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Abstract. Solar modules are subjected to every atmospheric event such
as rain, wind, and snow and for this reason, they are usually built with
protection frames. Nevertheless, these measures are insufficient to pre-
vent some damages, especially for what regards the mechanical ones (e.g.,
the fall of tree branches) decreasing the power efficiency of solar modules.
Then it is necessary to monitor their healthy conditions and replace or
repair defective units. Electroluminescence, a useful inspection modality
of solar modules, makes it possible to detect even the finest defects on
the surface of solar modules. However, the analysis of these images is
usually carried out by human operators, making this inspection prac-
tice expensive, time-consuming and it requires very specific knowledge.
In state-of-the-art there are several works that distinguish between a
healthy cell and defective cell, but a public dataset of possible defects
in solar cells has never been published. For this reason, we propose a
new dataset and a preliminary benchmark to make an automatic and
accurate classification of defects in solar cells. The dataset includes five
classes of defects and the pre-trained ResNext50 network reaches 0.07
Hamming Distance.
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1 Introduction

Luminescence is a physical phenomenon that consists in the emission of photons
of light by materials excited by causes other than the increase in temperature [IJ.
It arises from the property of some materials to absorb certain quantities of en-
ergy, which are subsequently returned in the form of light photons. Electrolumi-
nescence is a particular type of luminescence that characterizes some materials
capable of emitting light under the action of an electric field, or rather when
crossed by an electric current [2].

The electroluminescence (EL) test applied to photovoltaic panels is based on
the reverse process of photovoltaics: a voltage is applied to the modules to check
the current flows, while a camera with special sensors makes the infrared light
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emitted by the cells visible to the naked eye. Working cells will appear bright,
while damaged ones will look dark [3]. The test is to be considered positive only
for modules that demonstrate uniform current distribution. It is possible to run
electroluminescence tests both in the laboratory and in the field. In the latter
case, since the infrared radiation emitted by the sun is much higher than that of
a solar cell, this type of test can only be performed at night. Generally, solar cell
defects can be divided into two broad defect categories: intrinsic and extrinsic
defects. Figure [1| shows an example of a cell extracted from an EL image of a
photovoltaic module.

Fig. 1: The electroluminescence test applied to a photovoltaic panel cell. Note as
the cell presents a Dark Area in the bottom-right part.

There is an increasing interest towards the deep detection of defects in several
industrial products (e.g. Sarpietro et al. [4] developed a deep pipeline for classifi-
cation of defect patterns applied in Silicon technology). This interest motivated
us to propose a new dataset and its benchmark for the classification of defects in
solar cells. The rest of the paper is structured as follows: the Section [3] describes
the proposed dataset and method; in Section [] our results are reported. Finally,
there are conclusions and future works in Section Bl

2 Related Works

Starting from 44 EL images of photovoltaic (PV) modules, which consisted in
18 monocrystallyne modules and 26 polycrystalline modules, the work in [5]
proposed a segmentation strategy in order to extract the various cells from the
modules. By this process, the authors were able to extract 2624 cells. Subse-
quently, the authors of [6] dealt with the automatic classification of the various
cells by a classifier reaching an average accuracy of 88.42% by considering a
CNN based solution. This classification task aimed at indicating how likely a
defect is present without specifying any details. The dataset (ELPV Dataset)
used for the classification of the cells with the associated labeling has been pub-
licly released. Using the same dataset, but with a little different labelling, the
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work in [7] implemented an isolated CNN, that is not pre-trained, for the classi-
fication of the cells, which achieves an average accuracy of 93.02%. The authors
of [8] with a Deep Feature-Based Support Vector Machine (DFB-SVM) tech-
nique outperformed the works in [6] and [7] obtaining an average accuracy of
89.63% and 94.52%, respectively. The authors of [9] classified with an average
accuracy of 83% two kind of defects: micro-cracks and finger-interruption. How-
ever, it used both the public ELPV Dataset and its own dataset, which makes
the experiments not replicable.

The aim of this research is to develop a cell classifier able to classify the
specific defect detected on the input image, if any, on the basis of a set of
predetermined defects. Although previous research works in this field shown high
quantitative performances, they only focused on the task of defect detection.
This motivated us to extend the ELPV Dataset with a new labeling, concerning
5 specific defect classes and healthy classes (for the samples without defects).
The labeling of an already existing large-scale dataset will be useful for the
community, as ELPV represents a standard in the field. In this sense, the main
contribution of the paper is the release of the new and extended labeling of
the ELPV dataset, named E-ELPV (i.e., Extended-ELPV), and a benchmark
evaluation for the task of defect classification. To our knowledge, no prior studies
addressed the task of defects classification at this level of detail, nor similar public
datasets have been released.

3 Methods

3.1 Dataset

The ELPV Datasetﬂ [6] consists of 2624 EL cells of monocrystalline and poly-
crystalline photovoltaic modules labeled by an expert, to whom for each cell,
in addition to answering the question ”Is the cell defective?”, also took care of
answering the question ” Are you sure?”. By doing so, if the evaluator indicated
with certainty that a cell was defective, a probability of defectiveness equal to
100% was assigned; if the evaluator indicated without certainty that a cell was
defective, a probability of defectiveness equal to 67% was assigned; if the evalua-
tor indicated with certainty that a cell was healthy, a probability of defectiveness
equal to 0% was assigned; if the evaluator indicated without certainty that a cell
was healthy, a probability of defectiveness equal to 33% was assigned. Table
resumes the original labelling strategy of the ELPV Dataset with the cardinality
of each class. Figure 2] shows a monocrystalline cell and a polycrystalline cell,
whereas Figure [3] shows a comparison between a cell with a probability of de-
fectiveness equal to 0% and a cell with a probability of defectiveness equal to
100%

Cells that have been assigned a defect probability of 0% are marked as
Healthy on our labeling. The remaining cells have been labeled as follows: C'rack

! https://github.com/zae-bayern/elpv-dataset
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Condition|Confident?| L PPty Of| o 4in tity
Defectiveness
Healthy Yes 0 1508
Healthy No 0.33 295
Defective No 0.67 106
Defective Yes 1 715
Total 2624

Table 1: The original labelling strategy of the ELPV Dataset with the cardinality
of each class.

Fig. 2: On the left is shown a monocrystalline cell. On the right is shown polycrys-
talline cell. Both images have a probability of defectiveness of 0%. The monocrys-
talline cell appears cleaner than the polycrystalline cell, which appears to be

dirty.

Fig. 3: On the left is shown a cell with a probability of defect equal to 0. On the
right is shown a cell with a probability of defect equal to 1.
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if the cell presents one or more cracks (not too much otherwise the cell is con-
sidered as totally broken); Cell Breakage if the image presents cracks covering
more than 50% of the cell’s surface; DarkArea if the cell has one dark area;
HotSpot if the cell has one or more hot spots; OtherDefect if the cell has a
defect different from the previous ones. Then, the associations in Table [2] were
obtained. The number of associations is greater than the number of images be-
cause to each defective cell could contain one or more defects. In particular, 2551
images are associated to one label and 73 images are associated to two labels.
Figure [4] shows the four types of defects studied in this work.

Label Associations
Healthy 1508
Crack 430
CellBreakage 133
DarkArea 62
HotSpot 171
OtherDefect 393
Total 2697

Table 2: Our custom labelling of the ELPV Dataset.

(a) (d)

Fig.4: (a) cell with Crack defect; (b) cell with a CellBreakage defect; (c) cell
with DarkArea defect; (d) cell with a HotSpot defect.

3.2 Proposed Method

Our methodology consists in the use of two classifiers: the first deals with classify-
ing the health of a cell, indicating whether it is healthy or defective. In the latter
case, the cell is given to the second classifier who is responsible for establishing
which defects is present. Furthermore, we have developed an additional classi-
fier that treats the healthy images together with the defective images, the latter
labeled with the respective defects. Our purpose is to answer to the following
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questions: 1) Is training a Healthy VS Not-Healthy binary classifier better than
training a multiclass classifier with the same architecture? 2) Does adding the
Healthy class to the other classes in the same training improve the classification
rate of the other classes?

All developed classifiers use the same image processing and image augmen-
tation. They are developed with PyTorch library, using Python as Program-
ming Language. Furthermore, they are tested and compared with the following
networks: ResNext50[10], VGG-11[I1], Inception-V3[I2] and DenseNet-121[I3].
These neural networks have different characteristics and depth.

Images are normalized using the following formula:

image — mean
std

(1)

image =

where 7mage is the normalized image; image is the original image; mean and std
are respectively the mean and the standard deviation of ImageNet [14] challenge
database. This is due to the fine-tuning of a pretained model on this dataset.
Data augmentation is used. Offline image augmentation simply consists of ro-
tating each image 90°, 180° and 270°. Online image augmentation consists of the
following transformations: Gaussian Blur (Kernel 5 * 5); Color Jitter; Random
Horizontal Flip (p = 0.5); Random Vertical Flip (p = 0.5); Random Rotation
(—3,43); Random Translation (0.02,0.02).

3.3 First Classifier (Healthy Classifier)

Given an image of a cell, the first classifier has the purpose of indicating whether
the cell is healthy or has defects, without indicating in the latter case which de-
fects are present. The metric used to measure the performance was Overall Ac-
curacy. This classifier was trained with the following hyperparameters: learning
rate is 0.0001 and batch size is 32.

3.4 Second Classifier (Defects Classifier)

This task deals with a multilabelling problem. It means that given an image of
a cell marked by the first classifier as unhealthy, the second classifier is intended
to indicate which defects are present between Crack, CellBreakage, DarkArea,
HotSpot and OtherDefect. For this reason we have chosen a properly metric for
the multilabelling problem such as the Hamming Distance calculated as follows
for each batch:

|predictions N groundtruths|

HD=1-— 2
|predictions| (2)

The loss function used for this classifier is BCELoss for ResNext50 and BCE-
WithLogitsLoss for the other networks. For this classifier the training setting was
learning rate 0.0001 and batch size 32.
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3.5 Third Classifier

To assess the need of two different classifers, we also trained a third classifier
that performs the classification including all the classes. Given an image of a
cell, the third classifier is intended to indicate if the cell is Healthy or if there are
defects between Crack, CellBreakage, DarkArea, HotSpot and OtherDefect. The
metric and the loss function are the same of the second classifier. The setting
employed for the third classifier was learning rate 0.001 and batch size 32.

4 Results

We have chosen the mentioned neural networks (ResNext50, VGG-11, Inception-
V3 and Densenet-121) to benchamark our dataset. First we computed a baseline
for each neural newtork and then we fine-tuned them. We have chosen this
strategy to measure the advantage of training the network instead of using its
pre-trained weights on ImageNet. The results of the first classifier, the second
classifier and the third classifier are shown in Table [3] Table [ and Table
respectively. The dataset described in is clearly unbalanced but we did not
balance it because balancement strategies cause overfitting. We can note that
with the ResNext50 network, it is possible to pass from a Hamming Distance
of 0.41 (Baseline) to 0.08 in only two epochs for the second classifier; moreover,
the Baselines of the VGG11, InceptionV3 and DenseNet121 networks have quite
low Hamming Distances of 0.08, 0.10 and 0.18 respectively, making the train-
ing of the various networks unable to improve performances. Instead, the third
classifier reaches convincing Hamming Distances after a significant number of
epochs. The best result is obtained with the ResNext50 network passing from
a Hamming Distance of 0.50 (Baseline) to 0.07 only after 100 epochs. It is im-
portant to underline that the other networks also seem to work well, reaching a
Hamming Distance of 0.08. For each class and for each classifier Table [f] shows
information about True Positives, True Negatives, False Positives and False Neg-
atives. Instead, Table[7] Table [8|and Table [Jillustrate example of matching and
mismatching. Additional materials reporting the classification results for each
involved class, the overall dataset (and related labeling) is available at the com-
panion website El A machine with an Nvidia Quadro RTX 6000 was used to
carry out the various experiments.

2 https://iplab.dmi.unict.it/EELPV/
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Network Best Epoch|Overall Accuracy
ResNext50 Baseline / 0.41
ResNext50 86 0.79
VGG11 Baseline / 0.55
VGG11 98 0.77
InceptionV3 Baseline / 0.47
InceptionV3 88 0.78
DenseNet121 Baseline / 0.38
DenseNet121 91 0.77

Table 3: First Classifier Results. The best and the running up results are high-
lighted in bold and underline, respectively.

Network Best Epoch|Hamming Distance
ResNext50 Baseline / 0.41
ResNext50 2 0.08
VGG11 Baseline / 0.08
VGG11 97 0.08
InceptionV3 Baseline / 0.10
InceptionV3 16 0.08
DenseNet121 Baseline / 0.18
DenseNet121 54 0.08

Table 4: Second Classifier Results. The best and the running up results are
highlighted in bold and underline, respectively.

Network Best Epoch|Hamming Distance
ResNext50 Baseline / 0.50
ResNext50 100 0.07
VGG11 Baseline / 0.17
VGG11 92 0.08
InceptionV3 Baseline / 0.17
InceptionV3 99 0.08
DenseNet121 Baseline / 0.22
DenseNet121 99 0.08

Table 5: Third Classifier Results. The best and the running up results are high-
lighted in bold and underline, respectively.
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Classifier Class TP|TN|FP|FN|Total
First Classifier|Healthy 258(156|45 | 65 | 524
Crack 13|88 (40|60 | 201
Second Cell Breakage| 2 (12258 |19 | 201
Classifier Dark Area 2 1164|126 | 9 | 201
Hot Spot 0 (167 3 |31 | 201
Other Defect | 1 11013 |77 | 201
Healthy 297(165| 36 | 26 | 524
Crack 52 1443| 8 | 21| 524
Third Cell Breakage| 21 [499| 4 | 0 | 524
Classifier Dark Area 5 [506| 7| 6 | 524

Hot Spot 15148111216 | 524
Other Defect | 55 |389|57 |23 | 524

Table 6: Information about True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN) for each classifier and for each class.

Class True Positive True Negative False Positive False Negative

Table 7: Some examples about True Positives, True Negatives, False Positives
and False Negatives for each class of the First Classifier.
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Class True Positive True Negative False Positive False Negative

Crack

CellBreakage

DarkArea

HotSpot

OtherDefect

Table 8: Some examples about True Positives, True Negatives, False Positives
and False Negatives for each class of the Second Classifier.
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Class True Positive True Negative False Positive False Negative

Healthy

Crack

CellBreakage

DarkArea

HotSpot

OtherDefect

Table 9: Some examples about True Positives, True Negatives, False Positives
and False Negatives for each class of the Third Classifier.
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5 Conclusions

Until now, the scientific community has concentrated its energies on finding
techniques that will allow to automatically classify the health or the defect of a
photovoltaic cell, without specifying the type of defect or, if it had been searched
to classify the types of defects it would have been necessary to resort to private
datasets, making the work not very transparent and replicable to researchers
interested in this field of study. In fact the ELPV Dataset, that is the most
famous public dataset of photovoltaic panel cells on which the most well-known
works in the state-of-the-art are based, does not have specific labels regarding
defects, indicating only a probability of defect. In our work we have extended
this dataset by adding for each cell at least one type of defect among four com-
mon and well-known types, giving the scientific community the possibility of
dedicating future energy to classify the various types of defects efficiently. Just
to give a starting point, we performed benchmarks using pre-trained neural net-
works. Initially, we tried to use two classifiers, the first to distinguish healthy
cells from defective cells and the second to identify various defects in the cells
marked by the first classifier as defective. Subsequently, with the aim of making
the discussion more complete and with more food for thought, we decided to
implement another classifier that would automatically classify healthy cells and
defective cells, indicating for the latter also the various defects present. By doing
so, perhaps for the greater quantity of images taken together under examina-
tion, we have achieved concrete results, reaching a Hamming Distance of 0.07
with the RexNext50 network. Therefore, we can affirm: 1) Training a Healthy
VS Not-Healthy binary classifier is better than training a multiclass classifier
with the same architecture. 2) Adding the Healthy class to the other classes in
the same training setting further improves the classification rate of the other
classes. Due to the lack of a common dataset and benchmark in the field of the
classification of defects in solar cell, we could not compare our results with oher
works. Although this is a limitation for us, we have made a contribution to the
scientific community with a new dataset and a benchmark on it that is a good
starting point for future comparisons. As future works, we planned to apply on
our task methods for defects detection in other industrial sectors such as Silicon
technology.
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