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Abstract: A stereopair consists of two pictures related to the same subject taken by two different points
of view. Since the two images contain a high amount of redundant information, new compression
approaches and data formats are continuously proposed, which aim to reduce the space needed to
store a stereoscopic image while preserving its quality. A standard for multi-picture image encoding
is represented by the MPO format (Multi-Picture Object). The classic stereoscopic image compression
approaches compute a disparity map between the two views, which is stored with one of the two
views together with a residual image. An alternative approach, named adaptive stereoscopic image
compression, encodes just the two views independently with different quality factors. Then, the
redundancy between the two views is exploited to enhance the low quality image. In this paper, the
problem of stereoscopic image compression is presented, with a focus on the adaptive stereoscopic
compression approach, which allows us to obtain a standardized format of the compressed data. The
paper presents a benchmark evaluation on large and standardized datasets including 60 stereopairs
that differ by resolution and acquisition technique. The method is evaluated by varying the amount of
compression, as well as the matching and optimization methods resulting in 16 different settings. The
adaptive approach is also compared with other MPO-compliant methods. The paper also presents an
Human Visual System (HVS)-based assessment experiment which involved 116 people in order to
verify the perceived quality of the decoded images.

Keywords: stereoscopy; stereoscopic image compression; multi-picture object; image encoding

1. Introduction

A stereoscopic image, or stereopair, is composed by a pair of images, named left and
right views, taken at the same time on the same scene by two cameras from different points
of view. The acquisition process aims to emulate the binocular view of the Human Visual
System (HVS). In this sense, the distance between the two cameras is set to the distance
between the human eyes’ pupils. During the presentation of such images, proper filters
and devices are used to let the left eye see only the left image, and the right eye see only
the right image. In this way, the viewer has the perception of a real 3D scene, as the two
single views presented to the HVS are merged in the brain visual cortex.

The storage requirement for stereoscopic images is tat least twice that of to the storage
needed for a single image, hence the motivation for the study of stereoscopic compression
techniques applications. The Multi Picture Object (MPO) is a standardized file format
used to encode the Multi Picture Format for multi-view images defined by the Consumer
& Imaging Products Association (CIPA) [1]. Such a format implements a chain of JPEG-
encoded images properly embodied in a unique file (i.e., the MPO file) with a set of
additional information useful to recover the single images and correlate them one each
other in the context of the multi-view acquisition. In the specific case of stereoscopic images,
only two images are encoded in the MPO file. However, the format allows the encoding of
an unlimited number of views. Furthermore, the data needed to reconstruct the multi-view
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image from an MPO file are stored in the meta-data of the image, exploiting the JPEG
metadata fields of the first image. As a consequence, the MPO format does not require
additional fields or the change of data format.

The JPEG pipeline [2] and its extensions [3] represent a standard for the compression
of digital images, by allowing an optimized encoding of the image palette considering
both quality and memory factors. Based on the JPEG encoding process, several works
tried to optimize one or more elements of the pipeline. For instance, [4] proposed an
alternative strategy to devise proper quantization tables. The experiments showed that the
method was able to improve the compression performance of established JPEG compression
schemes [2,5].

MPO provides a standard for multi-view images, bringing several practical advan-
tages. However, most of the state of the art works that address the problem of stereo
image compression implement encoding techniques that do not take into account the
standardization of the compressed images.

Most of the existing approaches store one of the two views, the disparity map and a
residual version of the other view [6–8]. Then, the residual image and the disparity map
are used to restore the compressed view, with a certain degree of confidence. This approach
needs a method to store the additional data, such as the disparity map and the residual
image. In the majority of cases, an entropy-based coding is employed for the disparity map,
whereas Discrete Cosine Transform (DCT) is used for the residual image. In particular,
the work in [8] proposes the estimation of the stereoscopic disparity map from the local 1D-
Fast Fourier Transform (FFT) computed on the left and the right image. Approaches based
on the disparity map pose problems in the reconstruction. In particular, although gradual
transition is usually observed in disparity maps, object edges may produce abrupt change
of the parameter. This will cause two main issues: pixels without any assignment (i.e.,
falling disparity), and matching problems due to double assignments [8]. For this reason,
in addition to the left image, the right image and the disparity map, the approach in [8]
defines an error image to the encoding pipeline of a stereopair.

Schenkel et al. [9] proposed a joint decoding approach of the two views for the compres-
sion of a stereopair. The proposed method then performs an enhancement of the image pairs,
previously compressed using the JPEG pipeline. However, some areas of the images cannot
be reconstructed. Moreover, the experiments shown that with middle values of the JPEG
quality compression, decreases in terms of Peak Signal to Noise Ratio (PSNR) are observed,
and some ghosting artefacts appear.

The work in [10] proposes a variable size-block coding algorithm for stereoscopic
images that jointly optimizes the block sizes and the quality of the disparity map computed
from the compressed images. In particular, the system applies a fine-grained pixel blocking
on the image areas with more detail, used to encode the disparity map. This approach
has been designed with the aim to obtain an high quality of the reconstruction while
reducing the bit-rate of the stereopair. Although the experimental results achieved in [10]
are promising, it requires an overhead of computational effort due to the block layout
definition for the encoding, as well as additional data consisting of the tree structure
describing the blocking layout, the block-length map and other information needed for the
stereo pair decoding. All these data structures need to be stored properly with an ad hoc
file format, besides the image payload.

In [11], Poolakkachalil et al. presented an approach for symmetric stereoscopic image
compression followed by an arithmetic coding named Stereoscopic Image Compression
using Curvelet and Arithmetic Coding (SICCAC), which is mostly based on the still image
compression method proposed in [12], that applies a curvelet transform for image encoding.
This work has been further extended in [13], which proposes an encoding pipeline in which
the difference and the average of the two stereo images are quantized and then encoded
exploiting an adaptive arithmetic coding (S2ICAC). Other methods exploit entropy-based
coding to encode the stereoscopic images, such the method evaluated in [14], also known
as Stereoscopic Image Compression using Huffman Coding (SICHC).
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Most of the above mentioned works assume that the stereopair has been acquired
using a parallel camera optical axis stereo system, where the convergent axis setting is
ignored. The camera optical axis convergence involves a perspective effect that generates
a vertical parallax. With parallel camera optical axis the vertical parallax is removed.
Approaches that try to completely reconstruct one view from the other views do not take
into account that a perfect reconstruction is not possibles, as discussed in [8]. Moreover,
in real scenes, there are areas on each image that are not visible in the other image. When
the problem of stereoscopic image compression is considered in the context of real and high
quality images, approaches that ignore parts of the scenes cannot be considered; issues
related to standardization of the storage (i.e., file) and transmission formats also have to
be addressed.

The work in [15] introduced an end-to-end deep neural network for stereoscopic
image compression. In particular, the homography H between the left and right image
is estimated, then the left image is mapped to the right view by exploiting H and the
residual image is stored. The proposed architecture includes a deep regression model to
estimate the homography matrix, two autoencoders, and cross-quality enhancement (CQE)
network. Although the method in [15] achieves interesting results, it requires very high
resources, in terms of data quality and quantity, computational time, and specific hardware.
Moreover, it forces the input images to a specific resolution as well as introducing a bias
related to the training datasets, which are divided among close views (InStereo2K) [16] and
far-views (KITTI) [17] stereopairs. In particular, the method in [15] exploits a deep neural
network to estimate the H matrix, which could be simply inferred by using traditional
geometry-based methods which only require a few correspondences between the left and
right views. During encoding, the left image is geometrically transformed by means of H
and then the two images are further processed through two separate autoencoders. Such a
processing breaks the geometric constrains which are then inferred during the encoding
step. For this reason, the CQE network is needed. The authors proposed two deep models,
the first requires 50.5 M parameters and the second 69.3 M. The models have been trained
on two datasets of high quality stereoscopic images [16,17] including about 2000 examples
each.

The authors of [18] presented a preliminary experiment on the exploitation of stereo-
scopic image redundancy to reduce the bitrate of stereopairs. In particular, the paper
combines two algorithms. One performs better at low and mid-range bitrates, the other at
mid and high-range bitrates. One iteratively modifies the disparity map to improve the
bitrate-distortion trade-off using a Lagrangian multiplier. The other selects each disparity
on a block basis, according to a simplified model of how JPEG deals with the compensa-
tion refinement. However, the main contribute of [18] is theoretical, indeed the proposed
approach has only been tested on two stereoscopic images.

In [19], the authors presented a strategy for MPO image compression that significantly
reduces the space needed to store a stereopair with very low quality loss. One of the
main advantage of this method is that the compression phase allows us to obtain an MPO
compliant compressed file (see Figure 1). The decoding phase, through a proper restoration
phase, reconstructs the original information after the MPO standard decoding of the two
images. The paper in [20] presents an improvement of the work in [19] drastically reduc-
ing the overall reconstruction phase complexity, while keeping the same reconstruction
quality. Compared with respect to previous methods, the methods in [19,20] are explicitly
designed for the MPO format, formalizing a proper coding/decoding pipeline that can
be implemented directly on acquisition devices. Therefore they support the standardiza-
tion, and work indifferently on stereoscopic images acquired using both a parallel or a
convergent stereo camera system. However, the experiments have been performed on
a reduced number (i.e., 23) of selected stereopairs. The two methods achieved the same
performances in terms of reconstruction quality; however, the approach presented in [20]
drastically improves the method in [19] in terms of computational costs.
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In this paper, we perform an extended benchmark evaluation of [20] on a large set
of images taken from standard and well-known datasets designed for evaluations of
algorithms on stereoscopic images in real scenarios. In addition, we present the results of a
subjective assessment of the reconstructed image quality, which involved 116 participants
who evaluated 10 images each, producing a set of 1160 HSV-based tests on randomly
selected images from the considered datasets. Then, we also evaluated the method in [20]
on the dataset used in [11,13].

Figure 1. Encoding pipeline. Each view is coded according to the MPO format (i.e., by applying the
JPEG compression) using different quality factors.

The remainder of the paper is structured as follows. Section 2 clearly states the
motivations of the presented benchmarking, by comparing pros and cons of the state-
of-the-art methods. The employed coding/decoding pipeline is detailed in Section 3,
comparing the differences between the approaches proposed in [19,20]. The two approaches
are explained in detail and compared in terms of computational complexity. Section 4
presents an experimental evaluation of the adaptive stereoscopic image compression
approach, considering 16 different experimental settings on 60 stereopairs taken from public
standardized datasets with different resolutions and acquisition settings (i.e., parallel or
convergent cameras). It also presents a comparative evaluation with other MPO-compliant
methods, as well as an HVS-based experiment aimed to evaluate the perceived quality of
the reconstructed images. Section 5 concludes the paper.

2. Motivations

In the context of multi-view pictures, the MPO format is an established standard
by years, currently adopted for storing stereoscopic and 3D pictures taken with a photo
camera equipped with multiple lens system by several device producers, including game
consoles. In this context, the methods proposed in [11,13,19,20] define encoding/decoding
pipelines which maintain the compatibility with MPO format and are independent from
the acquisition settings (i.e., parallel/convergent axis, image resolution, etc.). As discussed
in the previous Section, other methods often require additional payload to store the stere-
opair and ad hoc data format [6–9], or present ghosting artefacts [9]. Standardization
of image encoding/decoding pipelines brings several advantages, especially when such
methods are embedded on the acquisition/rendering devices, requiring high performances
with limited resources. Methods based on very Deep Neural Networks (DNN) requiring
millions of parameters and complex non-linear operations cannot be embedded on such
devices [15]. Moreover, DNNs have millions of parameters, each with complex inter-
relationships. In this way, Deep Learning models have been criticised to be a black-box,
in contrast with deterministic and explainable geometrical based approaches which have
full transparency and allow one to directly observe whether the achieved solution will
work outside of a training environment [21]. Indeed, traditional Computer Vision tech-



J. Imaging 2021, 7, 160 5 of 24

niques are often preferred over DNNs in a range of applications from reducing training
time, processing and data requirements, in particular to be applied on geometrical related
fields [21] (e.g., structure from motion, Panoramic-stitching, etc.). The method assessed by
our benchmarking evaluation has been specifically designed for MPO images, as well as
the methods considered for the comparative evaluation. All the compared approaches are
MPO-compliant and can be easily embedded within low-resource devices as they re-design
the encoding-decoding pipeline already implemented in such devices. Moreover, these
methods are independent from the stereo acquisition settings (i.e., parallel or converging
camera axis). However, the experiments presented so far were limited in quantity, quality,
and variability of the images. Moreover, no comparison with respect to other methods
were presented, as well as a subjective assessment of the perceived image quality. Given
the above, we realized need for a standardized, large-scale, benchmark evaluation.

The benchmark evaluation presented in this paper includes:

• Experiments on 60 stereopairs of the Middlebury-scenes datasets including versions
between 2001 and 2014;

• Images which resolution variates from 375 × 450 to 2016 × 2960;
• A total of 16 different evaluation settings, by combining different feature detection

and geometry estimation;
• Comparative evaluation with other five methods published more recently, taking

into account both bitrate saving and reconstruction quality, on the same publicly
available dataset;

• Subjective assessment conducted with high number of tests and high participant
population variability confirmed that the reconstructed image is indistinguishable
from the high quality one.

3. Evaluated Pipeline

The following paragraphs present the encoding/decoding strategy. In particular,
the two different matching approaches implemented in [19,20] are described in detail and
compared in terms of computational complexity.

3.1. Encoding Pipeline: Asymmetric Compression

In the encoding phase, the proposed method encodes one image view with a low JPEG
quality factor [2]. During encoding, the redundancy between the two images is exploited to
enhance the low quality image by using the high quality one as reference. The enhancing
process compares image blocks properly extracted from the two views. In the image areas
in which no a reliable level of redundancy is detected (i.e., high difference between low
and high quality images), only the information from the low quality patch is considered.
As a consequence, there is a certain level of lossy on the resulting enhanced view. However,
experiments show that this losing rate is numerically negligible and not perceptible visually.
The JPEG encoding pipeline defines a quality level to control the amount of compression.
A low-quality image results in a smaller JPEG file, whereas a high-quality image produces
a relatively large file. The quality level determines the quantization tables used during the
JPEG encoding pipeline, these tables control the amount of loss during the compression
and hence the size of the generated file. Therefore, the quality level directly affects the
visual quality of the image and the file size.

The amount of JPEG compression is typically measured as a percentage of the quality
level. In general, quality levels of 90% or higher are considered high quality images, 80–90%
is medium quality, and 70–80% is low quality. Images compressed with quality values
below 70% are typically a very low quality. With such quality levels, edges are no longer
sharp and compression artefacts are visible. For these reasons in our experiments we
compressed the low quality image considering quality levels equal to 70% and 65%.

Figure 1 details the proposed encoding pipeline in which the two image views are
encoded differently. Each image block of the low quality view IR is then reconstructed by
exploiting the high quality view IL. In particular, we conventionally encoded the left image
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IL with an high JPEG quality rate and the right image IR with a low quality rate, but the
same pipeline can be applied by inverting the role of the right and left views.

3.2. NCC-Based Decoding Approach

The approach proposed in [19] implements a image blocks matching method based
on the correlation between image patches. A common way to match a given pattern t
within an image I is to consider the Normalized Cross Correlation (NCC) score ncc(u, v)
computed at each possible position (u, v) of the template t, which has been shifted by u and
v steps in the x and y direction, respectively. The NCC coefficients are defined as follows:

ncc(u, v) =
∑x,y {[I(x, y)− Īu,v)][t(x− u, y− v)− t̄]}

{∑x,y[I(x, y)− Īu,v)]2 ∑x,y[t(x− u, y− v)− t̄]2}0.5 (1)

where Īu,v is the mean value of the pixels I(x, y) located within the area of the template t
shifted by (u, v), and t̄ is the average value of the pixels of t.

At decoding time, both right and left views are subdivided into not overlapping
patches of size N×M× 3. For each block, the decoding procedure exploits the redundancy
between blocks extracted from the left and the right image with the aim to enhance the
quality of the blocks extracted from the low quality one. The decoding algorithm is applied
on each block extracted from each channel.

Matching Approach

Given the generic ith extracted from the low quality image IR, named bR
i , the objective

is to find the best sub-image of the high quality image IL, which redundancy can be
exploited to enhance bR

i . To this aim, the algorithm considers two candidate blocks:

• The N ×M block of IL which is is located at the same position of bR
i ;

• The N × M block of IL obtained by computing the Normalized Cross Correlation
(NCC) [22] between bR

i all the N×M sub-images of IL and considering the sub-image
with the highest NCC value.

In practice it is not needed to compute the NCC for every possible position of bR
i in

IL. An optimized approach would compute the NCC in a restricted area of IL taking into
account the original position of bR

i .
The procedures then select the candidate block which minimizes the Sum of Absolute

Differences (SAD) with bR
i . The selected block is then exploited by the enhancing procedure

described in Section 3.4.

3.3. Geometry-Based Decoding Approach

The approach presented in [20] extends the work in [19] by focusing on the improve-
ment of the matching phase efficacy and the optimization of its computational costs. These
two objectives have been obtained by leveraging on the geometric constrains of a stereo-
scopic pair.

3.3.1. Epipolar Geometry

Epipolar geometry describes the properties and the geometrical relationships between
two images that describe the same 3D scene in a stereoscopic image. Such geometry is
independent of scene structure, as it is fully described by the parameters of the two cameras
and their relative locations [23].

Definition 1 (Fundamental Matrix). The fundamental matrix, denoted as F, is a 3× 3 matrix of
rank 2 that, for any pair of corresponding points x1 and x2 satisfies the following condition:

x′1Fx2 = 0 (2)

where x1 is a point of one view which corresponds to x2 in the other image view.
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The fundamental matrix encodes the intrinsic geometry of the acquisition setting (i.e.,
the relative position and orientation of the two cameras) with respect to the scene. Indeed,
x1 and x2 in Equation (2) correspond to the projection of the same real 3D point on the two
camera image planes. Therefore, given two points taken from the left and right views of a
stereoscopic image depict the same real-world point, they must satisfy the relationship in
Equation (2). This property has been exploited by the method proposed in [20] to drastically
reduce the search range of correspondences between the left and the right views. Hence,
to reduce the computational cost during the matching phases. Indeed, according to the
point line dualism theorem, given a stereoscopic image, for any point x1 in the first view,
there exists a corresponding epipolar line l2 on the second view. Moreover, any point x2 in
the second view matching x1 lies on l2. Indeed, l2 is the projection of the ray from the point
x1 to the second view, which passes through the first camera’s centre.

We can map x1 to its corresponding epipolar line l2 on the second image by exploiting
the following Equation:

l2 = Fx1. (3)

In other words, the fundamental matrix F allow us to have a direct relationship
between a given point x1 in the first image, and its corresponding epipolar line l2 in the
second view, which contains the corresponding point x2. Therefore, the search of the point
x2 can be limited to the points in l2.

3.3.2. Image Blocking

In the decoding approach described in Section 3.2, the low quality view is subdivided
into a number of not overlapping blocks. The block size is selected adaptively depending
on the input image dimensions with the aim to cover all the image area, resulting in a
few number of rather big blocks. With such block dimensions, each image is subdivided
in about 12 blocks. Such a low number of blocks allows the execution of the decoding
approach in a reasonable time. Then each block extracted from the low quality image is
compared with the high quality one using a template matching approach based on the
NCC computation to detect the most similar high quality area.

This approach presents several limits. Due to the high dimensions of the blocks, each
extracted image patches depict a rather big area of the scene (e.g., with 12 blocks in total,
each block includes more than the 8% of the image), including different objects and several
details of the pictured scene. Due to the differences between the point of views of the
two cameras, each object appears slightly different in the resulting left and right views.
Such differences augment with the dimensions of the extracted blocks, as more objects are
included in the corresponding patches, especially in cluttered scenes. Moreover, the proce-
dure is repeated for each image channel. As a consequence, the matching procedure results
coarse and computationally expensive.

In contrast, the method presented in [20] subdivides the images considering very few
blocks. All blocks have the same dimensions and the matching procedure is applied simul-
taneously to all the colour channels of the block. In particular, a radius r is set to a constant
value (r = 20 in [20]), then the low quality image is partitioned into (r + 1)× (r + 1) not
overlapping blocks. If needed, to cover all the image area, some overlapping blocks are
defined in the right and in the bottom part of the image. An example of block definition is
shown in Figure 2. In this example, the image “Cones” of the Middlebury 2003 dataset [24]
is subdivided into 110 blocks, including a number of overlapping blocks (depicted in blue).
Reducing the dimensions of the image blocks allows a fine-grained search of the processed
data, thus avoiding working with big matrices of coarse pieces of the scene, where several
objects’ positions with respect to the camera system can be very different. As an example,
considering the same image, the method used in [19] defines 12 blocks with size 360× 360,
whereas the method in [20] extracts 972 blocks and is computationally more efficient.
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Figure 2. Example of blocking schema employed in [20].

3.3.3. Matching Approach

The main improvement of the geometry based approach is related to the matching
strategy. In the following, we conventionally consider the left view as the high quality
image, whereas the right view is considered as the low quality one. Given a block bi,
extracted from the right view, the system considers the block’s centre ci and computes
the corresponding epipolar line li on the left view by applying the point-line relationship
defined by Equation (3). According to the epipolar geometry (see Section 3.3.1), we known
that the unknown point that corresponds to ci on the left image lies on li. Therefore we
can limit the matching of the whole block bi to the possible positions of bi on the left image
obtained by shifting the block centre ci along the epipolar line li. Therefore, the main benefit
is given by the fact that the matching of the image block is limited to a set of possible
positions of ci on the epipolar line. The number of such positions is approximately equal to
the image width; however, as detailed in the following paragraphs, the employed approach
further reduces the search range. The epipolar lines related to the extracted blocks’ centres
are computed by exploiting the Equation (3); therefore, the estimation of the fundamental
matrix F is needed.

The matrix F can be estimated starting from a number of correspondences between
the left and the right views. Indeed, each pair of matching points between the two images
provides a linear constrain on F (i.e., Equation (2)). As consequence, the fundamental
matrix F can be estimated linearly from at least eight independent pairs applying the
eight point algorithm [25]. The eight point algorithm is simple and effective; however, it
is sensible to the precision of the input correspondences. An alternative is represented
by the Least Meadian of Squares estimation, which is robust to the presence of wrong
correspondences, but requires a number of good pairs of matching points equal or greater
than 50% of the input data.

Both the eight point algorithm and the Least Meadian of Squares estimation require a
number of input correspondences. These pairs of matching points have been computed
considering two different approaches for local features detection, namely the SIFT (Scale-
Invariant Feature Transform) [26] and Harris keypoints [27]. Figure 3 shows an example in
which three epipolar lines (Figure 3a) have been computed from three sample points taken
from the right image (Figure 3b) by applying Equation (3). The points drawn on the left
view are the points in the epipolar line which has the same x of the sample points taken
from the right view. Indeed, is possible to note that they do not corresponds to the three
sample points of the right view. Figure 4 shows the detail of the points number two and
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three: these points are placed on the vertex of the cone (point two) and the tip of the masks’
nose (point three) in the right view (Figure 4b), their epipolar lines pass correctly by the
corresponding points in the left image (Figure 4a). The points with the same x coordinates
which lies on these lines (reported on the left image) appear shifted with respect to the
corresponding ones. This observation suggest us that, given a point of the right view,
beside from the fact that its corresponding point on the left images lies on the epipolar line
(i.e., Equation (3)), the position of this unknown point is close to the point with the same x
of the point selected in the right view.

Figure 3. Considering any point in the right image (b) IR (1, 2, and 3), the method in [20] searches
the corresponding points in the left image IL by computing their epipolar lines (a).

Figure 4. Details of the images shown in Figure 3. The tip of the cone (i.e., point number 2 in the
image (b) depicting the right view IR) corresponds to a point that lies on the corresponding epipolar
line (i.e., line number 2 in (a)) on the left view IL.

3.3.4. Range Reduction

The estimation of the epipolar line reduces the searching range to a single line. In-
deed, given an image block bi is possible to estimate the epipolar line of its centre ci and
perform the block matching considering only the possible patches which centre lies on li.
Nevertheless, the number of comparisons can be further reduced by observing that:

1. The y coordinate of the searched point is given by the y values of the epipolar line;
2. The x coordinate of the searched point is close to the x of the correspondent point on

the right view;
3. Equation (2) must be satisfied by any pair of corresponding points.
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With the aim to minimize the searching range, the following approach has been
designed in [20]. Given a point x1, centre of a block extracted from the right view, the cor-
responding epipolar line l1 is computed by exploiting Equation (3). Then, for each point x2
∈ l1, the value of x′1Fx2 is computed. Equation (2) states that if the corresponding point
of x1 is represented by the left view, the values of x′1Fx2 represents a zero crossing line.
Furthermore, according to (1), the corresponding point of x1 lies around the point where
the the value of x′1Fx2 is zero. In order to further focus the matching search to this region,
the following function is defined:

φ = (x′1Fx2)
2 (4)

The function φ defines a parabola. In particular, the vertex of φ is close to zero.
An example of φ is shown in Figure 5. Is possible to observe how the value of φ grows
rapidly with the distance from its vertex. Moreover, the point with the same x coordinate
of ci (represented by a red circle in Figure 5) is placed nearby the vertex.

The reduction of the matching search range is finally obtained by applying a threshold
to φ. In the experiments, it has been observed that the value 2.3 permitted to drastically
remove the number of candidate blocks (see Figure 5). However, instead of using a fixed
threshold heuristic, an adaptive method has been applied. It is based on the following
adaptive rules:

1. The threshold value is set to 2.3;
2. If the point with the same x as ci is not included by the range obtained after the

thresholding, according to the previous considerations, the threshold is augmented
until this point is included in the search range;

3. If the search range is empty, the threshold is augmented iteratively by 0.5 until the
range is not empty.

These rules allowed the definition of an effective adaptive thresholding strategy.

Figure 5. Example of matching by using the approach in [20] (a) and detail near the vertex of the φ

function (see Equation (4)). The red circle is the point on φ with the same x as the point on the (b).
The blue point represents the value of φ corresponding to the Best Matching Point (BMP) according
to the algorithm.
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3.3.5. Block Matching

Due to the approach described in Section 3.3.4, the search range is drastically reduced.
Then, given a block bi of the right view, the matching procedure searches the best match-
ing block of bi considering the candidate blocks such that the centres lie in li and the x
coordinate is in the reduced range. These constrains allow one to significantly reduce the
number of comparisons between blocks. The blocks are compared by computing the Sum of
Squared Differences (SSD) between bi and the selected candidate blocks. The block which
achieves the lowest SSD is then employed during the enhancing phase (see Section 3.4).

Experiments revealed that in presence of uniform blocks the above described proce-
dure could include false positive examples and cause the failure of the matching procedure.
In these cases, if the threshold is high, the best matching block in terms of SSD could be
placed far from the theoretical position computed considering the geometrical properties.
In other words, if an image contains a large uniform area (e.g., a wall), the image blocks ex-
tracted from such area could match one each other because there are not enough edges that
characterize the selected image patches and hence allow the SSD to catch the differences
between mismatching blocks.

Considering that the JPEG compression tends to preserve low frequencies, the method
in [20] discards the uniform blocks from the enhancing procedure, by filtering out the
blocks with low pixel variance. This strategy allows to further reduce the number of
comparisons (i.e., SSD computations), and contextually to avoid the matching issues caused
by the presence of uniform candidate blocks. Experiments shown that the results are not
affected by this approach in terms of quality, while time performances are significantly
improved. Therefore, this simple choice allowed to maintain the quality while the matching
process is further sped up.

3.3.6. Partial Matching

In could happen that some areas of one image view, located nearby the border of
the image, correspond to blocks of the other image view that are just partially visualized,
due to the difference of the camera point of view and orientation. This happens when
some parts of the scene are represented only by one of the two views. To address with
the problem of partial matching, the method in [20] allows candidate blocks with lower
dimensions. In particular, the procedure include all the blocks whose dimensions are equal
or greater than 60% of the processed block dimensions.

To compare bi with partial candidate blocks, the missing pixels are filled using the
values of bi.

Figure 6 shows some examples of partial matching and block compositions. In partic-
ular, the first row represents an example taken from the stereopair “Flowers 1” in which
the block number 111 is partially matched, whereas the second and third rows are related
to the stereopair “Cones”. The first row of Figure 6 shows that a chandelier is visible
in the right view of the stereopair (i.e., column (a) of the first row in Figure 6) and it is
depicted in the block b111, considering the blocking schema described in Section 3.3.2. This
object is only partially depicted in the left image view. When the algorithm performs the
matching procedure for the block b111, which represents the part of the chandelier shown
by both images (Figure 6a), it takes into account also a partial matching with a 41× 25 block
placed on the left side of the reference image. The blue area in Figure 6b represents the
missing part within the image patch, which are then filled with the pixels of b111 in the
same positions, obtaining the composed block shown in Figure 6c.
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Figure 6. Examples of block composition performed to overcome with partial matching blocks. Each
row shows an example of block composition, the first row shows the block number 111 (a) of the
image “Flowers 1”, the partial matching block (b) and the composed block (c). The second and third
rows are examples of partial matching of blocks extracted from the image “Cones”, related to the
blocks number 17 and 13, respectively.

3.4. Image Enhancing

The enhancing step employs the following equation, which is based on a simplified
version of Kohonen update rule [28]:

b̄i
R
(u, v) =

{
bR

i (u, v) + α · di(u, v) i f di(u, v) < th
bR

i (u, v) otherwhise
(5)

where
di(u, v) = bR

i (u, v)− bL
i (u, v) (6)

where b̄i
R
(u, v) is the enhanced sample, bL

i (u, v) is the sample of the block selected by the
matching procedure and bR

i (u, v) is the sample which has to be enhanced. By applying
Equation (5), the values of some samples of bR are moved closer to the corresponding
values in bL, depending of the similarity between the pair of correspondent samples. The
parameters α and th (in our case alpha = 0, 25 and th = 0043) are two coefficients that
control the reconstruction procedure [28] based on the distance between the two samples
values defined as di(u, v) in Equation (6). The parameters in Equation (5) have been em-
pirically obtained by grid-search evaluation previously performed [19,20] on the 23 MPO
stereoscopic images from the 3DMedia collection [29]. In the extended evaluation pre-
sented in this paper we used the same parameters, which further assess the generalization
capability of the evaluated approach.
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3.5. Computational Complexity

In this Section the NCC-based matching procedure described in Section 3.2 and the
geometry-based matching method described in Section 3.3 are compared from a computa-
tional point of view.

3.6. NCC-Based Complexity

The computational complexity of Normalized Cross Correlation (NCC) used to find
matchings of a reference template with dimensions m× n within a scene image with sizes
M× N is

O(mnMN) (7)

therefore, the cost of NCC-based matching, for each m× n block, is equal to

TNCCmatching = O(mnMN). (8)

Let D be the number of blocks:

D =
MN
mn

(9)

Hence, the total cost due to the matching procedure described in Section 3.2 is

TNCCbased = D× TNCCmatching =

D×O(mnMN) = O(M2N2).
(10)

3.7. Geometry-Based Complexity

The cost of the computation of the SSD between two blocks of size m× n is O(mn);
therefore, the cost due to the matching method described in Section 3.3.3 is

TGeometryMatching = k×O(mn) (11)

where k is the number of blocks that the procedures compares to find the best matching.
Thus, if D is the total number of processed blocks with sizes m× n, the total cost of the
matching procedure of the geometry based approach described in Section 3.3 is

TGeometryBased = D× TGeometryMatching =

D× k×O(mnMN).
(12)

The value of k is very low due to the range reduction approach described in Section 3.3.4.
In particular, the value of k is negligible with respect to the term O(mn). Therefore, the total
cost is

TGeometryBased = D×O(mnMN) = O(MN). (13)

Since the enhancing procedure is the same for both the NCC-based and the geometry-
based approaches and its computational cost is lower than the matching cost, it has not
been considered in the above detailed computational analysis. Indeed, the overall cost
of the enhancing procedure is linear, hence it can be simply added to the total cost of
the matching step, which has an higher degree. Therefore, is possible to consider just
the total costs of the compared matching procedures for their computational evaluation.
The above analysis shows that the geometry-based reconstruction improves the efficiency
by reducing the order of growth from quadratic (i.e., O(M2N2)) to linear (i.e., O(MN)).
Figure 7 shows the distribution of the computation time (in seconds) with respect to the
image resolution (i.e., M× N). The blue dots represent the pairs (M× N, time), whereas
the orange dots represent the same data after subtracting from M× N the number of pixels
not processed due to the uniform block check. Is possible to observe that the latter set of
points (i.e., orange dots) are distributed linearly with respect to the x-axis (i.e., M× N).
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The experiments have been performed on a set of images from the Middlebury dataset
2014 (i.e., the one with the highest resolution images).

Figure 7. M× N (x-axis) versus computation time in seconds (y-axis). The orange dots takes into
account when the uniform blocks are ignored from the procedure.

4. Experiments

The proposed method has been successfully evaluated in [20] with high resolution
images taken from real and challenging cases such as flowers compositions, natural scenes,
animals, buildings, etc. The obtained results are reported in Table 1 considering the
achieved bit-rate saving and lossy. In particular, the dataset includes 23 stereoscopic MPO
images compliant with the [1] standard at different resolutions (1440× 1080, 1620× 1080,
1444× 1080, 1924× 1080, or 1920× 1080). The JPEG quality factor has been set equal to 85
to encode the high quality image, whereas for the encoding of the low quality one it has
been set to 65 or 70, by using standard quantization tables.

The achieved results show compression gain in terms of total bit-rate, while the
quality loss is measured considering the Peak Signal to Noise Ratio (PSNR) measure.
In particular, for each MPO image and for each value of JPEG compression factor used
to compress the low quality image (i.e., 65 or 70) Table 1 reports the dimensions of the
blocks used in decoding (second column), and the lossy (in terms of dB) computed on
the reconstructed image obtained after the enhancing procedure. The bitrate saving is
computed by comparing the space needed to encode the low quality image with the space
needed to encode the same image using a quality factor equal to 85 (third and fifth columns).
Note that the size of the blocks has been chosen ad hoc for each stereopair, depending
on the resolution of the original images. Experiments show interesting bit-rate values
with very low lossy. However the considered dataset only includes 23 stereopairs. In the
proposed experiments, we considered a pool of well-known standard stereoscopic datasets
built and publicly shared. Since 2001, the Middlebury Stereo Datasets have been considered
to evaluate several stereoscopic algorithms, including stereoscopic image compression
approaches. In the experiments here presented, we considered 60 stereopairs from all
the Middlebury Stereo Dataset versions published between 2001 and 2014. Indeed, there
are several versions that differ by the resolution of images and the employed acquisition
technique. In particular, we considered:

• Five datasets of piecewise planar scenes of Middlebury-scenes 2001 [30];
• Two datasets of Middlebury-scenes 2003 [24];
• Nine datasets of Middlebury-scenes 2005 [31];
• Twenty-one datasets of Middlebury-scenes 2006 [32];
• Twenty-three datasets of high-resolution scenes of Middlebury-scenes 2014 [33].
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Table 1. Results obtained in the first experiments reported in [19,20].

Low Quality 65 Low Quality 70

MPO Image N ×M Lossy (dB) Bit-Rate Saving Lossy (dB) Bit-Rate Saving
Flowers1 360 × 360 2.17 40.70% 1.65 34.60%
Flowers2 360 × 481 2 40.60% 1.32 34.50%
Flowers3 360 × 481 2.76 48.70% 2.76 41.70%

Castle 360 × 481 2.62 38.30% 2.18 32.50%
Dorm 360 × 360 2.73 37.10% 2.64 31.10%
Pelion 360 × 481 2.34 37.60% 2.34 31.80%

Hallway 360 × 482 2.33 37.60% 2.33 32.10%
Statue 360 × 483 2.59 41.90% 2.6 35.70%

Library 360 × 270 1.98 38.70% 1.71 32.70%
Hall 360 × 360 1.66 41.10% 1.4 34.90%

Garden
Bridge 360 × 360 2.11 39.50% 1.82 33.50%

Autumn1 360 × 361 2.73 35.30% 2.53 29.80%
Autumn2 360 × 361 2.6 36.40% 2.4 30.60%
Autumn3 360 × 361 2.38 37.00% 2.15 31.20%
Autumn4 360 × 361 2.65 36.10% 2.44 30.40%
Animals1 360 × 240 2.16 38.80% 2.16 32.80%
Animals2 360 × 240 2.47 37.00% 2.18 31.30%

Cube 360 × 360 2.33 39.30% 2 33.30%
Covered 360 × 360 1.88 39.20% 1.73 33.40%
Garden 360 × 360 2.41 38.50% 2.15 32.50%
Snow 360 × 481 2.62 36.80% 2.45 31.20%
Tree 360 × 360 2.69 37.40% 2.52 31.40%
Zoo 360 × 240 2.67 36.90% 2.33 31.10%

The dimensions and variety of stereopair used on the proposed experiments allow us
to perform a large evaluation of the pipeline on a standard and well-known benchmark
set of stereopair images, as well as compare the performances of the pipeline on input
of different resolutions. The approach has been evaluated by varying either the local
feature detection and the fundamental matrix estimation algorithms, considering the SIFT
or Harrys keypoints detection to define the initial set of image point correspondences and
the 8-points algorithm or the Least Median of Squares optimization for the fundamental
matrix estimation. As expected, the SIFT algorithm provides an high amount of corre-
spondences with the presence of some outliers. The Harrys keypoints method detects a
lower number of correspondences but with a lower outlier presence rate. As explained
in Section 3.3.3, the selection of the best approach to estimate the fundamental matrix
depends on the number and the quality of the available point correspondences between
the two image views.

Due to space reasons, this paper only includes the results obtained on the Middlebury-
scenes 2014 [33] and on the Middlebury-scenes 2006 [32] datasets. The complete results
achieved on all the 60 considered stereopairs are detailed in the Supplementary Materials.
In particular, the results of the experiments on the Middlebury-scenes 2014 dataset are
shown in Table 2 (low quality factor 65) and Table 3 (low quality factor 70), whereas the
results achieved on the Middlebury-scenes 2006 dataset are reported in Tables 4 and 5. The
achieved results confirmed that the adaptive approach allows to obtain high performances
in terms of image quality, while requiring very low computational efforts. Several experi-
ments obtained a reconstruction loss lower than 10−4 dB. By observing the experimental
results, there is not a setting that strongly outperforms the others. However, considering
the average performances in terms of lossy and computational time (reported on the last
row of each Table), the methods based on the Least Median of Squares optimization to
infer the fundamental matrix performs better in terms of lossy, whereas the methods based
on the 8-points algorithm shown slightly better time performances.
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Table 2. Results on the Middlebury-scenes 2014 dataset, considering a low quality of 65.

Stereopair Size # of Blocks

Method

Low Quality 65

Bitrate
Saving (%)

LmedS Norm8Points

Harris SIFT Harris SIFT

ID Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s)

1 Adirondack-perfect 1988 × 2880 3.479 43 0.58 933 0.58 252 <10−4 304 1.59 352
2 Backpack-perfect 2016 × 2940 3.600 39 1.32 846 <10−4 684 1.32 239 1.33 339
3 Bicycle1-perfect 2008 × 2988 3.577 37 1.59 137 1.59 622 1.59 395 1.59 164
4 Cable-perfect 1984 × 2796 3.381 41 1.59 519 1.59 372 1.59 121 2.18 1.070
5 Classroom1-perfect 1920 × 3000 3.478 42 1.00 174 1.00 190 1.00 124 1.00 535
6 Couch-perfect 1992 × 2300 2.793 42 1.59 266 2.00 339 2.59 1.068 2.01 356
7 Flowers-perfect 1980 × 2880 3.479 38 2.17 306 2.17 378 2.59 1.197 2.59 1.503
8 Jadeplant-perfect 1988 × 2632 3.185 40 1.74 346 2.32 632 2.91 924 2.92 1.040
9 Mask-perfect 2008 × 2792 3.381 40 2.74 140 1.41 600 1.83 377 2.75 1.813
10 Motorcycle-perfect 2000 × 2964 3.577 38 1.74 218 1.74 525 1.74 303 2.07 605
11 Piano-perfect 1920 × 2820 3.243 40 1.74 170 1.74 304 2.06 178 2.07 347
12 Pipes-perfect 1924 × 2960 3.431 38 2.00 752 2.91 800 2.00 156 2.01 246
13 Playroom-perfect 1908 × 2800 3.243 38 2.32 349 2.33 687 2.32 265 2.32 478
14 Playtable-perfect 1848 × 2724 3.082 38 2.00 133 0.68 369 1.81 325 0.68 240
15 Recycle-perfect 1924 × 2864 3.290 42 <10−4 154 <10−4 230 <10−4 92 <10−4 151
16 Shelves-perfect 2000 × 2952 3.577 41 1.41 880 1.00 480 2.00 1.298 1.00 386
17 Shopvac-perfect 1996 × 2356 2.842 42 <10−4 241 <10−4 365 <10−4 396 <10−4 375
18 Sticks-perfect 2008 × 2864 3.430 38 2.42 164 1.26 351 2.23 778 1.49 253
20 Sword1-perfect 2020 × 2912 3.600 39 1.49 978 0.58 572 1.49 208 1.49 677
21 Sword2-perfect 2000 × 2856 3.430 42 2.59 156 1.00 378 1.00 748 1.00 288
22 Umbrella-perfect 2016 × 2960 3.650 42 <10−4 183 <10−4 646 <10−4 391 1.00 1.000
23 Vintage-perfect 1924 × 2912 3.384 36 2.17 201 2.17 189 2.59 257 2.59 887

Average 40 1.55 375 1.28 453 1.58 461 1.62 596

St. Dev. 2.02 0.81 296 0.86 179 0.91 367 0.82 446
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Table 3. Results on the middlebury-scenes 2014 dataset, considering a low quality of 70.

Stereopair Size # of Blocks

Method

Low Quality 70

Bitrate
Saving (%)

LmedS Norm8Points

Harris SIFT Harris SIFT

ID Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s)

1 Adirondack-perfect 1988 × 2880 3479 38 <10−4 208 <10−4 292 <10−4 113 1.17 582
2 Backpack-perfect 2016 × 2940 3600 33 0.32 679 <10−4 541 1.59 1.184 1.33 474
3 Bicycle1-perfect 2008 × 2988 3577 32 0.59 111 1.59 726 2.18 359 2.18 484
4 Cable-perfect 1984 × 2796 3381 36 2.18 882 2.18 674 0.59 183 0.59 201
5 Classroom1-perfect 1920 × 3000 3478 37 1.00 148 1.00 156 1.00 890 1.00 584
6 Couch-perfect 1992 × 2300 2793 36 0.59 181 0.59 279 2.01 473 2.01 350
7 Flowers-perfect 1980 × 2880 3479 33 1.17 851 1.17 395 1.17 444 1.17 385
8 Jadeplant-perfect 1988 × 2632 3185 34 1.74 441 1.74 848 2.01 489 2.92 1.414
9 Mask-perfect 2008 × 2792 3381 34 1.84 774 2.16 1.448 2.16 294 1.84 633
10 Motorcycle-perfect 2000 × 2964 3577 33 1.42 392 1.74 458 1.74 249 2.07 392
11 Piano-perfect 1920 × 2820 3243 35 1.74 222 2.07 708 1.74 210 2.07 240
12 Pipes-perfect 1924 × 2960 3431 33 2.01 671 2.33 1.346 2.01 255 2.01 268
13 Playroom-perfect 1908 × 2800 3243 33 2.07 543 2.07 772 2.07 138 2.33 413
14 Playtable-perfect 1848 × 2724 3082 32 0.90 966 0.68 168 0.68 207 0.90 340
15 Recycle-perfect 1924 × 2864 3290 37 <10−4 184 <10−4 191 1.00 95 1.00 446
16 Shelves-perfect 2000 × 2952 3577 36 <10−4 289 <10−4 307 0.59 525 2.01 1.088
17 Shopvac-perfect 1996 × 2356 2842 37 <10−4 269 <10−4 306 <10−4 1003 <10−4 315
18 Sticks-perfect 2008 × 2864 3430 32 0.26 226 0.68 333 1.27 253 1.27 409
20 Sword1-perfect 2020 × 2912 3600 33 0.91 1488 0.59 407 1.91 1.737 0.91 319
21 Sword2-perfect 2000 × 2856 3430 36 2.18 1696 1.00 546 1.00 1.196 1.00 855
22 Umbrella-perfect 2016 × 2960 3650 38 1.00 223 1.00 733 1.00 242 1.00 1.134
23 Vintage-perfect 1924 × 2912 3384 31 1.17 324 1.17 169 2.59 165 1.17 241

Average 35 1.05 535 1.08 537 1.38 486 1.45 526

St. Dev. 2.08 0.76 433 0.81 352 0.73 437 0.68 320
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Table 4. Results on the Middlebury-scenes 2006 dataset, considering a low quality of 65.

Stereopair Size # of Blocks

Method

Low Quality 65

Bitrate
Saving (%)

LmedS Norm8Points

Harris SIFT Harris SIFT

ID Lossy (dB) Time (sec) Lossy (dB) Time (sec) Lossy (dB) Time (sec) Lossy (dB) Time (sec)

1 Aloe 555 × 641 224 37 1.58 6 2.01 11 1.83 4 2.01 11
2 Baby1 555 × 620 224 40 0.87 4 1.24 6 1.65 26 1.24 6
3 Baby2 555 × 620 224 39 1.02 12 1.02 9 1.35 18 1.02 9
4 Baby3 555 × 656 238 40 1.61 36 1.35 13 1.02 6 1.35 13
5 Bowling1 555 × 626 224 39 1.00 10 1.59 5 1.91 27 1.59 5
6 Bowling2 555 × 665 238 39 1.81 9 2.27 15 1.81 13 2.27 15
7 Cloth1 555 × 626 224 36 1.52 11 1.77 6 1.77 11 1.77 6
8 Cloth2 555 × 650 224 38 1.75 22 1.65 9 1.85 20 1.65 9
9 Cloth3 555 × 626 224 38 1.85 9 1.85 15 2.18 24 1.85 15

10 Cloth4 555 × 650 224 37 2.18 27 1.84 8 1.91 10 1.84 8
11 Flowerpots 555 × 656 238 39 1.59 16 2.01 12 1.59 7 2.01 12
12 Lampshade1 555 × 650 224 39 3.18 14 3.18 13 1.91 9 3.18 13
13 Lampshade2 555 × 650 224 39 2.01 8 2.01 6 2.01 14 2.01 6
14 Midd1 555 × 698 252 36 1.49 5 2.42 31 1.49 8 2.42 31
15 Midd2 555 × 683 238 36 1.27 5 1.27 10 1.27 4 1.27 10
16 Monopoly 555 × 665 238 36 1.27 8 1.94 26 1.94 5 1.94 26
17 Plastic 555 × 635 224 34 0.42 9 0.42 13 0.42 7 0.42 13
18 Rocks1 555 × 638 224 38 1.65 8 2.40 13 1.65 15 2.40 13
19 Rocks2 555 × 638 224 38 1.65 9 2.05 8 2.05 5 2.05 8
20 Wood1 555 × 686 238 42 0.59 15 0.59 6 1.33 29 0.59 6
21 Wood2 555 × 653 224 40 1.42 31 0.42 8 <10−4 6 0.42 8

Average 38 1.53 13 1.68 12 1.57 13 1.68 12

St. Dev. 1.68 0.59 8.73 0.69 6.50 0.54 8.11 0.69 6.50
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Table 5. Results on the Middlebury-scenes 2006 dataset, considering a low quality of 70.

Stereopair Size # of Blocks

Method

Low Quality 70

Bitrate
Saving (%)

LmedS Norm8Points

Harris SIFT Harris SIFT

ID Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s) Lossy (dB) Time (s)

1 Aloe 555 × 641 224 32 1.26 9 1.45 18 1.52 8 1.52 8
2 Baby1 555 × 620 224 34 0.66 4 1.32 34 1.32 28 0.87 7
3 Baby2 555 × 620 224 33 1.61 18 1.61 32 1.61 9 1.02 10
4 Baby3 555 × 656 238 34 0.91 6 1.17 40 0.91 16 0.91 11
5 Bowling1 555 × 626 224 33 1.00 10 1.00 26 1.91 16 1.00 5
6 Bowling2 555 × 665 238 33 2.27 30 1.40 14 1.40 7 2.08 8
7 Cloth1 555 × 626 224 31 1.83 28 1.47 29 1.47 9 1.71 13
8 Cloth2 555 × 650 224 32 1.32 13 1.21 15 1.75 10 1.65 7
9 Cloth3 555 × 626 224 32 1.50 10 1.50 16 1.69 6 1.50 10
10 Cloth4 555 × 650 224 31 2.05 25 1.49 13 1.49 10 1.78 8
11 Flowerpots 555 × 656 238 34 1.59 9 1.59 22 2.01 16 2.42 19
12 Lampshade1 555 × 650 224 33 2.33 11 2.33 14 2.59 26 2.33 8
13 Lampshade2 555 × 650 224 34 2.01 8 2.01 8 2.01 8 2.33 30
14 Midd1 555 × 698 252 31 1.27 11 1.27 11 1.27 8 1.49 9
15 Midd2 555 × 683 238 31 0.68 4 0.68 14 0.68 4 1.49 29
16 Monopoly 555 × 665 238 30 1.10 5 1.94 29 1.27 15 1.94 20
17 Plastic 555 × 635 224 29 1.42 22 0.42 6 0.42 18 0.42 8
18 Rocks1 555 × 638 224 32 2.27 33 1.33 9 2.40 37 1.65 7
19 Rocks2 555 × 638 224 32 1.50 9 0.91 6 1.65 9 1.65 6
20 Wood1 555 × 686 238 35 0.56 16 <10−4 12 1.33 29 <10−4 8
21 Wood2 555 × 653 224 33 1.42 25 0.42 10 <10−4 6 1.42 22

Average 32 1.47 15 1.26 18 1.46 14 1.48 12

St. Dev. 1.45 0.53 8.98 0.55 9.89 0.61 9.09 0.62 7.40
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4.1. Comparative Evaluation

The approaches in [11,13,14] have a pipeline similar to those used in the MPO stan-
dard [1], with the main difference in the encoding/decoding transform that is applied
after quantization, namely curvelets, arithmetic encoding, and Huffman encoding, respec-
tively. Such an encoding-decoding pipeline is independent from the stereopair acquisition
settings. Those approaches have been evaluated on the popular LIVE 3D image quality
database [34] of the University of Texas (The LIVE 3D image quality database is available
at http://live.ece.utexas.edu/research/quality/live_3dimage_phase1.html (accessed on
21 June 2021) In this paragraph, we report the comparative evaluation of the adaptive
approach [20] with respect to [11,13,14] considering the same evaluation settings. Table 6
shows the detailed results of the adaptive method applied on the LIVE 3D dataset, consid-
ering all the experimental settings involved in our benchmark. Note that we reported the
PSNR for the right image only, indeed, all the experimental settings apply the same encod-
ing/decoding pipeline to the left image, whereas a specific decoding process is applied on
the right view. The PSNR of the left view is the same, regardless the experimental setting
and is equal to 38.38744. Table 7 shows the comparison between the adaptive approach
and the methods in [11,13,14]. Moreover, we also reported the performances obtained
by applying the Standard MPO approach [1]. It is possible to observe that the adaptive
method significantly outperforms the other approaches in terms of Compression Ratio.
Regarding the PSNR measure, the Huffman coding proposed in [14] achieved the best
results, with corresponding very low performances in terms of Compression Ratio (CR).

Table 6. Performance of the [20] method applied on the LIVE 3D dataset [34].

Lossy (dB) Bitrate Saving Time (s) CR PSNR Right
LmedSHarris70 1.4893 34.1709 2.0620 14.1925 36.6341
LmedSIFT70 1.4690 34.1709 1.6780 14.1925 36.6544
Norm8PointsHarris70 1.6734 34.1709 3.9440 14.1925 36.4500
Norm8PointSIFT70 1.4604 34.1709 1.5960 14.1925 36.6631
LmedSHarris65 1.6804 40.3686 1.1460 14.7500 36.4430
LmedSIFT65 1.6025 40.3686 4.3960 14.7500 36.5209
Norm8PointsHarris65 1.7414 40.3686 3.4940 14.7500 36.3820
Norm8PointSIFT65 1.6379 40.3686 1.0060 14.7500 36.4856

Table 7. Compression Ratio (CR) and average PSNR of the evaluated methods on the LIVE 3D
dataset [34].

Method CR PSNR

Adaptive [20] 14.4713 37.4583
Standard MPO 11.6094 38.2526

Lossy SICCAC [11] 8.6400 41.5831
Lossy S2ICAC [13] 6.3600 33.9400

SICHC [14] 4.4271 49.1446
Lossless SICCAC [11] 4.1488 41.7359
Lossless S2ICAC [13] 3.6100 34.885

4.2. Subjective Assessment

While the adaptive method is the best in terms of CR, in order to assess the perceived
quality of the images obtained by the adaptive method after reconstruction, we set up
a subjective quality assessment experiment, described in this paragraph. In addition
to the quality evaluation of the adaptive approach, in terms of bitrate saving, PSNR
and computational time reported above, we also set up a subjective assessment of the
reconstructed images’ quality. The experiments involved 116 people selected by considering
variability among gender, age, and people with eyesight problems. In particular, each

http://live.ece.utexas.edu/research/quality/live_3dimage_phase1.html
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participant indicated if he/she uses corrective lenses or glasses, their gender, and their age,
by selecting a set of age ranges (18–29, 30–39, 40–49, 50–59 or >60). Since we involved only
a small number of people aged in the range 50–59 (i.e., 10), we merged the last two age
ranges, creating the new category of people aged more than 50. During the acquisition
session, each user was required to evaluate the quality of two images, one image is the right
view of a stereopair at the original quality, whereas the other one is the same view after
the compression and reconstruction pipeline described in this paper. Each user evaluated
10 image pairs randomly selected from the Middlebury datasets, and the position of the
low quality image (left or right) is also selected randomly. We counted the number of times
the users correctly selected the low quality image (hit) and the times the users selected the
other ones (miss). Table 8 shows the percentage of hit and miss considering the different
user categories. The general and detailed hit/miss percentage can be also observed in the
pie charts shown in Figure 8. From the results is possible to observe that the involved
participants were unable to distinguish the reconstructed image than the original one. This
result is invariant considering also marginalizing the results by gender, age, or the presence
of eyesight problems. We also performed an independence Chi2 test, which confirmed
the independence between the considered categories and the capability of guessing the
right image. The test has been repeated considering several values of significance (from
0.01 to 0.05), in which the null hypothesis H0 (i.e., independence) were accepted with test
confidence always higher than 99%.

Table 8. Hit and miss collected during the subjective assessment experiments.

Hit Miss

Female 0.537931 0.462069
Male 0.593620 0.406380

Without Glasses 0.594990 0.405010
With Glasses 0.562030 0.437970

Age 18–29 0.613269 0.386731
Age 30–39 0.514563 0.485437
Age 40–49 0.581818 0.418182
Age > 50 0.482759 0.517241

Figure 8. Detailed performances of hit/miss obtained during the subjective assessment.
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5. Conclusions and Future Works

In this paper, an overview on stereoscopic image compression is first presented, with a
focus on the problem of standardization of the compressed images. Then, an adaptive
stereoscopic image compression approach first presented in [19] and further extended
in [20] has been investigated and detailed. In particular, the advances in the matching strat-
egy of the approach under analysis are presented. Then, the paper presents an evaluation
of the adaptive stereo compression method under different settings, taking into account
the compressed image quality, two different optimization methods, and two keypoints
extraction techniques. The 16 resulting evaluation settings have been used to benchmark
the compression method on the five Middlebury datasets published between 2001 and 2014,
which represent an established standard for the objective assessment of algorithms in the
field of stereoscopy. The results shown that the method is able to obtain high compressed
stereoscopic images, while maintaining the visual quality, without requiring additional
storing payload and allowing the usage of a file format conform with [1] specifications. In
this benchmarking, we also evaluated the percepted quality of the reconstructed images by
involving a large number of participants that were required to select the highest quality
image between the two proposed, future extensions of this approach can evaluate the
performances considering more advanced and specific Human Visual System based quality
metrics [35], to properly assess to what extent we can compress the low quality image while
maintaining high quality in the 3D perception of the scene. Extended experiments could be
performed to significantly lower the quality of the images, and observing the effects (e.g.,
blocking artefacts) of using image blocks with resolution dimensions that are powers of
two (8 × 8, 16 × 16, 32 × 32, etc.). Moreover, studies on stereoscopic image compression
can be also performed on new applications and domains in which stereoscopy is being
applied [36].
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.3390/jimaging7080160/s1, Table S1: Results on Middlebury-scenes 2014 dataset, considering a low
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Table S3: Results on Middlebury-scenes 2006 dataset, considering a low quality of 65, Table S4: Results
on Middlebury-scenes 2006 dataset, considering a low quality of 70, Table S5: Results on Middlebury-
scenes 2005 dataset, considering a low quality of 65, Table S6: Results on Middleburyscenes 2005
dataset, considering a low quality of 70, Table S7: Results on Middlebury-scenes 2003 dataset,
considering a low quality of 65, Table S8: Results on Middlebury-scenes 2003 dataset, considering a
low quality of 70, Table S9: Results on Middlebury-scenes 2001 dataset, considering a low quality of
65 and Table S10: Results on Middlebury-scenes 2001 dataset, considering a low quality of 70.
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