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Abstract: From a biological point of view, alcohol human attentional impairment occurs before
reaching a Blood Alcohol Content (BAC index) of 0.08% (0.05% under the Italian legislation), thus
generating a significant impact on driving safety if the drinker subject is driving a car. Car drivers
must keep a safe driving dynamic, having an unaltered physiological status while processing the
surrounding information coming from the driving scenario (e.g., traffic signs, other vehicles and
pedestrians). Specifically, the identification and tracking of pedestrians in the driving scene is a widely
investigated problem in the scientific community. The authors propose a full, deep pipeline for the
identification, monitoring and tracking of the salient pedestrians, combined with an intelligent elec-
tronic alcohol sensing system to properly assess the physiological status of the driver. More in detail,
the authors propose an intelligent sensing system that makes a common air quality sensor selective
to alcohol. A downstream Deep 1D Temporal Residual Convolutional Neural Network architecture
will be able to learn specific embedded alcohol-dynamic features in the collected sensing data coming
from the GHT25S air-quality sensor of STMicroelectronics. A parallel deep attention-augmented
architecture identifies and tracks the salient pedestrians in the driving scenario. A risk assessment
system evaluates the sobriety of the driver in case of the presence of salient pedestrians in the driving
scene. The collected preliminary results confirmed the effectiveness of the proposed approach.

Keywords: driver safety; alcohol detection; artificial neural networks

1. Introduction

In automotive applications, there are significant interests in the development of inno-
vative technologies to increase the level of safety. A wide variety of sensing devices that
show a robust ability in monitoring the driver’s attentional status are being implemented
in cars [1,2]. The issue of driving safety has been significantly explored by researchers
in the scientific field. Automotive statistics clearly highlighted a significant number of
road accidents involving pedestrians [1–5]. Among the aspects that most negatively affect
driving safety, there is certainly a poor level of driver attention, both physiological and
correlated to an altered state of alertness, often linked to alcohol abuse. For this reason,
scientific research has contributed to the development of several innovative solutions that
allow intelligent monitoring of the driver’s attention level associated with a correlated driv-
ing assistance (so-called Advanced Driver Association Systems (ADAS) solutions) [6–11].
More in detail, scientific research has largely investigated primarily the development of
the hardware platform (sensors, microcontrollers, interconnection systems, etc.) capable
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of hosting the driver monitoring and driving assistance algorithms as well as supporting
the complex computational processing of data (visual and numerical) deriving from the
characterization of the automotive environment. Subsequently, the researchers focused
their investigations on the development of efficient algorithms mostly based on artificial
intelligence, which would allow for robust data processing with a consequent definition of
an accurate near-real-time response [1–12]. Here are some details of the main development
trends in the automotive field.

Such interesting solutions regarding the intelligent detection and analysis of the car
driver heart rate dynamic through the PhotoPlethysmoGraphy (PPG) were investigated by
the authors of the work herein exploited [3–6]. Further, Computer Vision-based solutions
have been implemented by the authors and applied successfully in different automotive
scenarios, specifically in the field of Advanced Driver Assisted Systems (ADAS) [7–11].
Anyway, the characterization of the driver’s level of attention can also be obtained by
analyzing the breath of the subject driving [12]. As introduced, the car driver’s attentional
status can be retrieved by an ad-hoc sober level assessment. As highlighted below, the
subject’s drowsiness and sobriety level are closely correlated, as a high concentration of
alcohol induces a proportional state of drowsiness [8–13].

To track the car driver’s sobriety and correlated drowsiness, an ad-hoc sensing frame-
work has to be designed and implemented. Alcoholic levels above standard concentration
limits (e.g., 0.08% g/mL in the USA or 0.05% in Italy’s legislation) can induce a state of dan-
gerous drowsiness, affecting correlated body movements and reaction capabilities [8–13].
In this context, a strong boost to the scientific research development was given from the
advent of strategic alliances made by car makers, industries, institutions and research bod-
ies, with the common goal of developing robust and efficient solutions to reduce accidents
due to alcohol abuse by those who start driving. In the context, it is worth mentioning the
Driven Alcohol Detection System for Safety Alliance (DADSS) [13], which, among other
research, has developed technical guidelines for the intelligent monitoring of the driver’s
alcohol level/sobriety [13]. Clearly, a crucial role in this context is therefore played by the
alcohol sensor, which must provide an accurate assessment of the driver-subject’s alcohol
level in order to determine the subsequent actions to protect driving safety. For this reason,
the authors introduce a brief description of the main sensing systems that can be used in
these automotive application scenarios.

The first type of sensing device is the non-selective and general-purpose air-quality
sensor, the so-called VOC (Volatile Organic Compounds) sensing devices. These inex-
pensive devices are activated in the presence of any volatile compound in the passenger
compartment of the car, effectively producing a simple assessment of the air quality and
certainly not of the driver’s alcohol level [13].

On the other hand, selective alcohol or ethanol sensors, although much more precise,
are more expensive and therefore often incompatible with the development criteria in the
automotive field [13]. To address the aforementioned problem, the authors have developed
an algorithm based on Artificial Intelligence (AI) that is able to analyze the data sampled
by a classic VOC sensor, identifying the specific features of the alcohol analyte from the
embedded features to the acquired time series. In this way, by means of an AI-augmented
low-cost sensing combination system, we are able to make a classic VOC sensor selective.
We have tested our device for alcohol, but theoretically, it can be extended to any analyte.

As introduced, driving safety and road accidents involving pedestrians represent
an important problem to address in the automotive field. For this reason, in addition to
proposing an efficient and innovative solution for monitoring the sobriety (and related
drowsiness) of the driver, the authors propose a contextual system of identification and
tracking of the salient pedestrians in the driving scene. In this way, the full pipeline will
be able to evaluate an overall level of risk correlated both to the state of attention and
sobriety of the driver and to the level of riskiness of the driving scene, which may or may
not include pedestrians and/or salient pedestrians. The concept of a “salient” pedestrian,
which has a role in determining the level of risk (different from the concept of a pedestrian
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simply present in the driving scene but not directly involved in the risk assessment), will
confirm to be an innovative imprinting for the proposed pipeline.

Specifically, we have correlated this intelligent sensing system to the issue of robust
pedestrian tracking in the automotive field. As highlighted, driving scenarios that include
pedestrians are particularly complex [11]. Several researchers are investigating the design
of intelligent algorithms that explore the relationship between the driver’s attention level or
sobriety to the presence of any pedestrians in the driving scene [10,14,15]. Pedestrian detec-
tion is a crucial task in the smart driving field. The main solutions are based on the analysis
of visual information by exploiting complex deep neural networks. However, although
image-based detection technology has made great progress in the last few years, some
works suggest that multisensor fusion technology may improve the effect of pedestrian
detection technology in practical applications [16]. In this context, the authors proposed a
self-attention deep enhanced Mask RCNN (Region-based Convolutional Neural Network)
network for the identification and tracking of the salient pedestrian in the driving scene
guided by a sobriety monitoring system.

The use of a deep learning-based approach that monitors only the salient pedestrians
(and not simply all the pedestrians embedded in the driving scene) associated with an
intelligent system that selectively retrieves the level of sobriety (and therefore the correlated
drowsiness) will allow a continuous monitoring of the driving risk level which, unlike the
pipelines produced in the literature, will be both sustainable from a hardware point of view
and efficient and accurate as confirmed by the performances reported in the “Experimental
Results” section. For both of the introduced sub-systems, we briefly introduce the state of
the art, and then we proceed reporting the implementation details of the proposed pipeline.

2. Related Works

Several researchers have investigated the development of such AI-based solutions for
obtaining selective classical VOC sensors as well as investigated innovative materials to be
used as a “sensing filter” for specific analytes, such as alcohol [17–19].

In [20], a novel technique using response characteristic curves was proposed. The data
obtained from rise-time, peak-time and recovery-time were used as representatives for the
characteristics of the response curves. The proposed system consisted of three semicon-
ductor gas sensors. Even though the sensor was able to detect alcohol, it was not selective
and also provided an output for other organic compounds, such as acetone, ammonia, etc.
In [21], an optical gas sensor that requires low electrical power was designed. The proposed
sensor was a Magnesium-tetraphenylporphyrin thin film device. The reported results are
very promising. In [22], the authors implemented a surface-modified TiO2 nanoflower
hybrid sensing device, incorporating Pd and rGO as a secondary material for surface en-
hancement. They tested the designed device for monitoring ethanol and methanol analytes,
collecting very interesting performance results in terms of response magnitude towards
methanol for the surface-modified nanostructures compared to its pristine counterpart. The
synergistic effects of the noble metal catalyst Pd and 2D material rGO with pristine TiO2
nanoflower structure make these types of surface-modified binary composites as a potential
alcohol sensor device. In [23], a sensor device embedding a low-cost light emitting diode
(LEDs) array and a CMOS (Complementary metal–oxide–semiconductor) photodetector
was proposed to analyze the color change in the sensing material. The sensing materials
were tested with various common VOCs, such as alcohols, acetone, ammonia and water.
Pattern recognition through the classical principal component analysis (PCA) was applied.
The benchmark results showed promising performance but low ability to be selective to a
single analyte. In [24], deep learning was used to perform a soft-sensing device for tracking
alcohol analytes. Specifically, the authors proposed an artificial neural network single-layer
perceptron (ANN-SLP) to process specific VOC datasets in order to determine multiple
classifications of alcohol types. They obtained that the highest performers were the QCM3
sensor and QCM6 (QCM: quartz crystal microbalance—near 100% accuracy) in the sensing
of different types of alcohol.
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With the recent development of deep learning techniques, object detection has made
great progress. In the context of intelligent driving, pedestrian detection has a crucial role,
as it significantly affects drivers’ and pedestrians’ safety. Although a pedestrian detection
task could be addressed as a general object detection problem, the specific task presents
additional issues.

In general, there are two main approaches in deep learning-based detection: one-stage
or two-stage detection. In the two-stage detection, first a number of region suggestion boxes
are detected. Then, a predictor is applied on such regions. The one-stage detection aims to
directly predict the detected object area, providing the final prediction result. Although the
two-stage approach is more complex than the one-stage approach, it has better robustness
and accuracy overall. Moreover, researchers can focus on the improvement of detection or
prediction, providing benefits to the whole framework.

A significant step toward a real-time two-stage detector is represented by Faster
RCNN [25].

The work in [26] proposed some improvements based on Faster RCNN and proposed
a method named region-based fully convolutional networks (RFCN) [26], which improved
the processing results of pedestrian detection in scenarios that are specifically sensitive
to location information. Compared with Faster RCNN, the approach in [26] augments
feature sharing, reducing redundancy in the architecture and improving its running speed.
The RFCN [26] algorithm is mainly proposed for general object detection, and it can also
achieve good results in specific pedestrian detection areas. In [27], the authors proposed a
detector named Feature Pyramid Network (FPN) based on Faster RCNN. General purpose
approaches place the detector after the extraction of a category-aware feature. Such an
approach works well for general object detection. The work in [27] improved the pedestrian
detection, proposing a top-down prediction structure based on high semantic information
built on the whole convolution pipeline.

The Complexity Aware Cascade Training (CompACT) algorithm proposed in [28]
optimizes classification and better combines feature extraction and a classifier function,
which plays an important role in promoting pedestrian classification at different scales.
The authors proposed the CompACT boosting algorithm for learning complexity-aware
detector cascades, which are able to integrate multiple feature families, generalizing the
two-stage detection approach. The CompACT algorithm shows high performances in the
field of pedestrian detection, although it can be extended to other object detection tasks.

The Mask RCNN model proposed in [29] represents an improvement of Faster RCNN,
which adds the extraction of a semantic segmentation mask. This improvement in the
task of object detection caused a boosting effect also in the field of pedestrian detection.
Indeed, this architecture allows the pedestrian segmentation and background separation,
in addition to the basic detection of pedestrians [30].

The first one-stage deep-based detector named You Only Look Once (YOLO) has
been presented in [31]. A single neural network is applied to the whole input, which is
divided into regions. As a result, the detection speed is improved, and the region proposal
is predicted jointly to detect probability. Most of the one-stage approaches are based on the
YOLO detector and its improvements, thanks to their high computation speed. However,
pedestrian detection methods mostly focus on the two-stage approach, given its higher
accuracy rate in general.

Indeed, pedestrian detection adds specific requirements on accuracy and time perfor-
mances, which is of high significance in the application of this specific task. In general,
one-stage detection approaches represent a good choice if the main requirement is the com-
puting time, while two-stage approaches show better prediction performances. Although
some works suggest that one-stage detectors can improve their accuracy while keeping
high speed [32], improving the detection rate and simultaneously maintaining the detection
speed is currently a challenge.
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Occlusion is a typical issue in pedestrian detection because people often move in
crowds. This results into a significant limit of the application of current technology in
smart driving.

The authors of [33] proposed a repulsive loss function named RepLoss to reduce the
mutual influence between detected objects, with the aim to reduce the effect of occlusion in
pedestrian detection. Although there have been attempts to improve the effect of pedestrian
detection under occlusion [33,34], they involve an increase of computational costs and
subsequent reduction of detection speed.

Another important issue related to the task of pedestrian detection is the presence
of high-scale variability of the different pedestrians depicted in the scene. An example
of attempt to address the multiscale problem in pedestrian detection is presented in [35],
in which the authors proposed a method named Topology Localization and temporal
feature aggregation (TLL), which integrates multiscale human body model information
in the model. The use of deep models often involves high computational and storage
requirements, which further limits the application on real-world scenarios. In addition,
special real-world scenarios introduce additional problems (e.g., fog, rain, night, snow, etc.)
that need to be addressed.

The detection and subsequent monitoring of pedestrians in the driving scene can help
an automatic driver assistance system to validate instant by instant if the driving dynamics
and the level of attention are compatible with the presence of pedestrians in the scene by
combining the two sources of information. Many authors have investigated this relevant
issue by analyzing the advantages inherent in the use of deep learning architectures [14,15].
In [14], the authors investigated such deep architectures to monitor and track the pedestri-
ans. The performance was very promising. In [15], the authors proposed a solution named
DeepParts, which can be trained on weakly labeled data, i.e., only pedestrian bounding-
boxes without part annotations. DeepParts was confirmed as a good detector that can
detect a pedestrian; extensive experiments confirmed that this approach outperformed the
previous best method by 10%. In [36], the authors have used the YOLO framework for fast
object detection combined with a MobileNet architecture for feature extraction and a set
of algorithms to generate associations between frames, obtaining a performance of 93.2%
in accuracy. In [37], the authors investigated the issue of vulnerable pedestrian detection,
showing very interesting results applying such deep learning-based solutions. Anyway,
most of the proposed solutions showed the issue to require more complex dynamics and
data to be processed.

3. Methods and Materials

As introduced, the authors propose an advanced system that combines an alcohol
selective soft-intelligent VOC sensor with a self-attention deep network for pedestrian
tracking in a driving scene. An intelligent control panel provides a risk assessment for
the pedestrian according to the detected sobriety related to the characterization of the
tracked salient pedestrians. The following Figure 1 shows an overall scheme of the pro-
posed pipeline:

As shown in Figure 1, the proposed pipeline is composed by two sub-systems: the
Intelligent Soft-Sensing System and the Intelligent Pedestrian Tracking System. The output
of both systems will be processed by an ad-hoc designed Intelligent Control Panel in order
to retrieve a robust risk-assessment alert system.
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Figure 1. The proposed intelligent car driver assisting pipeline.

3.1. The Intelligent Soft-Sensing System

The target of this system is to provide a robust assessment of the car driver’s alcohol-
sobriety by using a classical VOC sensor with a downstream deep classifier. Specifically, we
have designed a deep architecture that learns the embedded deep features of the car driver’s
breath sampled through a prototype VOC sensor GHT25S developed by STMicroelectronics.
As schematized in Figure 1, the GHT25S sensor will be hosted on the steering wheel base
of the car at about 1 m from the driver subject. The collected car-driver breath data will
be digitalized (ADC at 12-bit) and pre-processed by an automotive-grade microcontroller
device (MCU) SPC58X Chorus, provided by STMicroelectronics [38]. The normalized data
will be fed as an input to the deep architecture, which is ongoing to be ported to another
higher performer and accelerated MCU, which is the STA1295 Accordo5, provided by
STMicroelectronics [39]. The following Figure 2 reports a schematic of the so-designed
sensing system.
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More detail about the used sensing device are as follows. As introduced, gas sensors,
such as a human sense organ like the nose, can capture atmospheric composition data,
recognizing the presence of various types of gases and send this information in the form
of an electrical pulse to the components that, like the human brain, can process them
and return an output as required. In the scientific literature, one of the most studied gas
sensors due to low cost and high sensitivity is the metaloxide resistive sensor (MOX). The
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used sensing devise GHT25S is a MOX sensor. In Figure 3, we report the overall internal
schematic of the sensing device.
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As reported in Figure 3, the GHT25S is a MOX sensor. On the base of the device, there
is the substrate on which a specific integrated, dedicated MCU (ASIC) is hosted. The sensor
is protected by a special metal cap provided to small holes to allow the continuous change
of air to be analyzed in the internal small metal chamber. The operating temperature
ranges from −40 ◦C to 85 ◦C (with +/− 0.6 ◦C). The technology of the embedded ASIC
is HCMOS9A, 0.13 µm. The GHT25S sensor is a combination device, able to also detect
humidity and temperature of the closed sensing scenario. The relative humidity (RH)ranges
from 0 to 100% RH (+/− 3% RH). The sensing device shows a response time of <5 s, which is
very close to automotive near-real-time requirements. Further details include: an operating
heater power of 20 mW, Internal System resistance (Rs) from 1 kHom to 3 MHom and target
sensing range from 0.5 to 100 ppm of TVOC equivalents. Finally, the GHT25S can be driven
through an SPI (Serial Peripheral Interface) or I2C interface, and it needs a supply voltage
of 1.7 to 3.6 V. Depending on the nature of the analyte (embedded in the driver breath)
coming into contact with the GHT25S sensing layer, given the characteristics such as mass,
temperature, humidity and electrical resistance of its particles, contact or absorption to
the sensing layer produces a chemical reaction that generates a certain electrical impulse
with the specific characteristics of frequency, current, voltage or impedance/conductance,
enabling a specific biological signature of that analyte. The downstream post-processing
system composed by the deep architecture will further process that car driver breath
signature, trying to associate the extracted deep features with the type of the source analyte.
The following Figure 4 shows the used GHT25S sensing device.

The proposed GHT25S sensor requires a minimal calibration as for all similar sensing
devices [40–42]. In the following figures, we reported some instances of the sampled car
driver breath data with the sensing device as per Figure 2, both in case of a sober subject
and in case of a driver who drank. The data diagrams reported in Figure 5 show a time
snapshot of the correlated sensing items, such as the ppm measurements, temperature (T),
humidity (RH) and internal resistances (Rsense, Rair, RSC).

The above sensing data will be properly normalized and fed as an input of the deep
residual network designed to extract embedded features to be associated with the type of
the driver: Sober or Not Sober. More details about the implemented deep backbone are
as follows.
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We designed a Deep 1D Temporal Dilated Convolutional Neural Network (1D-CNN)
suitable to classify the GHT25S normalized sensing patterns [31]. A temporal convolutional
residual network that embeds a dilated causal convolution layer capable of acting on the
temporal stages of each set of sensing data sequence [43–45] was implemented. The pro-
posed 1D-CNN is composed of 24 residual blocks with a dilated convolution (3 × 3 kernel
filters), followed by normalization, ReLU activation blocks and spatial dropout. The deep
backbone includes a final softmax stage for data classification. For each of the blocks, there
is a progressive increase in the dilation starting from 2 and increasing with a power of 2
until to 32. The output of the 1D-CNN is a binary assessment (0–0.5: Sober Driver; 0.51–1:
Not Sober Driver) of the driver’s attentional level associated to the sampled breath sensing
data. The described Deep Learning framework proved to be effective in assessing the
driver’s level of sobriety with high precision and timing performance as shown by the
results reported in the related section.

3.2. The Intelligent Pedestrian Tracking System

The authors investigated several interesting object detection and tracking architecture
backbones to adapt to pedestrian tracking. However, we found it useful to implement
an innovative network that included the recent self-attention context using Criss-Cross
layers [45]. As schematized in Figure 1, an enhanced Mask-R-CNN architecture [29]
embedding Self Attention is proposed. Mask-R-CNN is widely used in automotive applica-
tions [29]. The target of the implemented enhanced Mask-R-CNN is that it allows for the
performance of a pixel-based segmentation of the input image representing the driving
scene frame. Moreover, with this solution, we can generate the corresponding bounding-
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box that characterizes the Region of Interest (ROI) on which to perform post-processing.
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ResNet-101 backbone. This deep classifier embeds a Recurrent Criss-Cross Attention
(RCCA) layer [46]. The attention mechanism based on the Criss-Cross algorithm was
first proposed in [46], showing a very promising performance in computer vision tasks.
Specifically, the proposed Criss-Cross attention module performs an innovative pixel-based
contextual processing of the input image frame. More in detail, this algorithm leverages
full frames embedding dependencies during the learning session of the deep network. Let
us formalize the Criss-Cross algorithm. Given a local feature map H ∈ RC×W× H, where
C is the original number of channels while W× H represents the spatial dimension of the
generated feature map. The Criss-Cross layer applies two preliminary 1 × 1 convolutional
processing to generate two feature maps F1 and F2, which belong to RC

′ ×W× H and in
which C

′
represents the reduced number of channels with respect to original C. The Affinity

function is suitable to generate the Attention-Map AM ∈ R(H +W− 1)× (W× H). The Affinity
operation can be defined as follows. For each position u in the spatial dimension of F1,
a vector F1,u ∈ RC

′

can be retrieved. Similarly, we define the set Ωu ∈ R(H + W− 1)× C
′

by extracting feature vectors from F2 at the same position u, so that Ωi,u ∈ RC
′

is the i-th
element of Ωu. After these preliminary operations, we can define the introduced Affinity
operation as follows:

δA
i,u = F1,uΩT

i,u (1)

where δA
i,u∈D is the so-called Affinity function, i.e., the degree of mathematical relation be-

tween features F1,u and Ωi,u, for each i in the range [1, H + W − 1], and
D ∈ R(H + W− 1)× (W× H). Finally, we apply a softmax layer on the space D to deter-
mine the attention map AM. Finally, another convolutional layer with a 1 × 1 kernel will be
applied on the feature map H to generate the re-mapped feature θ∈ RC×W× H to be used
for spatial adaptation. At each position u in the spatial dimension of θ, we can define a
vector θu ∈ RC and a set Φu ∈ R(H + W− 1)× C. The set Φu is a collection of feature vectors
in θ having the same row or column with position u.

At the end, the desired pixel-based contextual information is retrieved through the
Aggregation functional re-mapping, defined as follows:

H′u =
H+W−1

∑
i=0

Ai,u
M Φi,u + Hu (2)

where H
′
u is a feature vector in H

′ ∈ RC×W× H at position u while Ai,u
M is a scalar value

at channel I and position u in the field AM. The so-defined contextual information H
′
u

is then added to the given local feature H to augment the pixel-wise representation and
aggregating context information according to the spatial attention map AM. These feature
representations achieve mutual gains and are more robust for semantic segmentation.
Anyway, the Criss-Cross attention module is able to capture contextual information in
horizontal and vertical directions, but the connections between the pixel’s neighborhood
is not covered. To overcome this issue, the authors introduced a Recurrent Criss-Cross
processing [33]. In the Recurrent Criss-Cross algorithm, each contextual operation can be
unrolled into R loops. We defined R = 2 for our purpose as suggested by the authors [45].
We have embedded the so-described Criss-Cross layer (RCCA, i.e., Recurrent Criss-Cross
Algorithm) to the latest residual block of the ResNet-101 backbone as shown in Figure 1.

More details on the reasons for which the authors preferred an architecture with Criss-
Cross attention layers are as follows (thus confirmed by the scientific evidence obtained
from the performed experimental tests):

1. The Mask-R-CNN embedding Criss-Cross path modules produce more discriminative
visual features;

2. The so-designed enhanced attention-based network is a better performer with respect
to the similar state-of-the-art solutions [45];
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3. It is GPU memory-friendly (significantly reduces Floating point Operations per Second
(FLOPs) by about 85%) compared with the other attenion modules, such as the non-
local block (it requires on average 11 × less GPU memory usage) [29,45];

4. High computational efficiency.

Moreover, the main advantage of the proposed attention module is embedding in
the usage of the contextual information. It is a common practice to aggregate contextual
information to augment the feature representation in semantic segmentation or object
detection deep architectures [45]. By means of the defined “Affinity” and “Aggregation”
operators, we are able to collect contextual information in horizontal and vertical directions
to enhance the pixel-wise representative capability and then the visual feature maps. In
this way, we are able to perform a robust semantic segmentation of the detected and
tracked objects (pedestrian in our case), as the pixel-based information is more accurate
and discriminated with respect to the same and related to other pixel classes represented in
the visual frames and features.

Through the contextual pixel-based information, we are able to train the deep archi-
tecture to efficiently detect domain-adapted objects, specifically, in our case, pedestrians
in different scenarios while walking, by bike, on motorbike, etc. Moreover, ad-hoc train-
ing sessions that force segmentation of the only salient pedestrian subjects (i.e., the most
important pedestrian from a driver visual point-of-view [8–10]), complete the innovative
performance of the proposed pipeline, which will, therefore, be able to identify and seg-
ment salient pedestrians in different domain-adapted scenarios. The design of ad-hoc
Mask-R-CNN architecture allowed us to obtain, in addition to the semantic segmentation,
the bounding-box part of the segmented pedestrian also, which therefore also gives further
spatial information related to the driving scene.

The following Figure 6 shows some instances of the tracked and segmented salient
pedestrian. As introduced, the so-designed deep system has been trained to track only the
salient pedestrians, leaving out those outside the salience scene, thus reducing the overall
computational load of the pipeline. Furthermore, the so-enhanced Mask-R-CNN allows
us to obtain the bounding-box of the pedestrian, which we will need to determine the
distance from the driver’s car. Quite simply, the height and width of the segmentation
bounding-box of each segmented pedestrian will be determined. Only bounding boxes that
have at least one of the two dimensions greater than two heuristically fixed thresholds (L1
and L2, respectively, for length and width) will be considered relevant salient pedestrians,
i.e., pedestrians that must be considered by the driver when choosing the driving dynamics.
The other pedestrians will be considered non salient and, therefore, are not involved in the
safety level assessment. This so-computed distance assessment will be used in the next
block of the proposed pipeline.

As reported in Figure 6, the detected relevant pedestrian is thus classified since the
bounding-box generated by the Mask-R-CNN network exceeds, in spatial-dimension, at
least one of the L1 or L2 thresholds set for this pipeline. It is clear that this is a very
close (spatially) pedestrian to the vehicle from which the visual perspective of the scene
is supposed to be obtained. On the other hand, in Figure 6, a “not relevant” salient
pedestrian is also identified since none of the dimensions of the bounding-box exceed the
predetermined thresholds. In fact, this is a reasonably distant pedestrian and therefore not
mainly involved in the risk assessment. Obviously, if the bounding-box dimension changes
in subsequent time evolution (due to, for example, a vehicle or a pedestrian approaching),
this pedestrian could be classified as relevant and therefore fall within the safety assessment
described in the next section.
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This architecture performed very well as we reached a test-set performance mIoU of
0.695 over a CamVid dataset, which is in line with the performance of other more complex
architectures [29–47].

3.3. The Intelligent Control Panel

In the scheme reported in Figure 1, a block called Intelligent Control Panel (ICP) is
highlighted, which will analyze the outputs produced by each of the previously described
pipelines, specifically, the assessment of the driver’s sobriety according to the “relevant
salient” assessment of the detected and segmented pedestrians. In detail, the ICP will
trigger an acoustic alert signal with different intensities according to the risk level if one of
the following setups becomes true:

• High-Risk Level (Alert-Signal with High intensity)

Detection of “Sober Driver” AND the Mask-R-CNN identifies such relevant salient
pedestrians. Specifically, the high-risk condition is determined by the detection of a subject-
driver who is not sober (has a blood alcohol level higher than the allowed threshold on
which the sensor has been calibrated), associated with a driving scenario in which there are
relevant pedestrians and, therefore, spatially in the salient risk area. Consequently, sound
alarm alerts must be emitted by the proposed MCU systems described above in order
to attract the driver’s attention. In the subsequent automation levels, in addition to the
audible warning signal, the vibration of the car steering is also provided, and in the more
advanced phases (not the subject of this work but under investigation of the authors), the
progressive control of driving with autonomous actions taken by the embedding MCU’s
algorithm, such as securing the vehicle and pedestrians in the driving scene.

• Medium-Low Risk Level (No Alert)

Detection of “Not Sober Driver” AND/OR the Mask-R-CNN identifies such relevant
salient pedestrians. Specifically, the driver is sober, but in the driving scene, there are
relevant pedestrians, and therefore, an average attention is needed on the part of the
driver who, even if sober, must pay attention to the tracked relevant pedestrians in the
driving scene. No further automation and control mechanism is envisaged in the pipeline
proposed here.
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The acoustic signal system is managed by the STA1295A Accordo5 Audio sub-system,
which hosts the ICP software implementation [38,39].

4. Experimental Results

Each of the implemented sub-systems have been validated. Regarding the Intelligent
Soft-Sensing System—we have tested the designed pipeline as follows. We have used
an ad-hoc dataset with about 9000 detections made by using the VOC GHT25S sensor
emulating a driving scenario as schematized in Figure 2. The sensing device was calibrated
on such internals of a car and for two different subjects, representing the possible car
drivers—one male and the other female. For different subjects, the sensing system had to
be calibrated by performing breath data sampling to be used in the downstream 1D-CNN
deep network fine tuning. For each measurement session, the recruited driver performed
5 min of sensor acquisition, spaced approximately 1 m both in a scenario where he/she
had drunk enough alcohol to exceed the allowed BAC and in scenarios where no substance
containing alcohol was ingested in the past 3 h.

Some details on the sampling test dataset setup are as follows. We equipped a steering
wheel with the sensor described in this paper. Simultaneously, we emulated driving scenes
with public datasets (such as CamVid, DH1FK, etc.) in a monitor in front of the driver. In
the following Figure 7, our steering was equipped with the GHT25S sensor together with
the MCU system based on STA1295 Accordo5.
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Figure 7. The testing setup of the proposed sensing system.

We acquired the data with the subject-driver sitting in front of the sensing-enhanced
steering wheel, both in a sober condition and not.

The so-recruited dataset has been split as follows: 70% for training while remaining
and 30% for testing and validation. A k-fold (k = 3) cross-validation has been applied to
reduce the over-fitting issue.

We performed our simulation on an Intel multicore server with NVIDIA GPU RTX
2080 with 8 GB of video memory. We tested several further deep architectures to perform a
robust benchmarking with respect to our proposed solution.

We checked a classical machine learning pipeline with a fully connected multi-layer
network (FCN) (hidden layer with 50 neurons), embedding a leakyRelu actiavtion batch
normalization layer as well as an LSTM vanilla-based solution with 200 hidden cells. For
the deep architecture, we applied a classical SGD learning algorithm, initial learning rate of
0.01, L2 regularization and adams optimization. Moreover, we checked a Support Vector
Machine (SVM) approach for classifying the sensing input data. As input data, we used
the normalized data coming from the sampling session mentioned in the previous section,
specifically: ppm, temperature, Rsense, humidity and Rair for each car driver breath-
sensing acquiring session. The following Table 1 reports the experimental benchmark
results for the tested intelligent approaches, best results are highlighted in bold.
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Table 1. Car driver alcohol detection by soft-sensing system: experimental results.

Model Accuracy Sensitivity Specificity

1D-CNN 0.9823 0.9811 0.9839

FCN 0.9775 0.9802 0.9755

SVM 0.9500 0.9800 0.9700

LSTM 0.8952 0.8905 0.9001

After that, we tested the Intelligent Pedestrian Tracking system on CamVid, retrieving
a promising test set performance mIoU of 0.695, which is comparable with similar deep
architectures [29,47] as reported in the following Table 2.

Table 2. Intelligent pedestrian tracking system: experimental results (CamVid dataset).

Method Intelligent Pedestrian Tracking System mIoU

Proposed 69.50%

Faster-R-CNN
(ResNet-50 backbone) 53.95%

Mask-R-CNN with ResNet-101 backbone w/o
Criss-Cross RCCA 63.96%

5. Conclusions and Future Works

The authors proposed an intelligent combination system able to perform a very fast
discrimination of the driver’s sobriety in a challenging automotive scenario, i.e., the ones
embedding pedestrians. The proposed method requires the car to embed a sustainable
VOC sensor (we tested GHT25S) suitable to monitor the car subject’s breath while driving.
For this purpose, an ad-hoc GHT25S-based bio-sensing system has been implemented
and embedded in the car steering. The validations carried out confirmed that a VOC
data buffering of 50/60 s are enough to allow the correct discrimination of the driver’s
sobriety, considering this temporal buffering, starting from the moment in which the effect
of the ingested alcohol is evident in the organic compounds embedded in the breath of the
subject driving. The parallel proposed intelligent pedestrian tracking systems show very
promising results. The accuracy of the full system reached high levels due to the innovative
intelligent approach applied to post-processing of the breath-sensing data coming from the
driver. The whole pipeline is ongoing to be ported over the STA1295A Dual-Core ARM
A7 ACCORDO 5 plus SPC58x MCUs platform, provided by STMicroelectronics and in
which a custom YOCTO Linux embedded operating framework is running. This system is
equipped with a 3D accelerated graphics core [38,39]. The proposed sensing system was
calibrated to selectively recognize the presence of alcohol in the driver’s breath. In fact,
the downstream deep architectures have been trained on the data of the driver; therefore,
there is a certain selectivity also correlated to the data relating to the breath of the subject
on which the system has been trained. Currently, in our tests, only the driver can enable
an alcohol detection due to the relative proximity to the sensor, while the other subjects in
the car were not able to activate the sensor although they had drunk alcoholic substances
even at significant concentrations. Our tests were performed by emulating the passenger
compartment of the car and putting the sober driver and a close subject who had been
drinking alcohol. However, if the passenger compartment of the vehicle becomes saturated
with alcohol (or in the absence of ventilation in the passenger compartment) due to the
presence of several subjects who have drunk quantities exceeding the permitted thresholds
(sensor calibration), the designed sensing system could equally raise an alcohol alert, as
the whole environment would be saturated with alcohol in the air. On this item, we are
working on an algorithm, which, besides recognizing the presence of alcohol selectively,
is also able to robustly recognize a sort of “breath fingerprint” of the driver to uniquely
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calibrate the sensing system. Studies are underway using the recent transformer-based
architectures [40].

This study reports preliminary results of the implemented pipeline for a car driver
breath-based alcohol sensing system through a simple VOC sensor. Further investigations
are needed to improve the dataset, the testing conditions, etc. Future works aim to extend
the proposed pipeline to a large dataset in the aim of a clinical study in which the embedding
features of alcohol in the breath can be deeply analyzed.
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