: A Simple Data Augmentation Method for

Automatic Speech Recognition. Inter-speech. (2019).
16. Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data

augmentation for deep learning”. In: Journal of big data 6.1 (2019),

pp. 1–48
17. Huq, S., Xi, P., Goubran, R., Valdés, J.J., Knoefel, F., & Green, J.

(2023). ‘Data Augmentation using Reverb and Noise in Deep Learning

Implementation of Cough Classification’. IEEE International
Symposium on Medical Measurements and Applications (MeMeA),

1-6. (2023).

18. Yashish M. Siriwardena, Ahmed Adel Attia, Ganesh Sivaraman, Carol
Espy-Wilson “Audio Data Augmentation for Acoustic-to-articulatory

Speech Inversion using Bidirectional Gated RNNs.”

arXiv:2205.13086 (2022).

19. Gridin I., "Time Series Forecasting using Deep Learning: Combining
PyTorch, RNN, TCN, and Deep Neural Network Models to Provide

Production-Ready Prediction Solutions" (2021).

20. Wang, H., & Zhang, Z. (2022, May). TATCN: time series prediction
model based on time attention mechanism and TCN. In 2022 IEEE

2nd international conference on computer communication and

artificial intelligence (CCAI) (pp. 26-31). IEEE.
21. J. Harrison, Keystroke-Datasets https://github.com/JBFH-

Dev/Keystroke-Datasets (2023)

22. Zhu, T., Ma, Q., Zhang, S., & Liu, Y. ‘Context-free Attacks Using
Keyboard Acoustic Emanations’. Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security.

(2014).
23. S Abhishek Anand and Nitesh Saxena. “Keyboard emanations in

remote voice calls: Password leakage and noise (less) masking

defenses”. In: Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy. 2018, pp. 103–110.

24. Compagno, A., Conti, M., Lain, D., & Tsudik, G. ‘Don't Skype &

Type!: Acoustic Eaves-dropping in Voice-Over-IP’. Proceedings of
the 2017 ACM on Asia Conference on Computer and

Communications Security. (2016).

25. Kim, G., Han, D.K., & Ko, H. “SpecMix: A Mixed Sample Data
Augmentation method for Training with Time-Frequency Domain

Features.” Interspeech (2021).
26. Taheritajar, A., Harris, Z.M., & Rahaeimehr, R.: A Survey on

Acoustic Side Channel At-tacks on Keyboards. ArXiv,

abs/2309.11012 (2023).
27. Thomas, D.R., Drishya, V., Rajeshwari, G.R., Sundar, L., & Prabhu,

V. (2022). A discrete wavelet transform-based audio watermarking

technique for digital security. International Journal of Nonlinear

Dynamics and Control.

28. Daubechies, I. (1990). The wavelet transform, time-frequency

localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-
1005.

29. Spata, M.O., Ortis, A., Battiato, S., Russo, V.M. (2024). A New Deep

Learning Pipeline for Acoustic Attack on Keyboards. In: Arai, K. (eds)
Intelligent Systems and Applications. IntelliSys 2024. Lecture Notes

in Networks and Systems, vol 1065. Springer, Cham.

https://doi.org/10.1007/978-3-031-66329-1_26
30. M.O. Spata, V.M. Russo, A. Ortis, S. Battiato, Acoustic Side Channel

Attack for Keystroke Splitting in the Wild. To be published in IEEE

MetroXrain 2024 conference proceedings.
31. Fan, J., Zhang, K., Huang, Y., Zhu, Y., & Chen, B. (2023). Parallel

spatio-temporal attention-based TCN for multivariate time series

prediction. Neural Computing and Applications, 35(18), 13109-
13118.

MASSIMO ORAZIO SPATA graduated in 1998

in Computer Science, received PhD degree in
Computer Science from Dipartimento di

Matematica ed Informatica in 2008 discussing the

thesis entitled “Tecniche basate sull’Equilibrio di
Nash per lo scheduling in un Cluster Grid”. He

joined STMicroelectronics Catania in 1999 as

Distributed System Engineer. In November 2009
he joined STMicroelectronics Technical Staff

Engineer Group, developing know how and skills in System Integration and

Image Processing. Since January 2013 he has joined the STMicroelectronics
R&D group where developing know how and skills in biomedical portable

devices for DNA analysis. Since 2017 he has been teaching Computer

Science at secondary schools where developing know how and skills in
robotics systems. Since January 2022 he is a research fellow in Computer

Science at the University of Catania, Dipartimento di Matematica e

Informatica where developing know how and skills in deep learning
algorithms for biomedical, audio and biometric application. He collaborates

with Universities and Research Institutions involved in different research

projects. Author of different patents and publications for journals and
international conferences concerning the above fields.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VALERIO MARIA RUSSO holds a Bachelor’s
degree in Computer Science from the University of

Catania, where he completed a thesis focused on the

application of artificial intelligence in audio
recognition. During his studies, he developed skills

in Android app development, integrating deep

learning technologies to enhance user interaction
with the word around. Through his thesis work, he

had the opportunity to engage in scientific research,

co-authoring articles with his professors. He is
currently aiming to continue his studies with a Master’s degree in Artificial

Intelligence.

ALESSANDRO ORTIS received the master’s
degree (summa cum laude) in computer science

from the Universitá degli Studi di Catania, in

2015, and the Ph.D. degree in mathematics and

computer science from TIM, in 2019. His Ph.D.

thesis investigates several aspects related to visual

sentiment analysis applied on crowd sourced
images/videos. He has been involving in the field

of computer vision research, since 2012, when he joined the Image

Processing Laboratory (IPLab). He did two research internships with
STMicroelectronics, in 2011/2012 and with TIM, in 2015. He is currently a

Postdoctoral Researcher with the Universitá degli Studi di Catania. He is the

coauthor of 15 articles published in international conferences and four
journals and co-inventor of one international patent. His current research

interests include computer vision, machine learning, and multimedia. He
received the Archimede Prize for the excellence of academic career

conferred by the University of Catania, in 2015. He is a reviewer of several

international conferences and journals..

SEBASTIANO BATTIATO received the degree

(summa cum laude) in computer science from the

University of Catania, in 1995, and the Ph.D.
degree in computer science and applied

mathematics from the University of Naples, in

1999. From 1999 to 2003, he was the Leader of the
“Imaging'' Team, STMicroelectronics, Catania.

He joined the Department of Mathematics and

Computer Science, University of Catania, as an
Assistant Professor, an Associate Professor, and a

Full Professor, in 2004, 2011, and 2016, respectively. He is currently a Full

Professor of computer science with the University of Catania, where he is
also the Scientic Coordinator of the Ph.D. Program in computer science. He

is involved in the research and directorship with the Image Processing

Laboratory (IPLab). He coordinates IPLab's participates on large scale
projects funded by national and international funding bodies and private

companies. He is also the Director (and the Co-Founder) of the International

Computer Vision Summer School (ICVSS). He has edited six books and
coauthored about 250 articles in international journals, conference

proceedings, and book chapters. He is a co-inventor of 22 international

patents. His current research interests include computer vision, imaging
technology, and multimedia forensics. He has been a Regular Member of

numerous international conference committees. He was a recipient of the

2017 PAMI Mark Everingham Prize for the series of annual ICVSS schools
and the 2011 Best Associate Editor Award of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. He has

been the Chair of several international events, including ICIAP 2017,
VINEPA 2016, ACIVS 2015, VAAM 20142016, VISAPP 20122015,

IWCV 2012, ECCV 2012, ICIAP 2011, ACM MiFor 20102011, and SPIE

EI Digital Photography 2011-2013. He has been a Guest Editor of several
special issues published in international journals. He is an Associate Editor

of the Journal of Electronic Imaging (SPIE) and the IET Image Processing

Journal.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3536877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

