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ABSTRACT  

Inverse modelling with deep learning algorithms involves training deep architecture to predict device’s parameters from 

its static behaviour. Inverse device modelling is suitable to reconstruct drifted physical parameters of devices temporally 

degraded or to retrieve physical configuration. There are many variables that can influence the performance of an inverse 

modelling method. In this work the authors propose a deep learning method trained for retrieving physical parameters of 

Level-3 model of Power Silicon-Carbide MOSFET (SiC Power MOS).  The SiC devices are used in applications where 

classical silicon devices failed due to high-temperature or high switching capability. The key application of SiC power 

devices is in the automotive field (i.e. in the field of electrical vehicles). Due to physiological degradation or high-

stressing environment, SiC Power MOS shows a significant drift of physical parameters which can be monitored by 

using inverse modelling. The aim of this work is to provide a possible deep learning-based solution for retrieving 

physical parameters of the SiC Power MOSFET. Preliminary results based on the retrieving of channel length of the 

device are reported. Channel length of power MOSFET is a key parameter involved in the static and dynamic behaviour 

of the device. The experimental results reported in this work confirmed the effectiveness of a multi-layer perceptron 

designed to retrieve this parameter.  

Keywords: Power MOS inverse modeling, Deep network, channel length modeling. 

 

1. INTRODUCTION  

Inverse modelling is a process which allows to retrieve the underlying model parameters of a physical system starting 

from its behavior observations. Related to a power MOSFET (metal-oxide-semiconductor field-effect transistor) [10], 

inverse modelling leverages deep learning algorithms to predict the device's characteristics from input features 

embedded in the input device signal. Related modelling for a power MOS is important for several reasons. Firstly, 

accurate models help to determine the device performance under various operating conditions and optimize the design. 

Secondly, models allow simulation of the MOS behavior in the overall circuit, enabling the prediction of the circuit 

performance and its optimization. Finally, it is possible to enable the assessment of the thermal and electrical stresses on 

the device and aid in reliability analysis. 

Deep learning technology is helpful for power MOS modelling because it allows complexity handling, whereas 

traditional models may not be sufficient to capture the complex behavior of modern power MOS devices. Deep learning 

algorithms can handle the intrinsic complexity providing more accurate modelling. They also allow large data handling. 

Indeed, deep learning algorithms can handle large amounts of data, which is crucial for modelling complex power MOS 

devices that have many parameters and operational modes. It also allows automation: deep learning algorithms can 

automate the modelling process, reducing the time and resources required for manual modelling. Finally deep learning 

algorithms can model nonlinear behavior of power MOS devices, which traditional models may not be able to capture 

accurately [11]. Furthermore, such models aid in the development of new fabrication processes and their optimization. 

Specifically, this work is focused on the analysis of the Silicon Carbide Power MOSFET (SiC Power MOS).  

SiC (Silicon Carbide) power MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor) are a type of power 

electronic device that are used for high-power and high-temperature applications. They have several key characteristics 

that make them different from traditional silicon MOSFETs: high breakdown voltage: SiC MOSFETs can handle much 

higher voltages than silicon MOSFETs, making them useful in high voltage applications. High temperature operation: 

SiC MOSFETs can operate at much higher temperatures than silicon MOSFETs, making them suitable for high-

temperature environments. High switching speed: SiC MOSFETs have a faster switching speed than silicon MOSFETs, 
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which can improve the overall efficiency of power electronic systems. High thermal conductivity: SiC MOSFETs have a 

higher thermal conductivity than silicon MOSFETs, which allows them to dissipate heat more effectively and improve 

their overall reliability. Low gate charge: SiC MOSFETs have a lower gate charge than silicon MOSFETs, which 

reduces the amount of energy required to switch them on and off. Low on-resistance: SiC MOSFETs have a lower on-

resistance than silicon MOSFETs, which increases the efficiency of the power conversion. Robustness: SiC MOSFETs 

are more robust to over-voltage and over-current conditions than Silicon MOSFETs. 

Overall, SiC power MOSFETs are designed for high power, high temperature, and high frequency switching 

applications, making them suitable for use in power electronics systems such as inverters, converters, and motor drives 

[2]. There are different methods to be used to perform inverse modelling of a power MOSFET using deep learning 

algorithms. Such methods are based on the usage of such supervised approaches [11]. In order to create a SiC power 

MOSFET model has been used Matlab Simulink. Simulink device modelling consists in computer-aided device 

simulations able to capture the physical and electrical behavior of semiconductor devices, helping semiconductor 

industry to drastically reduce prototyping costs while achieving desirable device properties. Due to the increasing device 

design complexity, simulations help engineers to create a better device with specific electrical properties according to 

device and materials standards. 

More specifically, through the usage of the sampled static behavior of the MOSFET, the designed deep architecture has 

been trained to retrieve physical parameters, in this case, the actual channel length Lp of the device. More in detail, we 

collect the SiC Power MOSFET dynamic behavior related to drain current versus the drain-source voltage, according to 

the polarization voltage (gate-source voltages). This set of signals has been used as input dataset. The output dataset to 

be learned is channel-length of the analyzed device. To generalize the correlation between input data and channel length 

of the device, we have designed a deep backbone based on the usage of Multi-Layer Perceptron (MLP) [12]. The 

remainder of this paper is organized as follows: Section II provides a summary of previous research works related to the 

topic, the proposed pipeline which and the details of the developed deep learning model architecture as well as a brief 

description of a power MOS model is presented in Section III. Section IV presents the experimental results, which 

confirmed the highly promising performance of the designed solution. 
 

2. RELATED WORK 

 

The existing prior art includes several promising proposals as reported in [2]-[7]. In particular, the models proposed in 

[2,3,4] achieve a very good fit for the device's static curves and accurately predict its transient behavior. These efforts 

have also been extended into extensive numerical modelling of SiC MOSFET’s [5,6,7]. However, these models are 

generally complex both in terms of implementation and parameter extraction and often require proprietary software for 

the parameter’s extraction phase.  

In [2], modeling of the SiC power MOSFET was analysed with an automated tuning process, developing a MATLAB's 

script Genetic Algorithm to adjust the values of user-specified model parameters until agreement with characterization 

data is obtained. A direct comparison of switching, juxtaposed with empirical outcomes derived from double-pulse 

testing, showcased the adeptness of the formulated model in forecasting key temporal characteristics and switching 

losses. Of greater significance, the established model displays computational efficiency attributed to the fundamental 

simplicity of the Level-3 MOSFET model that forms its core. As a result, the fundamental contribution of this research 

lies in the creation of a modelling approach tailored for SiC power MOSFETs, meticulously fine-tuned for optimizing 

power electronics application design. 

In [3], the authors presented an innovative approach to crafting a behavioral SPICE model for a SiC MOSFET, 

employing an automated tuning procedure. This technique facilitated the real-time adjustment of both static and dynamic 

traits, resulting in a favourable concurrence. 

The advantages of the suggested strategy are double. Initially, the tuning procedure is autonomously executed, obviating 

the necessity for the designer to manually fine-tune (and repeatedly adjust) parameters until satisfactory alignment is 

achieved. Secondly, the devised approach for creating device models is swift and yields precise behavioral models. The 

static curve fittings achieved in each stage are equivalent to those generated by commercially accessible software 

platforms, and the alignment of transient data is akin to the meticulous and time-consuming manual interactions often 

required.  

In [4], unlike the conventional approach to developing power FET models, the authors formulated a method that 

capitalizes on both static and dynamic characterization data pertaining to the subject device. Merging signal processing 
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techniques and derivative-free global optimization methods, it becomes possible to create high-fidelity models that 

precisely forecast switching behavior, all without requiring the laborious process of manually fine-tuning parameters. 

The model employed to showcase the fitting procedure is verified using an independent dataset that switching data at a 

distinct drain current from the one utilized during the tuning phase. The model refined in real-time exhibits enhanced 

alignment compared to the statically adjusted model for both sets of data. Nevertheless, the aforementioned methods 

underscore the drawbacks involving additional computational time, thereby diminishing their utility for application 

designers’ perspective. Conversely, this article introduces a streamlined Power MOS Level-3 inverse modelling 

approach, leveraging a Multi-Layer Perceptron and fine-tuned for power electronics applications, thus acknowledging 

and addressing the requirements of application designers.  

3. PROPOSED PIPELINE 

 

As previously introduced, we have designed a Multi-Layer Perceptron suitable retrieve the channel length of SiC Power 

MOSFET starting from its static dynamic based on Level-3 model. Before to describe the proposed system, a brief 

introduction on Level-3 modelling will be made. 

Figure 1 shows the proposed architecture pipeline, which is described in detail in the following paragraphs. A power 

MOSFET (metal-oxide-semiconductor field-effect transistor) is a type of transistor that is commonly used to control 

high-power electronic devices such as motors, power supplies, and other types of industrial equipment. The level of a 

power MOSFET refers to the voltage rating of the device, and is typically divided into three levels: Level 1, Level 2, and 

Level 3. 

 

 

 

Figure 1. SiC Power MOSFET pipeline for the extraction of the physical parameter Lp. 
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Figure 2. SiC Power MOSFET static curves driven by gate-source voltages. 

 

Level 1 power MOSFETs are typically rated for low voltage applications (typically 600V or less) and can handle 

relatively low current levels (typically less than 100A). 

Level 2 power MOSFETs are rated for higher voltage applications (typically 600V to 1,200V) and can handle higher 

current levels (typically up to 200A). 

Level 3 power MOSFETs are rated for the highest voltage applications (typically 1,200V or higher) and can handle very 

high current levels (typically more than 200A). They are designed for high power applications such as in inverters, 

welders, and high-power motor drives. The Level 3 model originates from empirical correlations established between 

practical data acquired through experiments and the pre-existing theoretical models [10]. Close to the Level 2 model 

structure, the suggested Level 3 model adopts a semi-empirical strategy that prioritizes the process of parameter 

extraction. Incorporated within are drain-induced barrier lowering (DIBL) and mobility degradation due to lateral field 

effects [10]. These formulations are relevant to extended-channel devices possessing a gate length around 2 𝜇m [10]. 

The fundamental MOS equations [6, 10], linking drain current to drain-source voltage and drain current to gate-source 

voltage, as explained by equations (1) and (3): 

 

 

 

On cutoff region (Vgs < Vth) 

Ids = 0 

 

On region (Vgs > Vth) 

𝐼𝑑𝑠 =  
𝛽 𝑉𝑔𝑠 − 𝑉𝑡 𝑉𝑑𝑠 −  1 + 𝑓𝑏 

𝑉𝑑𝑠
2

2
         𝑖𝑓 0 ≤ 𝑉𝑑𝑠 ≤  𝑉𝑑𝑠𝑠𝑎𝑡

𝛽

2 1+𝑓𝑏  
(𝑉𝑔𝑠 − 𝑉𝑡)

2                                    𝑖𝑓 𝑉𝑑𝑠  ≥  𝑉𝑑𝑠𝑠𝑎𝑡
            (1) 

 

And: 

𝛽 = 𝐾𝑃.
𝑊𝑝

𝐿𝑝
                                         (2) 

𝐾𝑃 =  𝑢𝑒𝑓𝑓 .𝐶𝑂𝑋                               (3) 

 

where:  

• β describes the temperature dependence of the current-voltage (I-V) characteristics  

• KP is the intrinsic transconductance parameter 

• COX is Oxide capacitance per unit gate area. 

• Wp (or W) is the width of the MOSFET 

• Lp (or L) is the channel length of the MOSFET 

• ueff is the mobility of the inversion layer electrons 
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In Figure 2 an instance of drain-current (Id) versus drain-source voltage (Vds) is reported. Each curve depends of the gate-

source polarization of the tested SiC Power MOS. Each curve is known as “transfer-curve” of the Power MOS. 

The Power MOSFET transfer curve can be divided into three regions [10]: The saturation region, where the drain-source 

current (Ids) is almost constant and increases with an increase in the gate-source voltage (Vgs). The linear region, where 

the drain-source current (Ids) increases linearly with the gate-source voltage (Vgs). The cutoff region, where the drain- 

source current (Ids) is zero, regardless of the gate-source voltage (Vgs).  It is generally recommended, for automotive 

applications, to operate the Power MOSFET in saturation region for best efficiency. To simulate the Level 3 model, we 

have used a SIMULINK environment provided by MATLAB © framework [12]. 

 

3.1 Level 3 MOSFET’s Simulink simulated model 

Starting from mathematical model described in previous paragraph, using Simulink, has been created a dataset with 

60000 different transfer-curves of SiC MOSFET, modulating the following parameters of the model (Vth, Lp, Wp, KP, Rd, 

Rs, φ, γ, θ, Vg) as reported in the Eqs (1)-(3). Each parameter can ranging in a specific set as reported in Table 1. 

 

Table 1. Model parameters of the simulated Power MOS 

Parameter Default Range 

Channel Length (L) 10-7 
10-7 5*10-

6 

m 

Channel Width (W) 1 10-2 10 m 

Drain resistance (RD) 10-3 1*10-4 10-2 Ohm 

Source resistance (RS) 10-3 1*10-4 10-2 Ohm 

Threshold Voltage (VT) 3 2 8 V 

Transcondutance (K) 2*10-5 2*10-7 20 A/V2 

Bulk Threshold (γ) 0 0 10 V0.5 

Surface potential (φ) 0.6 0 6 V 

VGS dependance mobility 0 0 10 1/V 

Gate Voltage (VGS)  1 12 V 

Temperature 25 

(step=25) 

25 175 Celsi

us 

By changing the parameters reported in Table I, we have created the dataset of input SiC Power MOSFET transfer 

curves to be used for the work herein reported (retrieved the channel length of the Power MOS). 

 

3.2 Multi-Layer Perceptron (MLP) 

1.1. A multi-layer perceptron (MLP) [16] is a type of artificial neural network (ANN) consisting of at least three layers 

of nodes: an input layer, one or more hidden layers, and an output layer. MLPs are commonly used in supervised 

learning problems, such as classification or regression tasks, where the network is trained on a set of labeled examples to 

make predictions on new, unseen data. Each node in an MLP is a mathematical function that takes a set of input values 

and computes an output value. In the input layer, each node corresponds to a feature or attribute of the input data. In the 

hidden layers, each node typically applies a nonlinear transformation to the outputs of the nodes in the previous layer. 

The output layer computes the final output of the network, which can be a single value for regression or a set of values 

representing the probabilities of different classes for classification. During training, the weights of the connections 

between the nodes are adjusted using an optimization algorithm such as gradient descent to minimize a loss function that 
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measures the difference between the predicted outputs and the true labels of the training examples. The network is then 

evaluated on a separate validation set to tune the hyperparameters and prevent overfitting. MLPs are powerful and 

flexible models that can capture complex patterns in high-dimensional data, but they can also be computationally 

expensive and require careful tuning of the architecture and hyperparameters to achieve good performance [1, 14, 15]. 

The learning mechanism utilized by the multilayer perceptron is recognized as the "generalized delta rule" or the 

"backpropagation rule". This rule iteratively computes an error metric for each input and propagates this error from one 

layer to the preceding layer. The adjustments made to the weights of a specific node are directly proportional to the error 

observed in the units to which it is linked. 

Let:   

 

Ep = error function for pattern p 

tpj = target output for pattern p on node j 

opj = actual output for pattern p on node j 

wij = weight from node i to node j 

 

The error function Ep is defined to be proportional to the square of the difference tpj - opj 

𝐸𝑝 =  
1

2
 (𝑡𝑝𝑗 − 𝑜𝑝𝑗 )2  (4) 

 

 

Figure 3. Input and output for the implemented MLP model. 

 

Figure 4. Multi-Layer perceptron architecture. 
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The activation of each unit j, for pattern p, can be written as: 

𝑛𝑒𝑡𝑝𝑗 =   (𝑤𝑖𝑗 − 𝑜𝑝𝑖 )                     (5) 

 

The output from each unit j is determined by the non-linear transfer function fj: 

𝑜𝑝𝑗 = 𝑓𝑗 (𝑛𝑒𝑡𝑝𝑗 )   (6) 

 

We assume fj to be the sigmoid function, 

𝑓 𝑛𝑒𝑡 =  
1

(1+𝑒−𝑘 .𝑛𝑒𝑡 )
  (7) 

 

Here, k denotes a constructive constant regulating the function's "spread". The delta rule enacts weight adjustments that 

trace the trajectory of the most rapid decrease on a weight space surface. The elevation at any given location on this 

surface corresponds to the error metric Ep. This correspondence can be demonstrated by revealing that the derivative of 

the error metric concerning each weight corresponds to the weight adjustment determined by the delta rule, involving a 

negative proportionality constant, as expressed: 

∆𝑝𝑤𝑖 ∝  −
𝜕𝐸𝑝

𝜕𝑤 𝑖𝑗
 (8) 

 

For the proposed architecture MLP model (Figure 4) has been applied with the setup involving different 

hyperparameters (see TABLE 2): 

Table 2. MLP Model setup 

MLP Model parameter Values 

Multi Layer Perceptron layers 6 

Hidden layers 4 

Batch size 32 

Input size 100 

Learning rate 0.0001 

Optimizer Adam 

Epochs 100 

It has been chosen to employ ReLU as the activation function for the MLP. 

 

4. EXPERIMENTAL RESULTS 

We conduct extensive experiments based on the prepared dataset. To demonstrate the accuracy of the MLP model, we 

compare it in terms of the MAE performance metrics with another flow predictors, which is the Temporal Convolutional 

Network (TCN). Note that the TCN model achieves the state-of-the-art forecasting result [11]. All methods have been 

implemented on a Python environment on a PC with Intel(R) Core(TM) i7 CPU, 16 GB memory and NVIDIA RTX 

Proc. of SPIE Vol. 12973  1297309-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Jan 2024
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

2050 GPU as in [8, 9]. We build the power MOSFET model with Matlab Simulink, showed in Figure 3. The simulated 

model returns Id-Vds curves without a standardized methodology (i.e., without standardize Vds to Id), ending up with 

curves of different lengths. The dataset has been created by taking a constant temperature of 25° and varying all the 

parameters listed below at different Gate Voltage 𝑉gs (from 1 to 12 Volts), obtaining 12 curves for each device. In Figure 

2 it is showed the simulated Id data plotted on curves. The dataset has been split in training (80% of the total dataset), 

validation (10%) and test (10%) subsets and processed during training and evaluation of the MLP model. Finally, MLP 

return one specific Power MOS parameter: Lp. 

 

4.1 Define the input parameters 

The input parameters for a MOSFET are typically defined by the drain-source voltage (Vds) and the gate-source voltage 

(Vgs) (Figure 3). The drain current (Id) is then determined by the current flowing through the device from the drain to the 

source terminals, which is controlled by the gate-source voltage. The Vds and Vgs are typically specified by the 

manufacturer and can be found in the device datasheet. To define the input parameters, it has been set on Simulink, the 

appropriate voltage levels for Vds and Vgs and then after model simulation collected the resulting drain current Id. 

 

4.2 Define the output parameters 

The output parameters for a MOSFET to solve for, are the transconductance (KP), the drain-source resistance (Rd, Rs), 

the channel length (Lp), the channel width Wp, the voltage threshold Vt, the mobility degradation factor θ, the Surface 

inversion potential ϕ, the body effect factor γ (Figure 3). 

 

4.3 Use the MOSFET’s device equations 

Simulink simulations are slow (at least 1 second is needed for a single simulation), by studying SPICE Level 3 equations 

we can implement them in a Python environment by varying the set of parameters values. Also, the returned curves can 

be standardized by the 𝑉ds, avoiding the aforementioned problem in Simulink, by choosing 𝑉ds granularity (varying by 1 

Volt or 0,1 Volt or 0,01 Volt and so on), to express the output parameters in terms of the input parameters. These 

equations will typically include the channel length modulation effect and the saturation current as in (1). 

 

4.4 MLP model implemented pipeline 

The implemented pipeline for the MLP model includes the following steps (Figure 1): 

Data Preparation: The first step is to prepare the data for training the MLP. This involves tasks such as data cleaning, 

feature engineering, and splitting the data into training and testing sets. 

Build model architecture: The next step is to define the architecture of the MLP. This involves specifying the number of 

layers, the number of neurons in each layer, the activation functions to be used, and the type of regularization to be 

applied. 

Initialization: The weights and biases of the MLP need to be initialized before training begins.  

Forward propagation: During training, the MLP takes in inputs and propagates them forward through the layers of 

neurons. The output of each layer is computed using the weights and biases of that layer and passed on to the next layer. 

Backward propagation: After forward propagation, the MLP calculates the error between the predicted output and the 

actual output. This error is then propagated backwards through the layers of neurons to update the weights and biases 

using gradient descent. 

Optimization: During training, various optimization techniques can be used to improve the performance of the MLP. 

These include techniques such as stochastic gradient descent, batch gradient descent, and adaptive learning rate methods 

like Adam. 

Evaluation: After training, the performance of the MLP is evaluated on a separate test set to determine its accuracy and 

generalization ability. 
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Hyperparameter tuning: Finally, hyperparameters such as the learning rate, batch size, and regularization strength can be 

tuned to further improve the performance of the MLP. This can be done using techniques such as grid search or random 

search. 

In calculating the error of the model during the optimization process, a loss function must be chosen. We choose MSE 

loss function and in the training, validation and test phase, has been measured the Mean Squared Loss error, through a 

criterion that measures the mean squared error (squared L2 norm) between each element in the input x and target y. 

After 100 epochs, results showing that training, validation and test MSE loss converge. The plots in Fig. 5 make the 

situation clearer. It looks as though the line plot for the training set is dropping to converge with the line for the 

validation and test set.  It means that prediction and target converge with a minimum loss error. 

 

 

Figure 5. MSE Loss for training, validation and test for 100 epochs 

 

In Figure 6, and Figure 7 it is reported plot of MSLE (Mean Squared Logarithmic Error), and MAE (Mean Absolute 

Error) which shows loss convergence to 1*10*e-8 for training validation and test. 

 

Figure 6. MSLE Loss for training, validation and test for 100 epochs 
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Figure 7. MAE Loss for training, validation and test for 100 epochs 

 

In Figure 8 it is reported plot of the MAPE (Medium Absolute Percentage Error) which shows a convergence of the 

percentage error closed to 8% for training validation and test. 

 

 

Figure 8. MAPE Loss for training, validation and test for 100 epochs 

 

5. CONCLUSIONS AND FUTURE WORKS 

Based on the good results obtained from the inverse modelling of SiC power MOS with a multi-layer perceptron (MLP) 

to determine the length of a physical device, the following conclusions can be drawn: MLP is a powerful tool for inverse 

modelling of SiC power MOS devices. It can accurately predict the length of a physical device from electrical 

measurements, which can greatly simplify the design process. The performance of the MLP model is highly dependent 

on the quality of the training data. Therefore, careful selection and pre-processing of the data are critical for achieving 

good results. The use of MLP for inverse modelling of SiC power MOS can significantly reduce the time and cost 
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associated with device fabrication and testing. The MLP model can be extended to other types of semiconductor devices 

for similar inverse modelling tasks. 

In terms of future work could be explored area related to the development of more advanced MLP models that can 

capture the complex relationships between device parameters and electrical measurements. Could be investigated the 

impact of different types of noise on the performance of the MLP model, and the development of techniques to mitigate 

their effects. Could be explored other machine learning algorithms that can be used for inverse modelling of 

semiconductor devices, such as convolutional neural networks or recurrent neural networks. Finally, could be extended 

the MLP model to handle multi-dimensional input data, such as images or spectroscopic measurements, which can 

provide more comprehensive information about the device under test. 

Future works aims to replace the proposed deep backbone with more performer deep pipeline which embeds self-

attention mechanisms [17,18]. 

In Table 3 it is reported the best accuracy results comparing a Temporal Convolutional Network (TCN), a Long Short 

Term (LSTM) and a Multi-Layer Perceptron (MLP) model, the MLP achieved the best accuracy with a lower mean 

squared error (MSE) compared to the TCN and LSTM. Despite the TCN's ability to capture long-term temporal 

dependencies, the MLP's flexible architecture and nonlinear activation functions allowed it to outperform the TCN in 

this particular experiment. 

 

Table 3. Performance benchmarks 

Model  Accuracy 

TCN 5.811e-10  

LSTM 6.631e-8 

MLP 1.581e-11 
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