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A B S T R A C T

The progress in generative models, particularly Generative Adversarial Networks (GANs), opened new possibil-
ities for image generation but raised concerns about potential malicious uses, especially in sensitive areas like
medical imaging. This study introduces MITS-GAN, a novel approach to prevent tampering in medical images,
with a specific focus on CT scans. The approach disrupts the output of the attacker’s CT-GAN architecture
by introducing finely tuned perturbations that are imperceptible to the human eye. Specifically, the proposed
approach involves the introduction of appropriate Gaussian noise to the input as a protective measure against
various attacks. Our method aims to enhance tamper resistance, comparing favorably to existing techniques.
Experimental results on a CT scan demonstrate MITS-GAN’s superior performance, emphasizing its ability to
generate tamper-resistant images with negligible artifacts. As image tampering in medical domains poses life-
threatening risks, our proactive approach contributes to the responsible and ethical use of generative models.
This work provides a foundation for future research in countering cyber threats in medical imaging. Models
and codes are publicly available.1
1. Introduction

In recent years, advancements in generative models have ushered in
a new era of image generation and manipulation, showcasing remark-
able capabilities in rendering images increasingly indistinguishable
from their original counterparts [1–3]. This progress, driven by deep
learning techniques, has found applications in various domains, from
creative artistry [4] to medical imaging [5], among others.

In medical imaging, GANs have been instrumental in addressing
the challenge of data scarcity. They are used to augment datasets by
generating synthetic images or translating images between different
modalities. For instance, GANs have been employed to convert MRI
images into CT images [6], generate realistic 2D brain MRI images [7],
and even enhance image resolution [8]. These applications not only
improve the quality and availability of medical images but also support
advancements in diagnostic processes. Islam et al. [9] proposed a GAN-
based method to generate PET images of the brain. This new dataset
could be used to create new artificial intelligence methods to help
doctors make an early diagnosis of Alzheimer’s disease. Due to the
absence of Arterial Spin Labeling (ASL) data, Li et al. [10] proposed
a GAN architecture in order to synthesize such images. ASL measures
cerebral blood flow, which is useful for making diagnoses for dementia
diseases. Pang et al. [11] proposed a semi-supervised GAN architecture
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to perform data augmentation on ‘breast ultrasound mass’ images, in
order to significantly improve the performance of the TCGAN classifier,
created to discriminate the presence or absence of breast cancer. Liu
et al. [12] proposed a multi-cycle GAN to generate CT images from
MRI images, overcoming the limitations of MRI in that no information
about the patient’s bones is obtained. The technique reduces patients’
exposure to radiation, improving the safety of radiotherapy. In general,
MRI images contain noise that can be removed with the conditional
GAN proposed by Tian et al. [13]. This work exceeds state-of-the-
art methods in both noise reduction and the preservation of robust
anatomical structures and defined contrast. A very interesting approach
was proposed by Dong et al. [14], in which a GAN architecture was
used to automatically segment CT images of the thorax, using a U-Net
architecture as generator and FCN as discriminator, in order to improve
radiotherapy treatment planning. The proposed architecture achieved
better segmentation results than state-of-the-art approaches.

However, alongside positive applications, researchers have demon-
strated the malicious use of GANs [15] for tasks such as malware
obfuscation [16] and the creation of deepfakes [17]. The key idea
behind GANs involves training two neural networks, a generator, and
a discriminator, in an adversarial setting. The generator aims to pro-
duce synthetic data, such as images, that is indistinguishable from
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Fig. 1. Overview of the GAN architecture and training process.

Fig. 2. Qualitative results comparison between real and tampered CT scans. Columns
1 and 3 show the original images, whereas Columns 2 and 4 depict the manipulated
images. The red bounding boxes highlight the manipulations introduced by CT-GAN,
wherein tumors have been added to the scans. This visual representation underscores
the impact and detectability of manipulations within the medical imaging context.

real data, while the discriminator’s task is to differentiate between
real and generated data. This adversarial training process results in
the generator continually improving its ability to create realistic data,
making GANs highly effective in image generation tasks (Fig. 1). Within
the medical domain, the potential consequences of malicious tampering
are critical, as the integrity and authenticity of images can have life-or-
death implications as shown in Fig. 2 manipulating the images provided
by the authors of [17]. Image tampering techniques [18] have raised
concerns by highlighting the potential for malicious manipulation of
medical images, such as computed tomography (CT) scans and ra-
diographs. This introduces a new dimension of cyber attacks, with
image manipulation being employed to deceive medical professionals
and compromise patient care, potentially leading to misdiagnoses. To
address this challenge, the research community has focused on devel-
oping automated detection systems for image manipulation, treating
it as a classification task. Various learning-based approaches have
shown promise, achieving excellent classification accuracy [19–22].
Alternatively, another strategy is to prevent manipulations at the source
by disrupting manipulation methods’ output [23–25]. The key idea is to
disrupt generative neural network models by introducing noise patterns
at a low level, making it more challenging for malicious actors to
create convincing forgeries. In this study, we investigate the problem of
2 
Fig. 3. Comparison between Real unprotected CT scans and protected CT scans
generated by the proposed model MITS-GAN. As can be noted, the protected images,
which embed the protection noise pattern, are similar to the original one.

image tampering in the medical domain, focusing on the manipulation
of CT scans. To address this problem, we propose Medical Imaging
Tamper Safe-GAN (MITS-GAN) method. In particular, we introduce a
framework based on Generative Adversarial Networks with the aim
to generate protected images against image manipulation model [18].
Our model generates the protected scans introducing an imperceptible
noise with the aim to disrupt the output when the manipulation is
performed and minimizing potential artifact that could pose challenges
during the review process by medical experts (Fig. 3). MITS-GAN is
designed to protect medical images from tampering, addressing risks
such as misdiagnosis and medical fraud. Real-world concerns include
manipulating CT scans to deceive doctors or commit insurance fraud,
as well as using deepfake technology to fabricate medical images. This
research is significant for its potential to enhance diagnostic accuracy
and bolster healthcare cybersecurity. By ensuring the authenticity of
medical images, MITS-GAN supports reliable diagnoses, safeguards pa-
tient data, and prevents the misuse of AI technologies in healthcare.

The main contributions of the proposed work are:

• We address the critical issue of medical image tampering by
proposing a robust methodology that ensures the integrity and
reliability of diagnostic images. This approach is motivated by
the urgent need to protect medical imaging from manipulation,
which could otherwise compromise diagnostic accuracy and the
reliability of Machine Learning methods and other systems based
on such datasets;

• We introduce a novel framework called MITS-GAN (Medical
Imaging Tamper Safe-GAN) and compare its performance with
state-of-the-art methods. MITS-GAN leverages Generative Ad-
versarial Networks (GANs) to safeguard medical images from
tampering. Our results demonstrate the superior effectiveness
of MITS-GAN in preserving the authenticity and reliability of
medical images;

• Our work lays the groundwork for future research aimed at
mitigating cyber threats in the field of medical imaging. We
emphasize the importance of proactive measures to protect and
maintain the integrity of medical scans, highlighting the long-
term implications of our approach for the security of medical
data.

The document is organized as follows. Section 2 reports the main
works in the literature. The proposed approach is described in Sec-
tion 3. The used for the experiments, the metrics to evaluate the
performances, the experimental results and comparison are reported in
Section 4. Finally, Sections 5 and 6 conclude the paper with some hints
for future works.

2. Related work

2.1. GAN applications in medical imaging

GANs have made significant contributions to the field of medical
imaging, addressing various challenges and enhancing the quality and
accessibility of medical imagery. GANs’ ability to generate realistic
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images has been leveraged to alleviate the common issue of data
scarcity in medical image analysis by augmenting s through the gen-
eration of new images or style translation. For instance, the authors
of [26] utilized a conditional GAN (cGAN) to transform 2D slices of
CT images into PET images. The authors of [27,28] demonstrated a
similar approach employing a fully convolutional network with a cGAN
architecture. In [29], domain adaptation was employed to convert MRI
images into CT images, while the authors of [6] used CycleGAN to
convert MRI images into CT images and vice versa. The authors of [7]
use a deep convolutional GAN (DCGAN) to generate 2D brain MRI
images. In [30], the authors used a DCGAN to generate 2D liver lesions.
In [31], the authors generated 3D blood vessels using a Wasserstien
(WGAN). In [5], the authors train two DCGANs for generating 2D chest
X-rays (one for malign and the other for benign). Within the medical
imaging domain, GANs have also found other interesting applications
in segmentation [32], super-resolution [8] and anomaly detection [33].

2.2. Deepfake detection methods

The ability to understand if an image is generated by a generative
Neural Network is in some case challenging also for the human eyes
representing a complicated problem. To address this problem, numer-
ous methods have been developed over the years to determine the
authenticity of an image [34].

Researchers have demonstrated that generative engines leave traces
on synthetic content that can be detected in the frequency domain [35,
36]. Giudice et al. [37] proposed a method able to identify the specific
frequency that characterizes a GAN engine through a deeper analysis
of coefficients given from the Discrete Cosine Transform (DCT). These
traces are characterized by both the network architecture (number and
type of layers) and its specific parameters [38]. Based on this principle,
the synthetic images created by various GAN engines are also charac-
terized by different statistics in terms of correlations between pixels. To
capture this trace left by the convolutional layers, Guarnera et al. [39,
40] proposed a method based on the Expectation-Maximization [41]
algorithm, obtaining excellent classification results in distinguishing
pristine data from deepfakes. Wang et al. [42] proposed a method to
discriminate real images from those generated by ProGAN [43]. The
method turns out to be able to generalize with synthetic data created
by different GAN architectures.

Recent solutions use Vision Transformer to detect deepfakes [44,
45]. For example, [46] combined vision transformers with a convo-
lutional network, achieving excellent results in solving the proposed
task.

Researchers are also actively engaged in developing advanced tech-
niques to identify synthetic images generated by Diffusion Models [47].
Corvi et al. [48] investigated the challenges associated with distinguish-
ing synthetic images produced by diffusion models from authentic ones.
They assess the suitability of current state-of-the-art detectors for this
specific task. Sha et al. [49] proposed DE-FAKE, a machine-learning
classifier-based method designed for the detection of diffusion mod-
els on four prevalent text-image architectures. Meanwhile, Guarnera
et al. [50] introduced a hierarchical approach based on recent archi-
tectures. This approach involves three levels of analysis: determines
whether the image is real or manipulated by any generative architec-
ture (AI-generated); identifies the specific framework, such as GAN or
DM; defines the specific generative architecture among a predefined
set.

Experimental results of all these methods have demonstrated that
generative models leave unique traces that can be detected to distin-

guish deepfakes well from real multimedia content.

3 
2.3. Adversarial attacks

Adversarial attack methods are designed to introduce imperceptible
changes to images with the aim of disrupting the feature extraction
process performed by neural networks. Initially applied in classifica-
tion tasks [51–53], where their goal was to induce misclassification
errors, these methods have been extended to segmentation [54] and
detection tasks [55]. However, the optimization process of unique
pattern for each individual image can be highly time-consuming. To
address this challenge, researchers introduced the concept of generic
universal image-agnostic noise patterns [56,57]. Such noise patterns
are designed to be versatile and applicable across a wide range of im-
ages, eliminating the need for time-consuming, image-specific pattern
optimization. While this approach has proven effective in the context of
tasks involving misclassification, it has demonstrated limitations when
applied to generative models.

2.4. Image manipulation prevention

Prevent image manipulations exploiting adversarial attack tech-
niques has been recently studied as an alternative way to the clas-
sification and detection of manipulated images. The authors of [24]
propose a baseline methods for disrupting deepfakes by adapting ad-
versarial attack methods to image translation networks. In [23,58]
the authors presented an approach to nullify the effect of image-to-
image translation models. In [59] authors proposed a novel neural
network based approach to generate image-specific patterns for low-
resolution images which differs from the previous methods because
does not require optimization of a specific pattern for each image
separately which is computationally expensive. In [25] an innovative
framework called Targeted Adversarial Attacks for Facial Forgery De-
tection (TAFIM), a innovative framework that accepts a real image
𝑋𝑖 and a global perturbation 𝛿𝐺 as inputs to the model. This process
generates an image-specific perturbation 𝛿𝑖. The resulting perturbation
is then added to the original image, producing the protected image
𝑋𝑝

𝑖 , which is subsequently processed through the manipulation model
𝜙. The outcome is the manipulated output 𝑌 𝑝

𝑖 , utilized for driving the
optimization process.

3. Proposed method

Our goal is to prevent image manipulation, specifically the addition
or removal of tumors in CT scans, by disrupting the CT-GAN [18]
architecture. We designed a proper way to introduce an imperceptible
perturbation that disrupts the CT-GAN’s output in case of malicious
manipulation, making it easier for a human to identify tampered scans,
and hence ensuring the integrity of medical imaging process. MITS-
GAN operates by applying protection at a slice-by-slice level for 3D CT
scans. Rather than implementing a global protection mechanism across
the entire 3D volume, our approach applies 2D convolutions to each
slice independently. This localized protection ensures that even if only
a subset of slices is manipulated, the algorithm remains robust, as each
slice is protected individually. This slice-wise protection is particularly
advantageous in scenarios where tampering occurs in specific areas of
the scan, as it allows the detection of subtle and localized changes. In
contrast to recent methods that use 3D-based GANs [18,60] to solve
tasks such as creating new datasets or performing attacks on medical
images, a slice-wise approach such as the one we propose, can offer
greater advantages in terms of computational efficiency and flexibility
in both the creation of new synthetic data and the handling of partial
manipulations.

The chosen architecture leverages Generative Adversarial Networks
(GANs) to generate protected images using a Gaussian perturbation
(noise). The primary idea is to ensure that these protected images are
indistinguishable from the original ones. By concatenating the noise

as an additional channel rather than directly adding it to the CT scan
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Fig. 4. Model architecture overview: The generator receives the input image 𝑥 and perturbation noise 𝛿 to produce the protected image 𝑥𝑝. Subsequently, 𝑥𝑝 is forwarded to the
manipulation model and discriminator.
images (𝑥), potential image artifacts are avoided. This approach helps
the network treat the perturbation as extra information rather than as
part of the image data itself, which could otherwise lead to unwanted
artifacts that might be discarded during training. The inclusion of Mean
Squared Error (MSE) loss, which is maximized during training, plays a
crucial role. This loss function compels the network to generate robust
images that resist manipulations from the CT-GAN model, thereby
preserving fidelity to the original images.

3.1. Overview

The proposed architecture is illustrated in Fig. 4. Let 𝛿 be an image-
agnostic perturbation, distributed according to a Gaussian distribution,
and 𝑋 = {𝑥𝑖}𝑁𝑖=0 be the of 𝑁 CT scans. 𝛿 and 𝑥 are fed into the
Generator 𝐺(𝑥, 𝛿; 𝜃𝐺) of parameters 𝜃𝐺, which includes a Noise Net
𝑁 that, for a given input 𝛿, outputs 𝑁(𝛿). This module contains five
2D convolutional layers, each followed by batch normalization and
the ReLU activation function. Subsequently, the CT scan 𝑥 and 𝑁(𝛿)
are concatenated channel-wise and passed through a sequence of con-
volutional layers (one 2D convolution, three residual blocks, one 2D
convolution). Each layer is followed by batch normalization and the
ReLU activation function, except for the last one, which applies the
Tanh activation function. Concatenating the noise as a new channel
allows the network to consider the perturbation as extra information
instead of adding it to 𝑥, which could lead to it being considered as
image artifacts and therefore discarding them in the training phase to
make the generator’s output similar to 𝑥. The resulting output of 𝐺,
denoted as 𝑥𝑝, represents the protected scan and is forwarded to the
CT-GAN manipulation model 𝑀 which tamper the 𝑥𝑝 producing �̂�𝑝 and
whose parameters are frozen. Additionally, 𝑥 and 𝑥𝑝 are provided to the
discriminator 𝐷(𝑥; 𝜃𝐷) that outputs the likelihood 𝑑 that a given image
𝑥 belong to the real images with the aim to distinguish between a pro-
tected image produced by the generator and the original unprotected
one. The Discriminator 𝐷 consists of eight 2D convolutional layers,
each followed by batch normalization and the LeakyReLU activation
function. The model is trained using a generative adversarial objective,
encouraging the generator to produce protected images similar to the
original (unprotected) ones.

The goal is to optimize the following min–max objective:

min
𝐺

max
𝐷,𝑀

𝐿𝑑 (𝐷,𝐺) + 𝛼𝐿𝑚(𝐺,𝑀) (1)

where 𝐿𝑑 represents the domain loss:

𝐿𝑑 (𝐷,𝐺) = E𝑥𝑝 [𝑙𝑜𝑔𝐷(𝑥𝑝; 𝜃𝐷)] + E𝑥,𝛿[𝑙𝑜𝑔(1 −𝐷(𝐺(𝑥, 𝛿; 𝜃𝐺); 𝜃𝐷))] (2)

where E denotes the average value of the enclosed expression over
the specified distribution. In detail, E [𝑙𝑜𝑔𝐷(𝑥𝑝; 𝜃 )] represents the
𝑥𝑝 𝐷

4 
expected log-probability that the discriminator assigns to real data sam-
ples. The discriminator aims to maximize this term, meaning it tries to
correctly identify real data as real. E𝑥,𝛿[𝑙𝑜𝑔(1−𝐷(𝐺(𝑥, 𝛿; 𝜃𝐺); 𝜃𝐷))] repre-
sents the expected log-probability that the discriminator assigns to fake
data samples created by the generator. The discriminator aims to maxi-
mize this term by correctly identifying fake data as fake (i.e., assigning
a low probability to fake data being real).

𝐿𝑚 is the Mean Squared Error (MSE) loss computed between the
output of the model 𝑀 and the generator 𝐺:

𝐿𝑚(𝐺,𝑀) = E𝑥,𝛿[(𝑀(𝐺(𝑥, 𝛿; 𝜃𝐺)) − 𝐺(𝑥, 𝛿; 𝜃𝐺))2] (3)

where E𝑥,𝛿[(𝑀(𝐺(𝑥, 𝛿; 𝜃𝐺)) − 𝐺(𝑥, 𝛿; 𝜃𝐺))2] denotes that the expectation
is taken over the distributions of 𝑥 and 𝛿, indicating that we are
considering the average squared error across all possible input and
noise pairs.

𝛼 is the weight that controls the interaction of these losses. In
particular, the optimization of the loss function 𝐿𝑑 concerning both
the discriminator 𝐷 and the generator 𝐺 constitutes the standard
generative adversarial objective. This objective concurrently refines
both the generator and the discriminator. Subsequently, the term 𝐿𝑚 is
introduced to augment the visual dissimilarity between the generated
output 𝑥𝑝 and its corresponding tampered image �̂�𝑝. The inclusion of 𝐿𝑚
serves the purpose of increasing noticeable artifacts in the manipulated
content �̂�𝑝 when attempting to tamper with 𝑥𝑝. Algorithm 1 reports the
complete forward procedure of the proposed method.

4. Dataset, metrics and experimental results

In this section, we expound upon the dataset, outline the metrics
under consideration, and scrutinize the outcomes derived from the
introduced methodology. The manipulation model, denoted as CT-GAN,
operates by taking a CT scan as input, identifying a designated square
for manipulation, and subsequently producing the manipulated square.
This process involves either removing or adding a tumor, resulting
in the tampered square, which is then seamlessly integrated into the
original scan. It is noteworthy that the tampered scan closely resembles
the original, with the sole exception being the generated square. Our
model ensures the comprehensive protection of the entire scan, as
manipulations can be applied to any part of the scan, necessitating
robustness across the entire image.

4.1. Dataset

Our approach is evaluated using the dataset outlined in [61], follow-
ing the training editing procedure specified in [18]. In this procedure,
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Algorithm 1: Forward pass description of the proposed framework
Input: 𝐶𝑇 scan = 𝑥, 𝛿 = perturbation;
Step 1: Forward 𝛿 and 𝑥 through the Generator 𝐺;
Step 2: Feed 𝛿 into the Noise Net 𝑁 within 𝐺, obtaining 𝑁(𝛿), and
concatenate it with 𝑥;
Step 3: Apply five convolutions in 𝐺 to generate the protected
image 𝑥𝑝;
Step 4: Pass 𝑥𝑝 to the Discriminator 𝐷 and the Manipulation
model 𝑀 (CT-GAN);
Step 5: Compute domain loss for 𝑥 and 𝑥𝑝 through 𝐷;
Step 6: Utilize 𝑀 to extract and manipulate a 32 × 32 pixel square
𝑞. Generate a tampered image �̂�𝑝 by pasting 𝑞 onto 𝑥𝑝;
Step 7: Compute MSE loss between 𝑥𝑝 and �̂�𝑝;

Fig. 5. Example of a CT scan.

the authors’ injector model is trained on cancer samples with a mini-
mum diameter of 10 mm, while the remover model is trained on benign
lung nodules with a diameter less than 3 mm. The dataset comprises
888 CT scans, and we adhered to the standard split procedure, allo-
cating 80% as the training set and the remaining 20% as the test set.
Each CT scan is stored as a DICOM or Raw file, and its dimensions are
represented as 𝑁 × 𝐻 × 𝑊 , where 𝑁 identify the number of ‘‘slices’’
or thin sections through which the scan was performed, 𝐻 represents
the height, and 𝑊 represents the width of the scan (see Fig. 5). The
considered CT scans have a fixed resolution of 512 × 512 and a variable
number of slices within the range 𝑁 ∈ [95, 764].

4.2. Metrics

To evaluate the output quality in a quantitative way, we compute
the RMSE, PSNR, LPIPS [62] and SSIM metrics as detailed below:

• RMSE (Root Mean Square Error) measure the deviation between
predicted values from a model and the actual observed values.
Lower values are better, 0 zero indicates that the predicted values
are equals to the observed values.

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
‖𝑦𝑖 − 𝑥𝑖‖2 (4)

• PSNR (Peak signal-to-noise ratio) is a metric used to quantify
the quality of an image or video by measuring the ratio of the
maximum possible signal strength to the noise introduced dur-
ing compression or transmission. Higher PSNR values generally
indicate better image quality.

𝑃𝑆𝑁𝑅(𝐼, 𝐽 ) = 10 ⋅ log10

(

𝑀𝐴𝑋2
𝐼

𝑀𝑆𝐸

)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2 (5)

• LPIPS computes the similarity between the feature representa-
tions of two image patches extracted by a pre-trained neural
5 
Table 1
Metric results evaluated between the following pairs on the: real-MITS-GAN, real-
TAFIM, real-MITS-GAN tampered and real-TAFIM tampered. Lower values are better
for RMSE and LPIPS, higher for PSNR and SSIM.

Metric Real Tampered

MITS-GAN TAFIM MITS-GAN T. TAFIM T.

RMSE 169.481 194.943 198.253 233.780
PSNR 27.949 21.702 21.237 21.469
LPIPS 0.170 0.383 0.226 0.391
SSIM 0.983 0.945 0.970 0.981

Table 2
Metric results evaluated between the following pairs on the tampered square part
of the images: real-MITS-GAN, real-TAFIM, real-MITS-GAN tampered and real-TAFIM
tampered. Lower values are better for RMSE and LPIPS, higher for PSNR and SSIM.

Metric Real Tampered

MITS-GAN TAFIM MITS-GAN T. TAFIM T.

RMSE 50.565 66.061 84.349 79.451
PSNR 26.682 18.854 11.289 18.511
LPIPS 0.372 0.3417 0.591 0.346
SSIM 0.992 0.972 0.740 0.866

network. This metric has demonstrated a strong alignment with
human perception. The lower the LPIPS score, the more percep-
tually similar the image patches are considered to be. For the
experiment we used as pretrained network SqueezeNet [63].

• SSIM computes the similarity between two images based on their
structural similarity, taking into account factors such as lumi-
nance, contrast, and structural patterns. Higher SSIM values in-
dicate greater similarity between the two images according to
human visual perception.

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)
(6)

𝜇𝑥 and 𝜇𝑦 are the mean intensities of images 𝑥 and 𝑦. 𝜎𝑥 and 𝜎𝑦 are
the standard deviations of images 𝑥 and 𝑦. 𝜎𝑥𝑦 is the covariance
between 𝑥 and 𝑦. 𝐶1 and 𝐶2 are small constants to stabilize the
division with weak denominator.

4.3. Experimental setup

All models were trained for 20 epochs using a NVIDIA V100. The
MITS-GAN2 architecture, implemented using PyTorch,3 was trained
with a batch size of 16, a learning rate set at 0.0002, betas of [0.5, 0.999],
and utilizing Adam as the optimizer. For TAFIM, we adopted the
configurations suggested by the authors in [25].

4.4. Results

Fig. 6 shows the qualitative results of the proposed MITS-GAN
method compared with TAFIM [25]. MITS-GAN exhibits fewer visible
artifacts on the reconstructed images and demonstrates a more robust
ability to resist manipulation, accentuating the artifacts introduced
when the model attempts to manipulate the selected square. Fig. 7
shows the heatmap obtained by performing a pixel-to-pixel difference
between the real image and the protected one. In this case, the pro-
posed method generates protected images that are more faithful to the
originals than the compared method.

Table 1 reports the results of the considered metrics evaluated
between each pair of real-protected and real-protected/tampered on the
entire images. MITS-GAN has lower RMSE, LPIPS, and higher PSNR and

2 https://github.com/GiovanniPasq/MITS-GAN
3 https://pytorch.org/

https://github.com/GiovanniPasq/MITS-GAN
https://pytorch.org/
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Fig. 6. Qualitative results on the reconstruction task compared with images as manipulation targets.
SSIM values compared to TAFIM, suggesting better reconstruction qual-
ity of the images. This advantage is maintained even when considering
the images after manipulation. Table 2 shows the results evaluated on
the square part subjected to manipulation. In this case, the metrics
favor the proposed method. After manipulation, the output produced by
the manipulator model appears to be more damaged than the compared
method. This suggests that MITS-GAN produces images with less noise
but is more robust to manipulation, generating more visible artifacts
when attempting to tamper with an image.

4.5. Ablation study

Table 3 presents the results of MITS-GAN varying the hyperparam-
eter 𝛼, which regulates the standard GAN losses and the MSE loss used
to generate robust images against manipulation by CT-GAN. Since CT-
GAN performs manipulation on a square of size 32 × 32 pixels, the
evaluation considers which 𝛼 value provides the best protection. This
assessment focuses on maximizing RMSE and LPIPS while minimizing
PSNR and SSIM. The goal is to ensure that the output generated by
CT-GAN after manipulation is significantly different from the original,
6 
Table 3
Ablation study about the impact of the MSE loss.

Metric 𝛼

0.2 0.4 0.6 0.8 1

RMSE 79.026 80.472 81.920 82.517 84.349
PSNR 18.766 17.145 15.803 13.562 11.289
LPIPS 0.338 0.377 0.425 0.510 0.591
SSIM 0.881 0.854 0.810 0.775 0.740

introducing artifacts that are clearly visible to the human eye. As shown
in the table, the best performance is achieved when 𝛼 = 1.

5. Discussion

The MITS-GAN approach has shown considerable promise in safe-
guarding medical imaging from tampering, particularly when com-
pared to existing methods such as TAFIM. Experimental results show
that MITS-GAN achieves lower RMSE and LPIPS values and higher
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Fig. 7. Heatmap computed between the pairs real-MITS-GAN and real-TAFIM.
PSNR and SSIM values, indicating superior image reconstruction qual-
ity and robustness against manipulation. MITS-GAN succeeds in cre-
ating high-quality images that are almost completely identical to the
originals and with almost no artifacts. This robustness is crucial in
medical imaging where clarity and accuracy are fundamental. In ad-
dition, the method generates tamper-resistant images, showing more
visible artifacts when data protected by MITS-GAN is tampered with
by other architectures, making it easier to detect non-authorized alter-
ations. Despite these strengths, some limitations and potential areas for
improvement can be identified:

• Sensitivity of hyper-parameters: MITS-GAN’s performance largely
depends on the careful tuning of hyper-parameters, such as the
𝛼-value that balances GAN loss and MSE loss. Incorrect tuning
can have a significant impact on the effectiveness of the model.

• Computational complexity : MITS-GAN training requires some com-
putational resources, including high-performance GPUs and ex-
tended training times, which may limit its accessibility and im-
plementation in resource-limited environments.

It is important to note that the computational problems (in terms
of time) are mainly related to the model training procedure. The
protection of CT scans using the MITS-GAN method does not require
heavy computational resources because real-time protection during
acquisition is unnecessary. This approach allows for protection to be
performed later, in the background, without impacting the primary
image acquisition process. Therefore, from the standpoint of scalability
and computational efficiency, MITS-GAN proves suitable for practi-
cal applications in the medical domain, enabling efficient resource
management without compromising service quality.

Future works will focus on improving the MITS-GAN architecture
considering:
7 
• Integration of Diffusion Models One promising direction involves
integrating diffusion models into the MITS-GAN framework. Dif-
fusion models, known for iteratively adding noise to images,
could contribute to improving the quality and authenticity of
safeguarded medical imagery generated by MITS-GAN.

• Attention Mechanisms for Robustness To fortify MITS-GAN against
malicious tampering, future work could incorporate attention
mechanisms. Attention mechanisms enable the model to focus on
relevant regions of the input, potentially making it more resilient
to adversarial attacks and ensuring critical details in medical
scans are preserved.

• Exploring Diverse Architectures The success of MITS-GAN opens
the door to exploring diverse generative model architectures.
Investigating different GAN variants or hybrid architectures could
provide valuable insights into optimizing the trade-off between
image quality, computational efficiency, and security.

• Real-world Deployment and Validation A crucial step toward prac-
tical application involves focusing on real-world deployment and
validation of MITS-GAN. Collaborations with healthcare institu-
tions and professionals can provide valuable feedback, ensuring
that the proposed method aligns with the practical requirements
and standards of the medical imaging community.

6. Conclusion

In this work, we introduced MITS-GAN, an innovative approach to
safeguard medical imagery against malicious tampering. The method
demonstrated superior performance in disrupting manipulations at the
source, resulting in the generation of tamper-resistant images with
fewer artifacts when compared to existing techniques. The proactive
measures outlined in this study hold significant importance in guaran-
teeing the responsible and ethical use of generative models, particularly
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in critical applications such as healthcare. By addressing the vulnerabil-
ities in medical imaging systems, MITS-GAN contributes to the overall
resilience of these systems against potential threats. Looking ahead,
future works and potential extensions aim to further refine and enhance
the capabilities of MITS-GAN. This ongoing research aligns with our
commitment to staying at the forefront of advancements in securing
medical imaging technology. By continually pushing the boundaries of
innovation, we aim to make meaningful contributions that strengthen
the integrity and reliability of healthcare systems, and ensuring the
trustworthiness of medical diagnostic tools.
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