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Abstract—Modern cloud-edge-device computational platforms
does not match the needs of artificial intelligence at the edge of
the network. Indeed, the lack of computing power allows that
only some AI processes can be performed on edge devices, having
also to consider their constrained energy capacity. Moreover, the
lack of computing continuum between nodes of the same layer,
i.e., edge-to-edge, allows to only operate independently within the
layer by sensing the environment where nodes stay. In this paper,
we propose a lightweight framework for collaborative nodes
with decentralized edge intelligence. Organized like a swarm,
the groups of nodes emphasize the edge-to-edge continuum of the
device-edge-cloud paradigm. This supports a paradigm shift from
programming environments for individual devices to dynamic
and cooperating groups of nodes. The nodes’ coordination relays
on green overlay and offloading mechanisms. Innovative mesh
architectures with mixed topologies allow building overlays for
having swarm coordination. Tasks offloading exploits the overlays
to balance the swarm in near-real-time, according to forecasted
energy consumption. Stemming from the proposed reference
architecture, we also discuss a series of open challenges, which
we believe represent relevant research directions in the nearest
future.

Index Terms—Cloud-Edge Continuum, Swarm Computing,
Distributed Intelligence, Offloading, Overlay Network, Energy-
Aware

I. INTRODUCTION

Gartner’s hype cycle1 for artificial intelligence (AI) 2021
places the edge AI at the peak of inflated expectation, leaving
the innovation trigger phase in only 12 months. Moreover,
the IBM Institute for Business Value claims that the expected
return on investment in green edge computing amounts to
10% in 2022. According to Gartner, however, there will still
be room for further investments in edge AI, because it will
steadily reach the Plateau of Productivity within a maximum
of 5 years. In fact, when talking about the computation of AI
tasks at the edge of the network, the literature shows solutions
that rely on well-known infrastructures that involve devices,
edge, and cloud systems.

1The 4 Trends That Prevail on the Gartner Hype Cycle for AI, 2021,
https://www.gartner.com/en/articles/the-4-trends-that-prevail-on-the-gartner-
hype-cycle-for-ai-2021-

In this regards, tasks are often offloaded from devices to
edge to cloud, due to constrained computational and energy
resources, following the computing continuum paradigm. Con-
sidering there are about 13 billion connected devices in 2022
(Statista source2) and the amount of data they generate is
expected to reach 73.1 ZB (zettabytes) by 2025 (Interna-
tional Data Corporation source), the risk of congestion in
the network is not far away. On the other hand, having to
cross the Public Internet to complete the computation, device-
edge-cloud continuum paradigm is not suitable for near real-
time applications. Furthermore, the use of energy-intensive
computational resources, such as the cloud, affects the climate
impact of the adopted solutions [1]. In summary, the literature
clearly shows the need for further study since the solution to
these problems cannot be adequately gleaned from the existing
approaches.

In this paper, we propose a SwARm-based eDge computINg
systEm, hereinafter referred to as ”SARDINE”, to investigate a
different computing solution at the edge of the network for ex-
ecuting AI tasks. We will examine how edge nodes collaborate
when organized like a swarm, a large number of small nodes
where each individual performs a simple task, but whose ac-
tion produces a complex behavior as a whole. Relying on many
servers at the edge of network, we will determine a paradigm
shift from programming environments for an individual to
dynamic and cooperating groups of nodes. The device-edge-
cloud paradigm will be then simplified. Offloading will not
need to go through the Public Internet to be completed, which
means minor latency and high distributed edge computation.
Therefore, this turns into a potential near real-time solution.
On the other hand, SARDINE will determine the carbon
footprint of many energy-constrained computational resources
at the edge of network, in opposition to a small number of
nodes with high-performance resources.

Summarizing, we highlight and address the following major
challenges: (i) the lack of computing power allows that only
some AI processes can be performed on an edge device
capable of withstanding inference and small learning tasks,

2Internet of Things (IoT) and non-IoT active device connections worldwide
from 2010 to 2025, https://www.statista.com/statistics/1101442/iot-number-of-
connected-devices-worldwide/978-1-6654-6297-6/22/$31.00 ©2022 IEEE IEEE
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and then having to rely on the Cloud for those of high
computational complexity; (ii) the constrained energy capacity
of edge devices limits the available computation time; and (iii)
the lack of computing continuum between nodes of the same
layer, i.e., edge-to-edge, allows to only operate independently
within the layer by sensing the environment where nodes stay.

The remaining of paper is organized as follow. A study
of literature is reported in the Section II, highlighting re-
cent solutions about Cloud-Edge continuum, offloading of
distributed systems, and methodologies of nodes coordination
with a focus on energy-efficient techniques. The Section III
proposed SARDINE methodology and both the its system
development and applications point of views. Challenges and
research trends are instead described in Section IV. Finally,
Section V reports conclusion and light to the future activities.

II. RELATED WORKS

Distributed systems use multiple processors to serve mul-
tiple applications and users. Data processing jobs are then
distributed among the processors accordingly to which one can
perform each job most efficiently. In this regard, distributed
systems have quickly evolved driven by the numerous Internet
of Things (IoT) devices. Indeed, according to Juniper Re-
search, the number of IoT devices in 2021 was 46 billion,
with an increase of 200% when compared to 2016. The
consolidated capacity of sensing the environment has given
new vigor to the need for managing and interpreting data, as
well as the application of AI tools for future predictions. To
avoid network congestion due to the massive transfer of data
across the public Internet [2], researchers have initiated studies
[3] to start computing at the network edge. The need for a
new computational paradigm suddenly became urgent because
the traditional cloud-based model was running into scalability
challenges. Therefore, this gap was bridged by the research
on compute continuum [4], a recent technological evolution
for device-edge-cloud computing management. Numerous ar-
chitectures have been then presented in the literature [5], [6],
[7], but all of them constitute of a multi-tiered infrastructure.
While IoT devices are concentrated at the edge of the network,
edge devices are distributed between the network edge itself
and the network core. Cloud is instead further away from IoT
devices, and the upcoming requests must traverse the public
Internet.

Although edge nodes can perform computation (i.e., ma-
chine learning), limited computational and energy resources
require the distribution of tasks across the continuum. Such
designs provide possibilities to map a variety of computing
tasks along the device-edge-cloud tiers to achieve different
levels of intelligence at different costs and energy budgets.
Containerization can also be used in increasing flexibility
by allowing live migration of containers either horizontally
at the edge levels or vertically between the edge and cloud
levels [8]. Each task is loaded in one corresponding container,
which shares the physical resources with other containers
in the same node. Therefore, a container migration manager
not only monitors the resource requirement, latency, and

power consumption of nodes but also determines the migration
strategy [9]. Recent progress in offloading middleware applies
transparent partition into smaller units [10], [11], such as
threads and methods, and then smoothly offload to devices
based on the analysis of execution time and energy consump-
tion. However, the highlighted offloading approaches point
out the lack of collaboration among nodes. Indeed, a task is
typically assigned to one single node, and it is never shared
between more of them, resulting in independent computational
units. This increases the need to offload towards upper tiers.
Data in device-edge-cloud infrastructures must then typically
go through one or more tiers, connected by a flexible and
adaptive network. The decision on how connecting nodes
depends on the specific technological scenario [12]. A scenario
where nodes are used to process sensor data will typically
take advantage of wireless connections, while nodes employed
in manufacturing processes will likely use wired connections.
When talking about AI, solutions [13] consider the problem
of learning model parameters from data distributed across
multiple edge nodes, without sending raw data to a centralized
place. Model parameters obtained at different edge nodes are
then sent to an aggregator, which is a logical component that
can run on the remote cloud. In terms of nodes’ activities co-
ordination, peer-to-peer networks (i.e., mesh networks) stand
as an essential enabler for collaborative nodes for exchanging
acquired status information on the computing environment and
making decisions that are critical for the correct functioning
of the entire system [14].

The problem related to the energy-constrained edge and IoT
devices is another key factor in developing a collaborative
computing infrastructure. Researchers focus on energy-aware
computation schemes [15] in which computation offloading
and resource allocation are optimized to make a tradeoff
between energy consumption and latency considering the lim-
ited battery lifetime and latency-sensitive tasks. The residual
energy of edge devices is introduced into the definition of
a weighting factor, used in an iterative search algorithm to
obtain an optimal offloading decision and resource allocation,
which optimizes local computing frequency scheduling, chan-
nel allocation, power allocation, and computation offloading
in a distribution method. The problem becomes even more
evident by analyzing architectures for mobile nodes, such as
the ones deployed in smart environments. The problem of
managing constrained devices has been typically addressed by
using reinforcement learning [3], [16].

III. METHODOLOGY

Based on the state of the art, we clearly pointed out
poor initiatives about edge-to-edge continuum. The SARDINE
approach will be based on the creation of a collaborative
edge infrastructure, exploiting the properties of a swarm. The
main object is the SARDINE Swarm Entity (SARDINE-SE),
which is a lightweight agent that can perceive its environment,
act on it, and share data and computation tasks with other
SARDINE-SEs. They do not know each other, but they cooper-
ate and communicate indirectly. SARDINE-SEs have inherent

Authorized licensed use limited to: University of Catania. Downloaded on December 23,2022 at 09:14:54 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Edge-to-Edge Computing Continuum Architectural Layers

hardware and software constraints, e.g., low processing and
transmission power, memory, and battery life. SARDINE-
SEs follow a swarm organization and will be then distributed
over the device-edge continuum according to the architectural
layers reported in Figure 1. The Micro Edge Layer consists
of smart Internet of Things (IoT) devices (i.e., camera, mi-
crophones, etc. represented by a SARDINE-SE) connected
through diverse communication technologies and equipped
with poor computational capabilities. The SARDINE-SEs can
either sense and act the environment or perform computation,
according to the specific application requirements. The Macro
Edge Layer includes the edge devices (i.e., Raspberry Pi,
Jetson Nano, etc. represented by a SARDINE-SE) connected
through diverse communication technologies and equipped
with medium computational capabilities. The SARDINE-SEs
are herein only dedicated to computation, exploiting the whole
performance from their constrained resources. This layer is
also responsible for running applications based on the mid-
dleware capabilities. The use case driven application features
are instead running in the Application Layer, which exploits
the potentiality provided by the SARDINE approach regarding
end-users.

The logical architecture of the SARDINE-SE is instead
depicted in Figure 2. This is a cognitive architecture that
attempts to model not only behavior but also structural proper-
ties of the modeled system. It defines artificial computational

processes that act like certain cognitive systems (i.e., individ-
uals of a swarm). The architecture enables to realize various
cognitive abilities and coordination mechanisms. Furthermore,
it is strongly decentralized (distributed), promoting parallel
distributed computing, connectionism, and computing partition
(i.e., divide et impera). Being inspired by biological systems,
SARDINE applies a bottom-up model where the overall be-
havior (i.e., stigmergy) emerges from the interaction of simple
nodes.

A. From the Viewpoint of System Development

SARDINE is organized into seven components (i.e., soft-
ware managers).

Node Manager collects all capabilities to handle a node that
takes part in the swarm, offering a unified abstract inter-
face to manage all nodes similarly despite their specific
heterogeneous characteristics. This Manager allows the
configuration of the resource in the node infrastructure, as
well as the registration of the associated sensing capabili-
ties to enable context-awareness and data accessible to the
Storage Manager. Herein are collected information asso-
ciated with the status of resources and sensors. According
to different profiles, it collects data about its dynamic
status, hardware, and software characteristics, such as
the utilization rate, battery life, physical position, tasks
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Fig. 2. SARDINE Swarm Entity Logical Architecture

scheduling, available memory, network load, algorithms
performance, and inference accuracy.

Storage Manager controls all processes associated with the
collection and sharing of data coming from resources
and sensors. It supports distributed indexing and data
synchronization among individuals of the swarm, using
both in-memory (i.e., cache) and persistent storage.

Computation Manager is responsible for managing the life-
cycle of the tasks executed by the node resources. It
supports the offloading according to node status profiled
by the Node Manager, interacting with the Coordination
Manager to enable the migration of tasks from one node
to its neighbor. The execution status is reported to Service
Manager.

Security and Trust Manager involves diverse levels of se-
curity requirements and resource self-protection mecha-
nisms. It supports the encryption of data for both stor-
age and computing, to preserve privacy according to
the GDPR. Being SARDINE strongly decentralized, this
Manager allows mechanisms of consensus for both nodes
and data trust.

Energy-Aware Manager is responsible for applying policies
that make the swarm’s carbon footprint as lower as pos-
sible, according to the capabilities of nodes. It supports
the execution of decision-makers to lifetime longer the
battery-powered node. This Manager interacts with the
Computation Manager for alerting when a node is running
out of battery and then scheduling the task offloading.

Coordination Manager is responsible for connecting hetero-
geneous nodes that take part in a swarm. It supports the

creation of overlays for both overall messages exchange
and serving specific application goals. This Manager al-
lows selecting the optimal available node of the swarm for
executing the computation, according to the established
nodes’ collaboration and typologies of tasks each node
can fulfill.

Service Manager is responsible for controlling all services
(i.e., applications) running in a certain node and allocating
these services over the most suitable node of the swarm.
This Manager interacts with the Coordination Manager
for discovering the most suitable available node. It also
supports the quality-of-service management of running
applications.

B. From the Viewpoint of Applications

SARDINE will find applications in several domains, among
which industry 4.0, smart environment, mobility, healthcare,
and cultural heritage. The applications will communicate with
the infrastructure using a proper API, which will mask the
underlying decentralized execution environment, as well as the
coordination and offloading mechanisms. From the application
point of view, a set of high-level services are available. Pos-
sible examples are vehicle tracking, license plate recognition,
people counting, audio classification, etc. The application will
be unaware of the involved sensory system, as well as of
the distributed and dynamic computation, which is determined
on-demand, depending on the whole swarm situation and the
other pending tasks. In this way, applications will be developed
based only on the inference target (e.g., monitoring an urban
area, traffic monitoring, etc.) and the SARDINE’s available
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capabilities (e.g., audio analysis, traffic anomaly detection).
Considering this, the SARDINE infrastructure will allow the
development of general applications.. Indeed, any application
that exploits AI-based inferences performed dynamically on
the sensory data flow coming from the smart environment layer
can be designed and easily developed.

IV. OPEN CHALLENGES AND RESEARCH DIRECTIONS

The implementation of the SARDINE vision into a realistic
setting raises a number of challenges, which in turn open
several research directions. Without any claim of completion,
in the next sections we present those directions we argue are
the most relevant in the current landscape of research.

A. Development of the model

A novel approach is needed to formalize swarms of smart
devices at the edge of the IoT. This is a real challenge
as currently available swarm models were conceived at a
multi-agent systems level to address conventional distributed
systems requirements, not considering at all the IoT device-
edge continuum. We propose to begin from the ACOSO
(Agent-oriented COoperating Smart Objects) model [17] as a
basis to create the first swarm edge model, including computa-
tion and coordination, purposely conceived for addressing the
requirements of the IoT device-edge continuum. The model
will consider two coordinated layers: micro-edge and macro-
edge. At the micro-edge, the smart devices are programmable
sensing and/or actuating computing elements that coordinate
with each other using a (logical and/or physical) stigmergic
coordination model. At the macro-edge, the swarm can be seen
as a “living organism” with macro goals dictated by a macro-
programming language. This will notably allow to program
the swarm at the macro level and then automatically translate
the macro goals into programming directives embedded into
the elements of the swarm.

B. Development of the middleware

Developing novel mechanisms of coordination (i.e., overlay)
and computation (i.e., offloading) over the device-to-edge
and edge-to-edge continuum is a key challenge for building
highly distributed lightweight systems with a view on energy
consumption. We aim to extend existing middleware to being
green by design and supporting the offloading of edge nodes
over other edge nodes, rather than the cloud. In this regard, we
will use artificial intelligence algorithms (i.e., reinforcement
learning) for reacting to data sensed from the environment,
and according to residual resources (CPUs, memory, etc.) and
energy (battery life, harvesting). As a coordination mechanism,
we will build overlays through mesh architectures with mixed
topologies. Nodes could then be grouped in one or multiple
overlays for responding to fleet management instructions or
serving the application layers.

C. Seamless interoperability of devices-to-edge and edge-to-
edge levels

Harmonizing the coordination and computation of heteroge-
neous device (i.e., smart IoT objects) and edge (i.e., micropro-
cessors) systems in a decentralized manner is a key challenge
to provide seamless interoperability among the nodes. We
propose a swarm-based infrastructure to smoothly provide
decentralized, self-organized, and robust systems with con-
sideration of coordination. We want to exploit the collective
behavior of systems composed of many nodes who interact
locally with each other and with their environment using
decentralized and self-organized control to achieve complex
tasks. A common interface (i.e., APIs) will be implemented
with the SARDINE-SE, through which nodes will share an
interoperability language.

D. Security, Privacy, and Trust

Ensuring security, privacy, and trust management of data,
coordination, and computation in SARDINE are key chal-
lenges to enable the widespread diffusion of SARDINE ser-
vices and applications. We propose to store data by using ho-
momorphic encryption to preserve data integrity and security
of the citizen. The encryption will happen as soon as data
is generated on the edge of the network and stored in local
databases. The use of homomorphic encryption eliminates the
need to decrypt data before using it. Data integrity and privacy
are therefore preserved even during data computation. On the
other hand, we propose to use consensus algorithms to trust
nodes during coordination. By considering there will be a
limited number of nodes deployed at the edge, the system must
ensure that all can agree on a single source of truth, even if
some nodes fail. This makes the system highly reliable.

E. Scalability

Limiting the computation over the edge nodes could in-
crease the number of them, due to the need to have several
systems with limited capabilities. We want to exploit the
potential benefits of swarm-based infrastructure, because when
modeling edge systems as a swarm, the control mechanisms
do not depend on the number of devices within the system, but
only on the neighbors of the target node. Indeed, the overhead
of coordination does not increase when the size of the group
increases, as well as the performance of the whole system does
not degrade.

F. Energy-awareness

Being based both on stationary and mobile devices, SAR-
DINE should be energy-aware from sensing, actuation, com-
munication, and computing viewpoints to prolong the overall
system lifetime according to application-specific requirements.
We aim to build a swarm infrastructure that is energy-aware by
design from all aspects of edge computing, including archi-
tecture, operating system, middleware, service provisioning,
and computing offloading. Nodes will monitor themselves in
terms of residual energy (i.e., battery life, harvesting) and
deliver that status to neighbors. Such information will be then
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involved in the election of the node towards which offloading
the computation.

G. Development of use case driven middleware features

The proposed infrastructure is expected to manage high
numbers of instances of smart applications with significant
data requirements, offered to a large range of users, and with
limited delays. For these reasons, one of the main challenges is
the development of proper task offloading systems. We aim to
define middleware features properly designed for the specific
use cases. Efforts will be devoted to the customization of the
swarm middleware implementation toward the support of the
specific use-case scenarios. Considering the possible needs of
the applications in terms of computation distribution and time-
aware constraints.

H. Development of multi-objective application

Typically, abnormal events occur infrequently compared to
normal activities. Therefore, to alleviate the waste of work
and time, the development of AI algorithms for the automatic
detection of anomalies is an important need. This is a chal-
lenging task, as AI-based models for detection are usually
based on the exploitation of large-scale and possibly balanced
labeled data, with a set of pre-defined possible outputs (i.e.,
classes). Real-world anomalous events are complicated and
diverse. It is difficult to list all possible anomalous events.
Therefore, it is desirable that the anomaly detection algorithm
is not based on a precise definition of events categorized into
classes. In other words, anomaly detection should be done with
minimal supervision. The goal of a practical anomaly detection
system is to promptly report an activity that deviates from
normal patterns and identify the time window of the anomaly
that occurs. Therefore, anomaly detection can be thought
of as rough-level continuous pattern recognition for signal
understanding, filtering anomalies from normal models. Once
an anomaly has been detected, it can be further classified into
one of the specific activities using classification techniques.

V. CONCLUSIONS

This position paper presents the architecture of SARDINE,
a swarm-based edge computing system that integrates a set
of services and methodologies aimed at shifting the cloud-
edge computing continuum paradigm to the edge-edge one
for providing artificial intelligence at the edge of the network.
The SARDINE design considers the deployment of two main
mechanisms: edge nodes coordination and computation of-
floading. The reference architecture is used as a starting point
to discuss several relevant open research directions that would
shape the work toward the realisation of the SARDINE vision
in the future.
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