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Abstract. Image based face identification systems have attained opti-
mal performance. However, the design of such systems often involves
some issues related to extreme light conditions and privacy protection,
among others. Since several years, Face Identification (FI) based on ther-
mal images using deep neural networks (DNN) has received significant
attention. Yet, the majority of the FI systems developed through DNN’s
need huge computational power; those systems are not suitable for the
devices with memory limitations. In this paper, we proposed a new CNN
framework based on depthwise separable convolutions for real-time face
identification for low memory vision applications. The lack of publicly
available thermal datasets makes very hard the research and developing
of new techniques. In this work, we further present a new large-scale
thermal face database called “ST UNICT Thermal Face”. As per our
analysis, the evaluation of the learnt model using the data obtained in
the single-day (without temporal variations), it might not stable over
time. One of the main reasons behind the development of this database
for the real-time evaluation of the proposed model depends on the fact
that most thermal face identification systems are not stable over time
and climate due to insufficient time data. The evaluation results exhibit
that the proposed framework is suitable for the devices having limited
memory and which is stable over time and different indoor environmental
conditions.

Keywords: Thermal face identification · Thermal images ·
Convolutional neural networks

1 Introduction

Over the last two decades, Face Identification or Recognition, based on surveil-
lance and traditional images obtained in the visible spectrum, have reached a
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significant level of advancement among various disciplines [5]. It has applied
to many real world applications such as security and transportation. Although
a face identification system based on visual images performs under controlled
illumination conditions and there is a possibility to recognize faces of corpses,
such system is not entirely suitable for the security applications. Nevertheless,
in literature, we have a reliable biometric technology based on human physical
or behavioural feature and can be used to identify human-beings such as finger-
print effect. There are various biometric systems based on fingerprints such as iris
patterns, signatures, palm-prints, and voice. However, such systems require the
involvement of the subject [18]. Among these, Thermal Face Identification based
biometric technology has been attracting significant attention due to its various
advantages, such as ease of handling with low-resolution images and robust to
ambience illumination, economic friendly hardware and high recognition accu-
racy and privacy preserving. To address the limitations of the above-mentioned
biometrics systems, we were motivated to develop a face identification system
based on thermal Vision. In the processes to overcome the aforementioned mat-
ters, there are huge works for many years to learn some usual innovations that
can be transferred across various recognition tasks. Accompanying this direc-
tion, Deep Convolutional Neural Networks (DCNN) have attained enormous
progress in grabbing various tasks of computer vision problems [10,17]. How-
ever, since such algorithms require high computational and memory resources,
proper strategies must be employed [1]. In this paper, we focused on a novel
CNN model for mobile or embedded vision applications, the one of the goal is
the learned model must fit into the low-memory portable device like STM32F7
Family Microcontrollers, which includes limited memory, in terms of RAM and
Flash Memory.

The convolutional neural network itself having a dense computational model,
a large number of parameters, heavy computing load, and excess memory access
leads to large power consumption, which makes the task more challenging to
embed the learnt model into mobile or other portable devices with limited hard-
ware resources (fixed memory). The motivation behind the development of the
proposed work that previous works reveal that the compression of large net-
works according to the tasks attains the significant results, such as SqueezeNet
[8] which is based on fire module and ShuffleNet [27] modified from the residual
structure with group pointwise convolution and channel shuffle operation.

First we performed attempts to retrain state of the art models such as
ResNet50 and MobileNet on the publicly available dataset from scratch, in order
to assess how these models perform on the thermal vision domain in terms of per-
formance and the computational complexity. Although these models consumed
huge memory and showing significant performance. However, to be adequately
applied to real-time applications and low-memory portable devices like STM32F7
Family Microcontrollers having limited memory, we selected MobileNet architec-
ture as the best alternative to meet the requirements of the task by compress
and accelerate the network to reduce parameters, computation, ad the power
consumption of the model. MobileNet is a lightweight network compared with
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ResNet in terms of the number of parameters, and the performance is nearly sim-
ilar with both models. Though, parameters and computational burden reduced
by the implementation of depthwise separable convolutions.

2 Materials and Data

2.1 Thermal Camera

The proposed Thermal Image Database called “ST-UNICT-Thermal-Face” has
been acquired using a PureThermal-2 FLIR Lepton Radiometric LWIR camera
equipped with Smart I/O STM32F412CGU6 microcontroller and 50-degree field
view module including stutter for automatic calibration. It is pre-configured to
operate plug and play UVC 1.0 USB. The ‘thermal image’ acquired using a ther-
mal camera can be handled as a Grayscale Image (2D-array @16bpp). Each value is
related to the absolute temperature of the corresponding area. During acquisition,
the camera can be configured to operate in a High gain state, which provides lower
Noise Equivalent Differential Temperature and lower intra-scene range. It is using
a focal-plane array of 160 × 120 active pixels. Integrated digital thermal image pro-
cessing functions capable of filtering and compensation for environmental issues.
The radiometric Lepton captures accurate, calibrated, non-contact temperature
data in every pixel of each image with the thermal sensitivity of less then 50 mil-
likelvin, Radiometric accuracy (35 ◦C blackbody) at High gain: ±5 ◦C @ 25 ◦C,
at Low gain ±10 ◦C @ 25 ◦C and scene dynamic range at High gain is −10 ◦C to
+140 ◦C and at Low gain is −10 ◦C to +400 ◦C. It scans 8 to 14 µm wavelength
bands to generate uniform thermal images at up to 9 frame/s.

2.2 Microcontroller

With the help of STM32CubeMX extension AI conversion tool which is
STM32Cube.AI, it is simple and effective interoperability with modern Deep
Learning training tools broadly used by the AI developer can be directly
imported into the STM32Cube.AI. In this research, to embed the pre-trained
model, we utilized STM32F767 Microcontroller, it has a new set of AI solutions to
map and run pre-trained ANN models on the board. Since, STM32F767 includes
fixed high-speed embedded memories with a Flash memory up to 2 MB, 512 KB
of SRAM. The objective of this research is the development of the smallest CNN
model for vision applications, which adequately fit into such STM32F767 Micro-
controller. Moreover, this device is incorporate high-performance Arm Cortex-
M7 32 bit RISC core processor operating at up to 216 MHz, and it is enabled
with Floating point unit (FPU) which supports double and single precision data
processing instructions and data types.

2.3 Datasets

Development of a thermal face identification system requires input data to test
and validate the performance of the system. Datasets are required to train deep
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(a) (b) (c)

Fig. 1. CNN Blocks. (a). Standard Convolution Block, (b). Depthwise Convolution
Block, (c). Pointwise Convolution Block

Table 1. Train, Validation and Test data distribution of Dataset-1

# Subjects # Train # Validation # Test

12 Subjects 500 200 100

Total Samples 6000 2400 1200

learning models as well as to evaluate system performance. Proposed ST-UNICT-
THERMAL-FACE DATABASE been obtained different states of ambience and
the subject - a small Orientation of faces for flexible real-time system. It is
very useful to obtain diverse data including various scenarios and to utilize the
freely available sets to analyse the results of the experiments. Research Commu-
nity frequently offered substantial datasets with respect to the various tasks. To
evaluate the proposed model, we employed 5 Thermal Face datasets, including,
public domain datasets. Since, unavailability of the subject, freely available data
is not relevant to real-time evaluation. However, we proposed the following new
benchmark datasets to evaluate the system in real-time. The description of all
datasets we used in this research as follows.

Dataset-1. This dataset developed for the competition of Benchmark/Test
Datasets by IEEE OTCBVS Workshop series [3]. The images have been captured
using a long wave Raytheon L-3 Thermal-Eye 2000AS thermographic camera.
The camera produces a resolution of 320 × 240 pixels of infrared images and this
has been the final resolution chosen to evaluate the proposed model. It contains
20 subjects, and due to unbalanced classes distribution, we selected 12 subjects
of 9600 images Table 1. The data acquired in different acquisition modalities,
such as face orientation, ambience and occlusions. The images captured with
Front, Right and Left orientations of a video with 20 frames in each acquisi-
tion. Moreover, the data obtained in indoor/outdoor conditions and various face
occlusions including with and without Eye Glasses and Hat. The whole dataset
is pre-processed and stored in 8-bit Grayscale JPEG format.
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Table 2. Train, Validation and Test data distribution of Dataset-2

# Subjects # Train # Validation # Test

29 Subjects 100 ≈50 ≈50

Total Samples 2900 1303 1305

Dataset-2. The images were captured using a PureThermal-2 Radiometric cam-
era Sect. 2.1. The dataset developed to evaluate the proposed model in real-time.
It contains 29 male and female subjects/people of 6405 images Table 2 with the
resolution of 160 × 120 pixels. Each subject has been recorded in a single day as
both snapshots and continues images (Videos) for further analysis. The whole
dataset was captured in indoor (room) environment with different viewpoints
Fig. 2 and accessories (Eyeglass, Cap, free and tied hair for women) Fig. 4
under uniform lighting and climate conditions. Each subject was asked to look
at a fixed view-point continuously to 9 equidistant positions Fig. 3 making an
estimated semi-circle around the camera with each accessory. The average time
required for the whole acquisition process per individual subject has been 3 to
5 min. Moreover, the distance between the face of the subject and the camera
is approximately between 120 cm to 150 cm to minimize the inherent parallax
error. Finally, for the later advances, the entire data was saved in RAW-16bit
TIFF format and further pre-processed to 8-bit JPEG visible grayscale image
format to train and test the CNN model.

Fig. 2. Structure of head postures

Dataset-3. The whole dataset has been obtained with the same device and
modalities used to as the Dataset-2 [2.3]. However, after the one-hold evaluation
of the proposed model on the test set of the Dataset-2 [2.3], the system obtained
optimal performance. Yet, due to temporal thermal variations between data used
for training and real-time testing, the system performance is not optimal.
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Fig. 3. Head Postures

Fig. 4. Samples from the dataset

However, we acquired new data over multiple sessions and with a diverse
environments (background) due to develop the system robust to background
and its artifacts.

The dataset eventually developed with 11 subjects, a total of 14740 images
acquired in 6 distinctive days between 10 to 20 days period, including the data
from dataset-2 [2.3]. The data distribution for the train, Validation and testing
of this dataset presented in Table 3.

Note: The Final Dataset available in public domain soon.
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Table 3. Train, Validation and Test data distribution of Dataset-3

# Subjects # Train # Validation # Test

11 Subjects 1000 200 140

Total Samples 11000 2200 1540

Dataset - 4. The Carl Database is one of the benchmark datasets obtained
in three different scenarios such as visible, NIR and Thermal domain under
various illumination conditions. In this paper, we utilise one the dataset from
Carl-database, which is the dataset obtained in the thermal domain by using
thermographic camera TESTO 880-3, it contains 41 subjects/people and 60
images/subject with the resolution of 320 × 240 pixels. In [4] provides the
complete description of the dataset. However, the Carl thermal images dataset
divided into two datasets. Such as the dataset contains the images with and with-
out background (segmented). We evaluate the proposed model on both datasets
to investigate is the background matters. In the following sections, we named
dataset-4.1 and Dataset-4.2 for the images with background and without back-
ground respectively Table 4.

Table 4. Train, Validation and Test data distribution of Dataset-4A and Dataset-4B

# Subjects # Train # Validation # Test

41 Subjects 40 10 10

Total Samples 1640 410 410

3 Related Works

Face Identification (FI) technologies are used in security related applications, it
needs to be analysed well before going to deploy, such analysis well described in
[6]. However, most of the technologies are utilized images obtained in the visible
spectrum. Since the huge availability of thermal imagery technology, FI system
based on thermal imagery seems more secured and robust compare with the FI
system based on visible images. However, the features of skin colour and texture,
often exploited to make inferences on face images [23], are not present in the
thermal images, which are mainly determined by the absolute temperature values
of the face. There are well traditional feature extraction or appearance based
methods works for images acquired in the thermal domain, yet in [24] analysed
and explored the conflicts by utilizing those approaches. Moreover, to extract
thermal features in [15] performed Fast Independent Component Analysis and
Gabor Wavelet Transformation, but it does not improve the recognition rate.
Certainly, face identification in the thermal domain has been relatively limited
compare with the visual domain. However, [11] explains the comparisons, benefits
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Fig. 5. Training and Testing Pipeline

and weaknesses of various thermal face recognition methods. [21,22] explores a
relative study on the performance of various approaches for the FI system using
both thermal and visual images and in authors in [9] provides an opinion on
most of the research implemented on the face recognition approaches in both IR
and Visible spectrum. Deep Learning methods might be an alternative to robust
and real-time face identification system. In literature, many experiments showing
great interest in the thermal domain. In [19] employed a standard pre-trained
CNN based model to identify the person in thermal images. [13] works to develop
a face recognition system by fusion of both CNN and SVM, but this approach
needs huge computation power. In [25] proposed a multilayer CNN architecture,
since the evaluation results are optimal, since those obtained on the data taken
the same day as data used for training. In [16] proposed TIRFaceNet based on
CNN, it takes extracted features from both visible and thermal images to train
the network. Compare with all the previous works proposed approach is more
convenient in terms of computational cost and temporal variations.

To improve the performance of the model with respect to their task, authors
of [2,12,14,20,26] modified the state of the art models in terms of hyperparam-
eters, size of the kernels and the architecture.

4 Proposed CNN Architecture

In this paper, we introduced a small and robust model based on CNN which is
described in Fig. 6 for thermal face identification system, with advantages of the
Depthwise Separable Convolution (DWSC) and modality of the MobileNet [7].
The architecture, presents an efficient tradeoff between complexity and perfor-
mance of the system. It is typically designed for the devices with a shortage of
computational power such as mobile or embedded based vision applications. The
main goal of the proposed model is to significantly reduce the number of param-
eters by reducing the multiplication of the total number of floating-points. Pro-
posed modernised architecture Fig. 6, employed two types layers such as standard
convolution Fig. 1(a) and depthwise separable convolution. Depthwise separable
convolution is divided into depthwise convolutions Fig. 1(b) followed by point-
wise convolution Fig. 1(c). However, standard convolution built only on the top
of the network, and the whole network remains work with only depthwise sep-
arable convolutions. Proposed topology having one standard convolution, eight
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depthwise convolutional layers followed by pointwise convolution layer each, one
fully connected and a softmax classifier at the end of the network respectively.

All the layers are followed by Batch Normalization and ReLU non-linearity
except final softmax layer. To improve the performance by preserving the spatial
information at the boarders after convolution operation we used Zeropadding in
both standard and DWSC layers. One dropout layer is implanted at the end of
the fully connected layer. To reduce the spatial resolution to one a final global
average pooling used before the fully connected layer. Initially, the top layer of
the network which is standard convolution layer gets the input. The input is a
thermal image of dimensions H × W × C. The Conv2d layer holds all the pixel
values and computes the output of the neuron and passes them to the following
layer. The parameter of the layer is composed of a set of learnable kernels.
Kernels or filters are convolved across dimensions of the input and enlarging with
its depth, with the implementation of the dot product between input values and
kernels. It outputs a two-dimensional activation map of the kernel. The network
learns the kernels thought the features from the input spatial position. The ReLU
perform an elementwise activation function, it activates and only grows linearly
with positive values, but there is no impact on the size of the volume. Then it
passes the output values to the following depthwise separable convolution layer.

Depthwise convolution is a spatial convolution based on the number of chan-
nels, each of the filters only computes on a single input channel to do convolution.
In thermal images are having a single channel, in such case 1×1 spatial convolu-
tions and integrate depthwise convolution outputs linearly with the help of 1×1
pointwise convolution. The computational operations using depthwise separable
convolutions are much lesser than the standard convolutions. As like MobileNet,
we have two hyperparameters such as width multiplier α and depth multiplier
σ, both parameters are chosen as 1. In this work, we did not use any pooling
operation except before the fully connected layer. In proposed topology we have
designed a unique structure. Our goal is to reduce the complexity of the network,
since, the complexity of the network depends on the size of the output feature
maps of each layer. The size of the feature map influenced by three important
parameters, such as size of the kernel, stride and zero padding.

To find the key features from the input data, the size of the kernel plays
an important role. Large kernels may overlook at the features it leads to loss
essential features, since small size kernel may find more information it may lead
to over fitting. However, it is very hard task to find the optimal size of the kernel,
it may depends on the task. In this paper, we proposed, instead of finding optimal
size of the kernel, we would fix the size of the kernel to the entire network, we
increase the number of kernels with small difference in each of the following layer,
it prevents the confusion with more information. However, Strides also actually
influences on the number of steps that moves the kernel on the input image, and
also the size and volume of the output feature maps.

The entire training processes implemented in Keras following TensorFlow
backend, for fast computation we employed NVIDIA Graphic Processing Unit
having 12 GB of RAM. All the training process implemented from scratch.
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Fig. 6. Proposed CNN Architecture

Fig. 7. Real-Time Testing Phase Pipeline

The proposed model having total 29,798 parameters and it consumes 335.17
KB and 117.14 KB of RAM and FLASH memory respectively and which
obtained optimal performance on five thermal face datasets, three of them are
publicly available dataset-1, dataset-4&5 and datasets-2 and dataset-3 are devel-
oped by ourselves to test the learnt model in real-time.

5 Algorithm Pipeline

The algorithm pipeline to train the network with the proposed datasets is
described in Fig. 5. We have acquired 16-bit RAW thermal Videos and Images
(snapshots). Further, we extracted all the frames from the videos, then we pre-
processed those 16-bit RAW non-visible IR Images into 8-bit visible grayscale
images by the implementation of Min-Max Normalization (Eq. 1) using Python-
OpenCV. Those Normalized images are randomly shuffled and split into train
and validation sets. To train the proposed CNN, those train and validation
datasets are given as an input to the model. However, we obtain 16-bit RAW
thermal images as snapshots rather than the videos to test the learnt model. We
have implemented the same preprocessing approach to test set shown in Fig. 5.

The preprocessing, such conversion of 16-bit image to 8-bit image by the
following Min-Max Normalization equation.

̂I(x, y) = round(
I(x, y) − min(I)
max(I) − min(I)

) ∗ 255) (1)

Where I is the input image, min(I), max(I) are, respectively, the minimum
and maximum value of the image I pixel values. Where ̂I is the input to the
CNN.
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Table 5. Evaluation results of proposed model

Dataset # Persons # Training # Validation # Testing Avg. validation

accuracy (%)

Avg. test

accuracy(%)

Dataset- 1 12 6000 2400 1200 100 100

Dataset- 2 29 2885 1303 1046 99.61 97.57

Dataset- 3 11 11000 2200 1755 99.95 99.96

Dataset- 4A 41 4140 410 410 93.90 95.12

Dataset- 4B 41 4140 410 410 100 100

Table 6. Complexity of the proposed architecture compare with state of the art models

Models Number of
parameters

RAM memory
consumption

FLASH memory
consumption

ResNet50 23,794,333 4.30 MB 94.96 MB

MobileNet-V1 3,342,341 1.32 MB 13.32 MB

Proposed Model 29,798 335.17 KB 117.14 KB

6 Experimental Analysis and Results

In this section we describe all the experimental analysis has been implemented to
obtain the optimal performance of the real-time thermal face identification sys-
tem. However, all the obtained results are described in the Table 5 and complex-
ity of the proposed model compared with the state of the models are described
in the Table 6.

Experiment - 1
Initially, we have analysed several state of the art CNN topologies with publicly
available dataset-1, such as ResNet50, MobileNet to find the suitable networks
in terms of low memory consumption. However, ResNet50 and MobileNet are
consuming huge computation power. ResNet50 has 23,794,33 parameter and it
need minimum of 5 MB and 100 MB of RAM and FLASH memory respectively.
Compare with ResNet50, MobileNet-V1 consumes very less memory Table 6.

However, as we decided by utilizing the advantages of MobileNet, we designed
the small proposed CNN topology especially for the devices having low compu-
tational power, which described in Fig. 6 and confusion matrix of evaluation
presented in Fig. 8.

Experiment - 2
To development of Face Identification system, we trained the proposed model
with 12 subjects having total of 9600 images selected from the dataset-1. We
split the dataset as train, validation and test of 500, 200 and 100 images per
subject respectively; the distribution of the data is described in Table 1. We
evaluate learnt model on both validation and test sets, we obtain the maximum
results, presents in the Table 5.
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Fig. 8. Confusion Matrix of Test Set of Dataset-1

Experiment - 3
Due to unavailability of subject, we are not able evaluate learnt model in real-
time. However, we developed a new dataset described in ‘Sect. 2.3’ and trained
the network from scratch. The distribution of the data to train the network
described in the Table 2. The proposed model shows optimal performance on
both validation and test sets presented in Table 5 and evaluation confusion
matrix shown in Fig. 10. However, the performance of real-time testing is poor.
Thermal images contain absolute temperature values of the face surface, yet
temperature may changes with emotions, ambience and/or time.

Experiment - 4
To address the drawbacks in the previous experiments, such as the model expects
having data with temporal variations. However, we acquired a new dataset in
several distinct days, which is described in Sect. 3. The evaluation of the proposed
model on the dataset-4 showing optimal performance on the both train and test
sets presented in Table 5 and also showing significant performance on the real-
time test. The pipeline of the real-time evaluation described in Fig. 7 and Fig.
9 is the real-time identified image.

Experiment - 5
In order to improve the analysis, we evaluate our model with another publicly
available dataset described in Sect. 2.3. This dataset having two type of images,
such as segmented (without background) and original (with background) images.
The evaluation results Table 5 reveals that the recognition rate may improve by
removing the background.
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Fig. 9. Identified Image in Real-
Time

Fig. 10. Confusion Matrix of Test Set of
Dataset-3

7 Conclusion

In this work we addressed the problem of the complexity of CNN for low mem-
ory portable devices and real-time evaluation. The proposed framework which
includes data acquisition modalities and a new CNN topology based on depth-
wise separable convolution makes the model more efficient for real-time thermal
face identification. Despite that already high performance achieved by various
previous works, yet those systems evaluate the learnt model only with valida-
tion or test data. Our method performs well to identify the person from thermal
images. Based on this research in future works, hopefully by the analysis of
proper prepossessing techniques may improve the performance and robustness
of the system.
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4. Espinosa-Duró, V., Faundez-Zanuy, M., Mekyska, J.: A new face database simulta-
neously acquired in visible, near-infrared and thermal spectrums. Cogn. Comput.
5, 119–135 (2013). https://doi.org/10.1007/s12559-012-9163-2

https://doi.org/10.1109/icdar.2019.00197
http://vcipl-okstate.org/pbvs/bench/
http://vcipl-okstate.org/pbvs/bench/
https://doi.org/10.1007/s12559-012-9163-2


542 R. R. Devaram et al.

5. Farinella, G.M., Farioli, G., Battiato, S., Leonardi, S., Gallo, G.: Face re-
identification for digital signage applications. In: Distante, C., Battiato, S.,
Cavallaro, A. (eds.) Video Analytics for Audience Measurement, pp. 40–52.
Springer, Cham (2014)

6. Gondhi, N.K., Kour, E.N.: A comparative analysis on various face recognition tech-
niques. In: 2017 International Conference on Intelligent Computing and Control
Systems (ICICCS). IEEE (2017). https://doi.org/10.1109/iccons.2017.8250626

7. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications (2017)

8. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: alexnet-level accuracy with 50× fewer parameters and <0.5 mb model
size (2016)

9. Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual
and infrared face recognition—a review. Comput. Vis. Image Understanding 97(1),
103–135 (2005). https://doi.org/10.1016/j.cviu.2004.04.001

10. krishna, M., Neelima, M., Mane, H., Matcha, V.: Image classification using deep
learning. Int. J. Eng. Technol. 7, 614 (2018). https://doi.org/10.14419/ijet.v7i2.7.
10892

11. Kristo, M., Ivasic-Kos, M.: An overview of thermal face recognition methods. In:
2018 41st International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO). IEEE, May 2018. https://doi.org/
10.23919/mipro.2018.8400200

12. Li, X., Li, W., Xu, X., Du, Q.: Cascadenet: Modified resnet with cascade blocks. In:
2018 24th International Conference on Pattern Recognition (ICPR), pp. 483–488
(2018)

13. Lin, S.D., Chen, K.: Thermal face recognition under disguised conditions. In: 2019
International Conference on Machine Learning and Cybernetics (ICMLC). IEEE,
July 2019. https://doi.org/10.1109/icmlc48188.2019.8949194

14. Liu, S., Deng, W.: Very deep convolutional neural network based image classi-
fication using small training sample size. In: 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR). IEEE, November 2015. https://doi.org/10.1109/
acpr.2015.7486599

15. Majumder, G., Bhowmik, M.K.: Gabor-fast ICA feature extraction for thermal
face recognition using linear kernel support vector machine. In: 2015 International
Conference on Computational Intelligence and Networks. IEEE, January 2015.
https://doi.org/10.1109/cine.2015.14

16. Manssor, S.A.F., Sun, S.: TIRFaceNet: thermal IR facial recognition. In: 2019 12th
International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI). IEEE, October 2019. https://doi.org/10.1109/cisp-
bmei48845.2019.8966066

17. Mateen, M., Wen, J., Nasrullah, D., Song, S., Huang, Z.: Fundus image classifi-
cation using VGG-19 architecture with PCA and SVD. Symmetry 11, 1 (2018).
https://doi.org/10.3390/sym11010001

18. Santarcangelo, V., Farinella, G.M., Battiato, S.: Gender recognition: methods,
datasets and results. In: 2015 IEEE International Conference on Multimedia
Expo Workshops (ICMEW), pp. 1–6 (2015). https://doi.org/10.1109/ICMEW.
2015.7169756

19. Sayed, M., Baker, F.: Thermal face authentication with convolutional neural net-
work. J. Comput. Sci. 14(12), 1627–1637 (2018). https://doi.org/10.3844/jcssp.
2018.1627.1637

https://doi.org/10.1109/iccons.2017.8250626
https://doi.org/10.1016/j.cviu.2004.04.001
https://doi.org/10.14419/ijet.v7i2.7.10892
https://doi.org/10.14419/ijet.v7i2.7.10892
https://doi.org/10.23919/mipro.2018.8400200
https://doi.org/10.23919/mipro.2018.8400200
https://doi.org/10.1109/icmlc48188.2019.8949194
https://doi.org/10.1109/acpr.2015.7486599
https://doi.org/10.1109/acpr.2015.7486599
https://doi.org/10.1109/cine.2015.14
https://doi.org/10.1109/cisp-bmei48845.2019.8966066
https://doi.org/10.1109/cisp-bmei48845.2019.8966066
https://doi.org/10.3390/sym11010001
https://doi.org/10.1109/ICMEW.2015.7169756
https://doi.org/10.1109/ICMEW.2015.7169756
https://doi.org/10.3844/jcssp.2018.1627.1637
https://doi.org/10.3844/jcssp.2018.1627.1637


Real-Time Thermal Face Identification System for Low Memory Vision 543

20. Sheng, T., Feng, C., Zhuo, S., Zhang, X., Shen, L., Aleksic, M.: A quantization-
friendly separable convolution for MobileNets. In: 2018 1st Workshop on Energy
Efficient Machine Learning and Cognitive Computing for Embedded Applications
(EMC2). IEEE (2018). https://doi.org/10.1109/emc2.2018.00011

21. Socolinsky, D., Selinger, A.: A comparative analysis of face recognition performance
with visible and thermal infrared imagery. In: Object recognition supported by
user interaction for service robots. IEEE Comput. Soc. https://doi.org/10.1109/
icpr.2002.1047436

22. Socolinsky, D.A., Selinger, A., Neuheisel, J.D.: Face recognition with visible and
thermal infrared imagery. Computer Vision and Image Understanding 91(1–2),
72–114 (2003). https://doi.org/10.1016/s1077-3142(03)00075-4

23. Trenta, F., Conoci, S., Rundo, F., Battiato, S.: Advanced motion-tracking sys-
tem with multi-layers deep learning framework for innovative car-driver drowsi-
ness monitoring. In: 2019 14th IEEE International Conference on Automatic Face
Gesture Recognition (FG 2019), pp. 1–5 (2019). https://doi.org/10.1109/FG.2019.
8756566

24. Vigneau, G.H., Verdugo, J.L., Castro, G.F., Pizarro, F., Vera, E.: Thermal face
recognition under temporal variation conditions. IEEE Access 5, 9663–9672 (2017).
https://doi.org/10.1109/access.2017.2704296

25. Wu, Z., Peng, M., Chen, T.: Thermal face recognition using convolutional neural
network. In: 2016 International Conference on Optoelectronics and Image Process-
ing (ICOIP). IEEE, June 2016. https://doi.org/10.1109/optip.2016.7528489

26. Yuan, A., Bai, G., Jiao, L., Liu, Y.: Offline handwritten english character recog-
nition based on convolutional neural network. In: 2012 10th IAPR International
Workshop on Document Analysis Systems. IEEE, March 2012. https://doi.org/10.
1109/das.2012.61

27. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices (2017)

https://doi.org/10.1109/emc2.2018.00011
https://doi.org/10.1109/icpr.2002.1047436
https://doi.org/10.1109/icpr.2002.1047436
https://doi.org/10.1016/s1077-3142(03)00075-4
https://doi.org/10.1109/FG.2019.8756566
https://doi.org/10.1109/FG.2019.8756566
https://doi.org/10.1109/access.2017.2704296
https://doi.org/10.1109/optip.2016.7528489
https://doi.org/10.1109/das.2012.61
https://doi.org/10.1109/das.2012.61

	Real-Time Thermal Face Identification System for Low Memory Vision Applications Using CNN
	1 Introduction
	2 Materials and Data
	2.1 Thermal Camera
	2.2 Microcontroller
	2.3 Datasets

	3 Related Works
	4 Proposed CNN Architecture
	5 Algorithm Pipeline
	6 Experimental Analysis and Results
	7 Conclusion
	References




