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Abstract. The increasing reliance on services based on recent Artificial Intelli-
gence advancements has elevated concerns about security vulnerabilities, leading
to the exploration of novel attack vectors such as keystroke acoustic attacks on key-
boards. This research delves into a deep learning approach for such attacks, which
exploits acoustic emissions produced during typing to infer sensitive information.
Traditional methods of keystroke acoustic attacks have relied on hand-engineered
features and shallow classifiers, often failing to capture the intricate patterns within
the acoustic data. In contrast, deep learning models have demonstrated remarkable
capabilities in learning intricate patterns from complex data sources. We propose
the exploitation of a Temporal Convolutional Network (TCN) to process acous-
tic signals, providing a more sophisticated and adaptive approach for keystroke
acoustic attack analysis. The employed deep learning model showcases supe-
rior performance in multiple dimensions achieving a peak validation accuracy of
98.3% for keystrokes recorded by phone, and 93.05% for keystrokes recorded via
Zoom, obtaining the best performances with respect the related prior art.

Keywords: Acoustic side channel attack - Deep learning - User security and
privacy - Laptop keystroke attacks - Zoom-based acoustic attacks

1 Introduction and Motivation

In the landscape of cybersecurity, the emergence of unconventional attack vectors neces-
sitates innovative defense strategies. Keystroke acoustic attacks, an intriguing avenue,
exploit the inadvertent sound produced during typing to decipher sensitive information,
posing a considerable threat to digital security. Modern acoustic attacks compromise
data security and provide malicious third parties advanced tools for leaking information
about passwords, conversations, messages as well as other sensitive information. More-
over, such attacks are now simpler with widespread of high-quality audio microphones
which acquire clear and high-quality audio without specific post processing neither rate
limitations. ASCAs (Acoustic Side Channel Attack), have received extensive research
attention, within the cybersecurity’s topic, and they are employed successfully in the
literature [1-6].
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Fig. 1. Implemented temporal convolutional network model

Traditional methodologies for keystroke acoustic attacks have often relied on simplis-
tic analysis techniques, limited in their capacity to capture complex temporal dynamics
inherent in typing sounds. The addressed task received a significant increasing atten-
tion in the scientific literature of the last years as cited in the paper [7—11]. Recently, a
deep learning model have been used in order to classify laptop keystrokes, just using a
standard smartphone integrated microphone [12]. Experiments over multiple evaluation
settings shown as related overall performances outperforms a significant pool of previous
works [8, 9, 13—16]. The model in study [12] has been trained on two different datasets
[17] created with keystrokes recorded by a nearby phone and the video-conferencing
software Zoom, whereas classifier achieved respectively a peak accuracy of 95% and
93%. The authors exploited the CoAtNet model, a recent deep neural architecture based
on attention mechanism [18]. For the experiments we have been considered the same
dataset splitting used in study [12] and all experimental settings as done by Harrison et al.
[12] to conduct a fair comparison. Moreover, we have been executed other experiments
with different keyboards, and different smartphone position in order to measure the pre-
sented model accuracy in different experimental conditions. To contrast overfitting, we
have pursued an in-depth examination of this phenomenon, prioritizing the model’s gen-
eralization capability predicting keystroke in unseen data. This paper presents a novel
pipeline for acoustic attack on keyboards, supported by a comparative evaluation with
[12] and with our own specially collected dataset. The novelty is mainly due to exploita-
tion of TCN models, usually applied on different tasks, for acoustic keyboard attack. The
TCN facilitates the modeling of complex temporal dependencies, enabling extraction of
latent patterns within the acoustic emissions during typing.

Its core strength lies in the capability to capture and process sequential data, dynam-
ically adapting to the variations in typing speed, rhythm, and inter-key intervals. This
is a first step of larger research comprising benchmarking of several architectures and
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Table 1. TCN model setup

TCN model parameters Values
Number of layers 4
Number of classes 36
Number of filters 128
Batch size 32
Learning rate 0.001
Num channels 7
Kernel size 3
Dropout 0.2
Epochs 500
Input size 1

models. Other related approaches [8, 9, 13, 15, 16] make use of different settings and
methods, obtaining overall accuracy on different ranges. Addressing this challenge,
this work focuses on the Temporal Convolutional Network (TCN) [19, 20] methodol-
ogy as a promising approach to counter such keystroke acoustic vulnerabilities. Casual
convolution is calculated as:

k—1
Yi= Y cixj-1 )
j=0

where: x; is an input tensor, y; is an output tensor, k is the convolution kernel and c¢; is
a convolution weight. The proposed TCN method, has been implemented the follow-
ing casual convolution with convolution kernel kK = 3 and padding = k—1 (see Fig. 1).
To perform causal convolution, we incorporate padding (k—1) on the left side of the
input tensor. To execute causal convolution, we employ classical 1 —D convolution with
padding and trim elements from the right side. Employing the dilation technique within
a causal convolutional layer enhances the coverage of the input time series and sub-
stantially reduces computational costs. In the TCN architecture, it is assumed that the
sequence of causal convolutional layers has a dilation factor of 2=/, The overall con-
figuration of proposed TCN model architecture, is reported in Table 1. Utilizing ReLU
as the activation function for TCN is recommended [19]. To address potential gradi-
ent propagation issues in the hidden layers, we employ weight normalization for each
convolutional layer. Additionally, dropout regularization value 0.2 is applied after every
convolutional layer within the central neural network layer of TCN.

The TCN paradigm offers a groundbreaking solution by harnessing the power of deep
learning and temporal convolutional architectures. This approach facilitates the modeling
of complex temporal dependencies, enabling the extraction of latent patterns within the
acoustic emissions during typing. The TCN’s core strength lies in its capability to capture
and process sequential data, as it can dynamically adapt to the variations in typing speed,
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Fig. 2. The new adopted pipeline

rhythm, and inter-key intervals. By incorporating dilated convolutions, the TCN model
can exponentially expand its receptive field, effectively integrating information from a
wide temporal range. This unique feature not only facilitates accurate feature extraction
from raw acoustic signals but also enhances the model’s resilience against noise and
variability. Considering the recent trends and novel keystroke acoustic attacks, this paper
aims to highlight the potential of TCNs as a robust and adaptive countermeasure. In order
to provide a fair experimental comparison with respect to the state of the art, we employed
the same dataset as in [12, 17], as well as the same evaluation metrics. Experiments
suggest that the TCN paradigm represents a promising avenue for advancing the field
of cybersecurity and allowing reinforcement protection of sensitive information against
unconventional threats.

The remainder of this paper is organized as follows: Sect. 2 provides a summary
of previous research works related to the topic, the proposed pipeline (see Fig. 2) and
the details of the developed deep learning model architecture as well as a description of
experimental result is presented in Sect. 3. Section 4 presents the conclusions based on
the results, which confirmed the highly promising performance of the designed solution.
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Fig. 3. Desk setup for recording keystrokes dataset

2 Proposed Method

The proposed work delves into a deep learning approach for attacks which exploit
acoustic emissions produced during typing to infer sensitive information like keystrokes,
based on the same dataset used in [12]. Differently than [12] our proposed solution is
based on a Temporal Convolutional Network (TCN) model. The involved pipeline has
been successfully validated in different contexts [ 16, 21-24]. Determining the position of
a smartphone based on audio recordings of keystrokes could be solved with triangulation
technique: modern smartphones are equipped with two different microphones at the
bottom of the smartphone, so applying triangulation techniques it is possible to estimate
the source location based on the differences in arrival times of the keystroke sound at
each microphone [16]. By knowing the speed of sound in the medium (e.g., air), you
can use these time differences to calculate the distance between the source of the signal
and the different receivers. With multiple distance measurements from different pairs
of receivers, it is possible triangulate the source’s location [16]. We have conducted
two different set of experiments to validate our proposed pipeline method. For the first
experiment, the dataset has been downloaded from the github repository [17], provided
by authors of [12]. This dataset has 36 wav audio files for the keystroke recorded via
phone and 36 files recorded via Zoom. Each file has 25 keystroke peaks, which have
been properly split in 25 single audio files, to isolate each keystroke peak, for a total of
900 audio files for the phone recording audio and 900 for the zoom recording audio.

After than we have applied a proper data augmentation technique, based on adding
noise to the signal as reported in [21] creating other 1800 audio files. Note that in
[12] authors augmented variability of the input applying just time-shifted random. Then
specifically, MFCCs (Mel-frequency cepstral coefficients) features were used as input
features for the deep learning model [12, 25, 26].
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Fig. 4. (a) Audio recorded direct with a smartphone (iPhone13) on a Macbook Pro at a distance
of 17 cm [12] (b) Audio recorded with a smartphone (iPhonel3) via Zoom video conference tool
on a Macbook Pro at a distance of 17 cm [12] (¢) Audio recorded direct with a smartphone (iPhone
X) on a Matebook at a distance of 17 cm on the wild (d) Audio recorded direct with a smartphone
(iPhone X) on a Matebook at a distance of 50 cm on the wild (e) Audio recorded direct with a
smartphone (iPhone X) on a Matebook at a distance of 100 cm on the wild

A second dataset has been collected using an iPhone X (see Fig. 3). To record audio
file, it has been used the native iOS app “Voice Memos”, setting the quality to Lossless
which creates files in.m4a format. The laptop used is a Huawei Matebook D14 (2020).

The data collection took place in a room of approximately 14 m? and a height of
approximately three meters. The environment is not technically soundproofed but being
quite furnished, so it does not suffer from echoes. During the measurements the whole
decibels in the room fluctuated between 46 and 50 db. The laptop is placed with the
screen facing the smartphone which acts as a microphone positioned at 17, 50, 100 cm
away from the computer. The smartphone which has two microphones at the bottom
is then placed with the bottom facing the laptop. The measurements generated files
in m4a format which were then converted into wav format following the following
specifications:

Audio codec: pcm_sl16le.

Audio bitrate: 320kbps.

Audio channels: stereo (2.0).

Sample rate: 48000 Hz.

36 audio files were generated for each data collection, each containing a letter or
number keypress on the keyboard 25 times.

e Data collections were collected with different distances of the smartphone from the
keyboard: 17, 50, 100 cm.

The second dataset has 8100 audio files at different distances. The key core of the
implemented above pipeline is the TCN model, a type of convolutional neural network
(CNN) architecture designed for processing sequential or time-series data. While tra-
ditional CNNs excel at spatial tasks such as image recognition, TCNs are specifically
tailored for tasks that involve sequences, such as natural language processing, speech
recognition, and time-series forecasting [19, 27, 28]. The key feature of a TCN is its
ability to capture long-range dependencies in sequences, which is achieved by dilated
convolutions. In a traditional convolutional layer, a small kernel moves across the input
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Fig. 5. The signal of the audio recorded in [12] direct with iPhonel3 and the corresponding
wavelet transform used for the segmentation and split of the keystroke’s audio signals

data with a fixed stride, capturing local patterns. In contrast, dilated convolutions intro-
duce gaps between the kernel’s elements, allowing it to access a larger context at each
layer. By stacking multiple dilated convolutional layers, TCNs can effectively capture
dependencies across different time scales. TCN assumes a completely different approach
to the problem of sequential data modeling. TCNs proved that convolutional networks
could achieve better performance than RNNs in many tasks while avoiding the com-
mon drawbacks of recurrent models [28]. Moreover, using a TCN model instead of a
recurrent one can led to performance improvements, as it allows parallel computation
as in [29] or parallel CPU as in [30]. TCN processes 1D sequences of data by applying
casual convolution filters along the time dimension. It means that the output sequence
has the same length as the input one and each element in the output sequence depends on
previous elements in the input sequence [28]. The proposed TCN method (see Fig. 1),
has been implemented with convolution kernel k = 3 and padding = k—1. To calculate
the casual convolution, we need to add padding from the left of the input tensor. Causal
convolution has a simple logical sense: casual convolution collects previous sequence
data and patterns. In fact, Deep Learning models that use casual convolution layers can
extract dependencies that help predict future values. To implement casual convolution,
we need to apply classical 1-D convolution with padding and crop elements from the
right. The dilation technique with a casual convolutional layer increases the input time
series coverage and reduces the computational costs significantly.

TCN assumes the sequence of casual convolutional layers with has a dilation equaled
to 2i-1 (where i is the hidden layer number). For the proposed architecture TCN model
has been applied the setup on Table 1. ReL.U has been used as the activation function
for the TCN. To normalize the input of hidden layers (which could propagate gradient
problems), weight normalization is applied to every convolutional layer. The dropout
regularization method is added after every convolutional layer.
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Fig. 6. The training and validation loss (a, b) and accuracy (c, d) over 500 epochs for iPhonel3
direct recording keystrokes (a, c) and Zoom recording (b, d) [12]

3 Experimental Results

We aim to demonstrate the model’s effectiveness in various acoustic scenarios to ensure
its ability to generalize in real-world applications.

The aim of this work is to demonstrate the potential of the proposed pipeline for
the task of acoustic attack on keyboards. We compared our pipeline with recent work
proposed in [12] employing the same dataset as well as the same evaluation settings
without any change. We also addressed the problem of overfitting properly, as previ-
ously detailed. Moreover, we have been collected a bunch of new experiments in “wild
conditions”.

Extensive experiments have been carried on validating the proposed TCN model
implemented by using Tensorflow [31, 32]. All methods have been run on a PC with
Intel(R) Core(TM) i7 CPU, 16 GB memory and NVIDIA RTX 2050 GPU [29, 30].

Every audio dataset file [ 12, 17] has been split isolating the keystrokes by recognizing
audio peaks. Then, noise-based Data Augmentation has been applied. The amplitude of
applied noise is in the range between 10~ and 10~ [10]. Then, for every audio file
on the dataset, has been extracted the MFCC (Mel Frequency Cepstrum Coefficients)
feature. The dataset has been split in training (80% of the total dataset), and validation
(20%) subsets and processed during training and evaluation of the TCN model. We
optimized the TCN model with Adam optimizer and cross entropy as loss function. After
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Fig. 7. The confusion matrix

an hyperparameter search performed on a subset of the data, the best setting for the model
has been defined (see Table 1). Then, we performed training and test considering the
above settings, achieving a validation accuracy of 98.3% for phone recording data and
93.05% for Zoom recording data, which is the highest accuracy ever seen with a deep
learning model. Figure 4 shows the waveform and spectrogram of the keystroke audio
signal, which let us introduce into the acoustic characteristics of typing the waveform
displays distinct peaks corresponding to each keystroke, showcasing the temporal nature
of the sound. Simultaneously, the spectrogram reveals the frequency composition over
time, with varying intensity for different keystrokes. The sharp spikes (see Fig. 5) in both
representations underline and the abruptness of individual key presses. This analysis not
only captures the essence of typing sounds but also holds potential for applications in
security and identification, as each keystroke manifests a unique auditory fingerprint.

Training cross entropy convergence to zero for both phone and Zoom recording are
reported on the first row of Fig. 6, while the plots in second row of Fig. 6 show the
converging training and validation accuracies, achieving a peak validation accuracy of
98.3% for phone recording data and 93.05% for Zoom recording data, which is the higher
validation accuracy peak in state of the art for the problem of keystroke acoustic attack
on keyboards (see Table 2).
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Fig. 8. Misclassified keystroke proximity. Arrows connect the true keystroke with the correspond-
ing misclassified one predicted by the model

Table 2. Overview of existing research papers and comparison with our work

Method Accuracy validation peak (%)
TCN (our) 98.3

Harrison et al. [12] 95

Anindya et al. [13] 93.7

Compagno et al. [15] 91.7

Bai et al. [8] 91.2

Abhishek et [9] 74.3

Zhu et al. [14] 72.2

While the model demonstrates remarkable performance on the training data, the
perfect convergence may indicate overfitting on the training set. In order to contrast
overfitting, we have diligently pursued an in-depth examination of this phenomenon,
prioritizing the model’s generalization capability for predicting keystroke classes in
unseen data, with minimal instances of misclassification. Indeed, off-diagonal elements
are notably rare. This suggests the model’s efficacy in distinguishing between different
keystroke acoustic classes. Such precision is a testament to the model’s capacity to cap-
ture subtle distinctions within the acoustic data, underscoring its potential in bolstering
security measures. Through a series of comprehensive tests (100 audio files of unseen
keystroke data extracted randomly), we consistently observed that in 99% of cases, the
model accurately predicted the correct keystroke class, demonstrating its robustness.
This encouraging result underscores the potential effectiveness of our approach, while
ongoing efforts will focus on scaling the model’s applicability across diverse datasets
and real-world scenarios to ensure its reliability in practical cybersecurity contexts.

This striking congruence showcases the model’s remarkable accuracy in capturing
intricate patterns and nuances, suggesting a robust understanding of the data. Such coher-
ence between predictions and reality substantiates the effectiveness of the methodology
and lays a strong foundation for its potential applications in keystroke acoustic attack
mitigation and broader security contexts. Figure 7 shows the confusion matrix which is
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Table 3. Classification report

Keystroke Precision Recall F1-score Misclassified keystroke
1 1.00 0.92 0.96 2
3 1.00 0.88 0.93 E
D 0.82 0.90 0.86 E
M 1.00 0.93 0.97 4
0 1.00 0.83 0.91 5
S 1.00 0.86 0.92 D

Table 4. Experimental results report in wild conditions with a new different dataset, where audio
has been recorded with an iPhone X direct to a matebook laptop at three different smartphone
distances from the keyboard: 17, 50, 100 cm

Distance (cm) Peak accuracy (%) Peak loss
17 99.44 0.0426
50 98.88 0.0562
100 97.02 0.0633

truly exceptional in its clarity and insights. It vividly expresses the model’s misclassi-
fication cases. Table 3 reports only the misclassified keystroke classes, specifying the
wrongly predicted keystroke (rightmost column). We indeed observed that most of the
misclassified keystrokes are in proximity with the true classes, as shown in Fig. 8. This
suggest that the latent representation of the input signal defined by the model considers
the physical distance between the source (i.e., keystroke) and the microphone, opening
room for further investigations.

In Table 4 it is reported experimental results in wild conditions with the new dataset,
where audio has been recorded at three different distances: 17, 50, 100 cm.

4 Conclusions and Future Works

The presented investigation of the Temporal Convolutional Network (TCN) method-
ology for keystroke acoustic attacks on keyboards has showcased promising strides in
bolstering cybersecurity. The TCN’s adeptness at capturing temporal intricacies within
typing sounds has yielded remarkable results, with training and validation accuracy con-
verging effectively. The model’s ability to accurately predict keystroke classes on unseen
data, as evident from the exhaustive tests, underscores its robustness and potential prac-
tical application. However, such study would benefit for a more accurate investigation
and ablation studies focusing on specific samples for model explanation.

Thus, future works should focus on introducing regularization techniques to enhance
the model’s generalization capability. Moreover, expanding the dataset’s diversity and
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scale could further assess the model’s reliability in real-world scenarios [16]. Future
research should also address the model’s response to varying noise levels and nuanced
typing behaviors, ensuring its effectiveness in practical settings. Exploring ensemble
methods or hybrid architectures could potentially enhance classification accuracy further.
Exhaustive tests, underscores its robustness and potential practical application. This
work highlighted how TCN are a promising approach for countering keystroke acoustic
vulnerabilities, representing substantial potential for safeguarding sensitive information
from emerging threats, as the cybersecurity attacks landscape continues to evolve leaning
on novel Al-based approaches.
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