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FORMAL THEORY OF INTERNAL CATEGORIES

RENATO BETTI

To the memory of Umberto Gasapina

Categories internal to an elementary topos are regarded as monads in
the bicategory of spans of the topos and the main features of the theory
are developed: functors, adjointness, module calculus, internal presheaves,
internal completeness and cocompleteness, Kan extensions.

Introduction.

One of the main aspects of category theory regards the fact that many math-
ematical structures can be “internalized” into suitable categories, sort of “uni-
verses” within which they are fully defined. Moreover, the basic constructions
of the structures can be performed very much in the same way as in the category
Sets of sets and many results remain true.

The structure we consider here is category theory itself, internal to a given
category £ with finite limits. To develop further the theory however, more
properties are needed from &: pullback stable coequalizers to allow composition
of modules (distributors or profunctors) or local cartesian closure (i.e.cartesian
closure of the category £/X, for any object X)in order to take account of
internal completeness of £. In general, it is useful to assume that £ is an
elementary topos.
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While the basic elements of internal category theory are well known since
some time (see for instance Ch. 2 of Johnstone [5], to which we refer for notions
not explained here), the point of view of this paper arose and proved to be useful
during the development of locally internal category theory in terms of enriched
categories (Betti and Walters [2] and [3]), where it was relevant to consider in
the same setting both internal and locally internal categories.

This common setting is provided by the bicategory Span&. Namely, the
new aspect of this paper is that internal categories are regarded as monads
of the bicategory Span&. The main notions of internal category theory are
accordingly introduced: adjointness, presheaves, Kan extensions, completeness
and cocompleteness. As a consequence of this language, their basic properties
are reproduced purely formally, in the sense that only the blcategorlcal notions
of Span £ are involved into consideration.

The treatment thus allows an essentially new viewpoint that contributes to
clarify the whole subject. Moreover, the appropriate “calculus” of modules,
which is systematically used, turns out to be a precise and flexible tool for
analysing internal structures. With respect to this fact, emphasis is given to
particular properties (Kan extensions, tabulation) that can be lifted from Span &£
to the bicategory Mod £ of internal categories and modules between them.

1. The bicategory Span £.

Let £ be a category with pullbacks. Objects of the bicategory Span & are
the objects of £,arrows A—+> B are spans (f, g) of arrows in € as in the
picture:

while 2-cells are arrows 4 in £ such that the following triangles commute:
X
h B

/

A

Y
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Composition is given by pullback and the span (14, 1,4) is the identity of
A.

The category £ can be embedded in the bicategory Span £ by a homomor-
phism which is the identity on objects and takes an arrow f of £ to the arrow
(1, f) of Span&. Such arrows are characterized (up to isomorphism) by the
fact of having a right adjoint, namely the span f° = (f,1). In general in a
bicategory, an arrow ¢ with a right adjoint is called a map and its right adjoint
is denoted by ¢°: the arrows of & when regarded in Span £ constitute all the
maps. With this notation, the span (f, g) can be written as the composite g f°.

By the adjointness f— f° one has the natural bijections of 2-cells:

o:a—>f°Bf
6: fa——Bf

(1)

G :aft—f°p

| o: faf——p
where ¢« : A—+=A and B : B—+—=B are arrows in Span&, and f :
A——B is a map.
Observe that the natural bijections (1) provide the correspondences on
objects of equivalences between hom-categories: .

Span £(A, A) > Span E(A, B) >~ Span £(B, A) ~ Span&£(B, B)

When £ is (finitely) complete and cocomplete, the categories Span £(A, B) are
also (finitely) complete and cocomplete. Moreover, when & is an elementary
topos, the bicategory Span £ admits right Kan extensions and right limits. This
means that, for any arrow ¢ : A—+— B, compositions with ¢ on both sides
have right adjoints:

— «¢—iHom" (¢, —)

¢ - ——iHompg (¢, —)

Explicitly, in the case of right Kan extensions, for any arrow ¢ : A—+—=>C
there is an arrow Hom” (¢, ) : B—+—C B endowed with a 2-cell:

o

A .U -+ Hom” (¢.y)

BN

C
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which, by composition, provides a natural bijection of 2-cells:

Yo——>Y

y —Hom"(p, ¥)

for any arrow y : B—+>C.
Analogously, right liftings are characterized by the universal property:

py —=

y ——Homp(¢p, ¥)

For the existence of right Kan extensions and right liftings, first observe
that each is implied by the other one, because by interchanging the two maps
- of any arrow one has a “symmetry structure” of Span £, namely, an equivalence
(Span £)° =~ Span £ which is the identity on objects and takes any map f to
its right adjoint f°. Next, observe that the extension along a composite with fe
can be computed as follows:

Hom"(¢f°, ¥) = Hom” (@, ¥ f)

and finally that, if ¢ = gf°, an explicit formula for the right Kan extension
along ¢ is the following (which utilizes the right adjoint IT to the pullback
functor ( )*): »

Hom” (gf°, ¥) = Hom" (g, ¥'f) = Mgy (¥, f)

In particular, observe that the existence of right adjoints to —o¢ and ¢ o —
ensures that composition with ¢ on both sides preserves colimits.
Another relevant property of Span £ is “tabulation”, in the following sense:

Definition. An arrow & : C—+=D of a bicategory is said to admit a
tabulation if there exist maps h : A——C, k : A—D and an invertible
2-cell ¢ : kh® = ® such that the induced 2-cell ¢ 1 k => ®h is universal in the
sense that for any pair of maps f : B——C, g : B——>D and any 2-cell
W : g = ®f there exists a unique map r : B——A such that the following
diagram commutes:

kr AN dhr

‘g——w——>d>f
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1t is not difficult to see that, by definition of its arrows and of its 2-cells,
the bicategory Span & admits the tabulation of any arrow (actually Span & can
be characterized through tabulation, see Carboni, Kasangian and Street [4]).

2. Internal categories, functors and natural transformations.

If A is a category internal to £, with domain and codomain arrows dp and
81 . '
do
A Z A
9
and identity:
[: A0—>A1

then it becomes an arrow o = 9;9; : Ag—+=Ap with a monad structure:

wot =«

idg, : 1 = «

in Span€&. Conversely, any monad Ag—+=Ap in Spanf is an internal
category whose object of objects is Ag. We thus regard internal categories
as monads in Span&, and write simply A = (Ap, ). Observe that an
internal category can be also regarded as an one-object category enriched in
the bicategory Span €.

With the above description, it is easy to characterize particular internal
categories.

Theorem. An internal category A = (Ap, ) is:

i) discrete if a = 14,
ii) a monoid if Ag is the terminal object 1,
iii) a poset if feaf = g°ag implies f = g for any pair of parallel maps f
and g,
iv) a groupoid if a is an idempotent monad: o*
v) a group if it is both a monoid and a groupoid.

~

«,

In particular, objects of Span &, when regarded with their trivial monads
become discrete internal categories. »

One can define the opposite category A°P by means of the monad obtained
from « by interchanging “domain” and “codomain” (then the definition of AP
as a category involves the symmetry structure Span & > (Span £)°7).
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Functors between internal categories are mappings of monads: more pre-
cisely, a functor F = (f,¢) : (Ao, o)—>(By, B) amounts to a map
J + Ap— By (which provides the correspondence on objects) and a 2-cell
¢ : @ = f°Bf (which provides the correspondence on arrows) compatible
with compositions and identities in A e B, in the sense that the following dia-
grams of 2-cells commute (here, 1 and € denote unit and counit of the adjunction
f—fe):

o>~ poprrops LI popn s

#Al lf%sf

o I°Bf

and:
ida
IA E— 01

o ——x fBf
It is easy to see how composition of internal functors is defined: given
F = (f9 (0) : (AOa a)—'—_)(BO’ ,3) and G = (87 ‘S[f) : (BO’ IB)—'>(C0’ )/),
one takes gf : Ag——C, on objects, and the composition:

a2 popf L pogoyef = (of)0v (af)

provides the effect of GF on arrows. Identity functors are trivially defined and
one thus has the category Cat £ of internal categories and internal functors.
Particular functors are easily characterized by using the natural bijections

(1):

Theorem. The internal functor F : A—L+B is an internal discrete cofibra-
tion (respectively an internal discrete fibration) if and only if the correspondence
on arrows fa == Bf (respectively af° => f°f) is invertible.

It is now immediate to prove:

F G

Theorem. Let A B C be a diagram of internal functors:

i) if F and G are discrete cofibrations, also GF is,
ii) if GF and G are discrete cofibrations, then also F is.




FORMAL THEORY OF INTERNAL CATEGORIES 41

Suppose now that the two functors ( f, ¢) and (g, ¥) are given between the
categories (Ao, o) and (By, B). A natural transformation (f, ¢)—+>(g, V)
is given by a 2-cell T : gf° = B in Span& (the component of the natural
transformation) such that the following diagram commutes:

@ o tpf

¥ lg"uf
o on2 fe)
8°Ps — > 8B f — &P

where the 2-cells 7 : f° = g°B and T : g = Bf correspond to 7 according
to the natural bijections (1), while © denotes composition in (By, 8).

Horizontal composition of natural transformations can be defined, so that
Cat &£ becomes a bicategory. Namely, if T : gf° == B and 0 : kh® = y are
the components of two horizontally composable natural transformations:

(AOaa) rU’>(BO’,B) U'U'E (CO,}’)
than it is easy to see that the component of o o 7 is given by the composite:

kgfohe Ty npfrone Ny g sy 2t sy

Let F = (f,¢): C——D and G = (g, v) : D——C be functors and
let y and 8 be the category structures of C and D respectively. Then, adjointness
is defined as follows: F—iG if there is an invertible 2-cell:

8f =g°%

which is natural with respect to composition both in C and in D, in the sense
that the following diagrams of 2-cells commute:

~ (Sf o
goy? Z 8fy —> 8ff°8f
(2) g°ucl l&&f
0N, 2
8%y =of = ——&f
and
2~ oo VBV o °
8°f =68g°y —>8 Y88V
(2" unfl lzf}/ey

Sf = o° 0\2
Sf =8y = — 8%
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3. Module calculus of internal categories.

In this section we introduce the notion of a module of internal categories,
together with its appropriate “calculus”. With different names, modules are
known as profunctors or distributeurs (Bénabou [1]), and bimodules (Lawvere
[6D).

Let A = (Ap, @) and B = (B, B) be internal categories. By definition a
module ® : A——B is given by a span ¢ : Ag—+> By (the component of ®)
endowed with a left action of A and a right action of B, i.e. there are given two
2-cells pa == ¢ and By == ¢, which are compatible with composition and
unity in A and in B and moreover satisfy the mixed associativity law expressed
by the following commutative diagram of 2-cells in Span £:

Byo — By

P& ——> ¢
The notion of a morphism ® == W between modules is obvious: it

consists of a 2-cell T : ¢ = 1 between the components, which respects
the actions, in the sense that the following diagrams of 2-cells commute:

XY —— @ pp —— ¢
afl lr and rﬂl lr
ay ——y VB ——

In this way, one has a category Mod(A, B) of modules A—+—=B and their
morphisms.

Suppose now that £ has pullback stable coequalizers. Existence and
stability of coequalizers allow to define the composite ¥ ®g @ in the situation:
@ v
(Ag, a)—+>(Bo, B)—+>(Co, ¥)

Namely, the component p of the composite W ®p & is the coequalizer:
Yo Tho—>p

of the two actions of 8 on ® and ¥ in the middle.
The universal property of coequalizers ensures, after a calculation, that
YV ®p ® is a module A—+—B.
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Moreover, it is not difficult to prove that composition of modules is
associative (up to isomorphisms) and admits as an identity on the left and on
the right the hom « : A——A, regarded as a module with obvious actions. A
bicategory Mod(€) of internal categories and their modules is easily defined.

Any functor F = (f, ¢) : (Ao, a)—>(By, B) gives rise to an adjoint
pair of modules F,— F*. In the case of enriched categories, this adjointness
and its relevance were especially indicated by Lawvere in [6].

In our context, F, and F* have components, respectively:

f«+=Bf 1 A——B
f*=f°B: B——A
The two actions of F, are given by:

Bfe uf

Bfa-tltprropfLLspry

Bf

and:
wf
B f—=Bf
where € denotes the counit of the adjointness f—if°, and u denotes compo-

sition, both in A and in B.
Analogously, the actions of F* are given by:

Fopr—Ltsfop

and:
oo OB poprropn FBB Lo o0 FH g
af B——=fBff°B foB? f°B
Observe that, when £ = Sets, the functor F : A———B is an ordinary
functor between small categories, and the modules F, and F* are given by:

F.(b,a) = Homg(b, F(a))
F*(a, b) = Homg(F(a), b)

Now, if one goes back to an adjoint pair of functors F—G (Section 2) it
is immediate, to check that the diagrams (2) and (2'), which express naturality
of the isomorphism §f = g°y, in terms of the induced modules ensure exactly
that F, = G*.

Another particular feature which is not difficult to prove is that F,—F*,
i.e. that two 2-cells 1, => F* ®3 F, and F, ®4 F* = 1y exist, satisfying
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the triangular identities of an adjunction; in any case, the component of the unit
and of the counit of the adjunction is provided by the correspondence on arrows
of the functor F. The adjunction F,—{F* gives rise to an adjunction between
categories of modules that will be used later: namely, for any internal category
C, “composition with F,” is a functor:

— ®a F Mod(C, A)——Mod(C, B)
which admits as a left adjoint “composition with F*”"
— @Bl "~ — Q4 F,
Observe moreover that, for the adjunction F,—F*, the ﬁecessary mod-

ule compositions always exist, even when & does not admit pullback stable
coequalizers. This depends on the following fact:

Theorem. Given a module ® and Junctors F and G as in the following
diagram:

o
A——B
FT TG
C- >

the composite module G*®F, : C——=D exists and has g°®f as a compo-
nent, where f and g denote respectively the correspondences on objects of F
and G.

Proof. Just check the universal property of the coequalizers involved. |

By this last result, one has:

(GF) = GiF,
(GF)* = F*G*

for any pair of composable functors. Hence, if £ admits pullback stable
coequalizers, then Cat& can be embedded in Mod & by taking the identity on
objects (internal categories) and by F——F, on arrows (internal functors).
This law preserves composition and identities up to isomorphism, however it
reverses 2-cells:

Cat(A, B)——Mod(A, B)°P
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and thus it amounts to a homomorphism of bicategories Cat£ ———(Mod £)°.
It is not difficult to check that this homomorphism is locally fully-faithful.

Analogous considerations relative to the correspondence Fr——F* lead
to a locally full homomorphism:

Cat £ ——(Mod &£)°P

4. The bicategory Mod £.

We analyze in this section the main properties of the bicategory Mod €&,
whose (non internal) version is in Bénabou [1].

First, observe that, when & is locally cartesian closed, right Kan extensions
and right lifting can be lifted from Span& to Mod&. For this, let &
A= (4, a)—+>B=(By,B) and ¥V : A= (Ap,)—+—>C = (Cyp,y) be
modules.

Consider the following equalizer in the local category Span £(By, Co):

e —>Hom™ (¢, ) __~ Hom" (¢, Hom™ (a, 1))

where ¢ and i denote the components of ® and W respectively.

Observe that, in the above diagram, the two parallel arrows express the
action of ® and W on the category A and moreover that the equalizer does not
depend on the category structure B and y of B and C respectively. The universal
property of equalizers however ensures that € comes endowed with the action
of B on the left and y on the right. Thus it provides the component of a module
B—+>C. By the universal property of the right Kan extension Hom™? in the
bicategory Span £ one thus checks that this module is the right Kan extension
Hom? (&, W) of W through ® in the bicategory Mod £.

An analogous formula holds true for right liftings. Precisely, for modules
® : A—+—>B and ¥ : C—+—B, the right lifting Homg(®$, V) : C——A
has a component given by the equalizer:

-———Homgp, (¢, ¥) 2 Homp, (¢, Homp, (8, ¥))

Here is a classical result which allows to “tabulate” any module by means
of functors. Its proof results particularly significant with the language of monads
in Span €.
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Theorem. (Bénabou [1]). For any internal module ® : C—+>D there exist
Junctors H: A——C and K : A—=D and an invertible 2-cell o : & ==
K, ®a H* in Mod(C, D). Moreover, for any pair of functors F : B——C,
G : B——D and any 2-cell T : G, @ F* = ®, there exist a functor
S : B——A, uniquely defined up to isomorphism, endowed with invertible
2-cells F = HS and G = KS such that the induced © G, =— & Q¢ F,
factors as:

S@nS,
K*®AS*E&—>(D®CH*®AS*

T

Gy ————> ®®c Fi
z

R

Proof. Let @ : (Co, y)—+(Dy, &) be given and denote by:

Ag
N
Co Dy

the component of .
By the actions kh°y == kh° and 8kh® = kh° of y and §, respectively,
on @, one obtains two 2-cells:

h°yh = k°kh°h
k°8k = k°kh°h

and then the pullback diagram:

a—2 s hoyn

I

k°8k — k°kh°h

in the category Span £(Ag, Ag). It is not difficult to check that « is a monad,
thus providing Ay with the structure of an internal category A. For this, only
the universal property of the above pullback is used: the identity of the monad
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.« appears in the following diagram:

1,;—>hh

LN,

o —— h°yh

N

k°8k — k°kh°h

(here the external diagram commutes because the actions on @ of the identities
both of y and § are identities). Analogously, the composition of « arises by
the commutativity of the external square in the next diagram, which takes into
account associativity of the actions of y and é and also the mixed associative
law of the actions on @ on both sides:

2

O[2 _(‘_7__> h°yhh°yh —— ho)/2/’l

1,/le Ke
keskk°sk I ————> h°yh
ko82%k ——> k°8k k°kh°h

Again, the universal property of pullbacks shows directly that 4 and &
become the correspondence on objects of functors H : A——C and K :
A——D respectively, whose correspondences on arrows are given by the
sides ¢ and 1 of the pullback (3).

To show that ® = K, ®x H*, one has to show that the diagonal of the
following commutative square:

Skh®y —— §kh°

L

kh°y ——— kh°

is the coequalizer of the compositions which appear as the sides of the following
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diagram:

Skah®y —————>8kh°yhh° 8kh° 2

akwhf’yl l&kh"/,cc

Skk°Skh°y TN 8%kh°y e Skh°y

This calculation is long, but straightforward.

Consider now a pair of functors F : B—C and G : B——D and an
arrow between modules 7 : G, ®g F*—>®. We describe the components
of a functor § : B——A which exhibits the pair (H, K) as a tabulation of ®.

Suppose that B = (By, §) and that f : By——C, and g : By——D,
are the correspondences on objects of, respectively, the functors F and G. Then
T:Gy = ®Q®c F*givesrisetoat : 13 = G* ®p ® ®¢ F, whose
component, by the previous theorem, is a span B = g°kh°f. From this, by
inserting the identity of 8, one obtains a span:

8f° = kh®
Now, by definition of 2-cells in Span &, there is a map s : By— A,
such that: v
f =hs
g=ks

This is the correspondence on objects of the required functor S, whose corre- -
spondence on arrows is obtained as follows. Consider the action on arrows of
the functors F and G:

B——=fvf = s°h°yhs

B——>g°5g = 5°k°yks
These two actions induce a unique 2-cell B == s°as by the universal property
of the following pullback (obtained by composing (3) on the left by s° and on
the right by s):

sas ——> sohcyhs

L]

5°k°Sks —— s°k°kh°hs ]

We end this section by showing that Mod £ is the “smallest” bicategory
containing Cat £ and closed under right Kan extension.
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Theorem. (Bénabou [1]). Consider the locally fully-faithful homomorphism:
()*: CatE——(Mod E£)°P

which is the identity on objects and takes any functor F to the module F*. If B
admits right Kan extensions, any locally fully-faithful homomorphism

G: Catl——B

which is the identity on objects factors uniquely, up to isomorphisms, through
)"
Proof.  We just indicate how to define on arrows a homomorphism G’
(Mod £)°P ——B which extends G through ( )*.

For any & : C—+—=D in Mod &, consider its canonical tabulation & =
K. ®a H*, then define G’ (CD) [GK, GH], where [, ] denotes right Kan
extension in B.

To check that G'(F) = [GK, GH] for a functor F : D——C, when
F* = K, ®x H* is a tabulation of F*, one has to observe that the module
K. ®4 H* is the left Kan extension [H, K] of H through K in the bicategory
of modules. 0

5. Internal presheaves.
Any object I of £ is regarded as a discrete, internal category.

Definition. An internal presheaf of C is a module y : C——=1. A morphzsm
of internal presheaves o and B is a morphism o == B of modules.

Denote by £€” the category of internal presheaves. Then, observing that
objects of £ are in (natural) bijection with spans 1——1, one has that the hom
EC” (a, B) can be represented by the right Kan extension [er, 8] : 1—+>1:

£ (a, B) = Homg (1, [a, B])

More generally, let PC denote the category enriched on Span £ whose objects
are modules C——/ and whose hom between the objects y : C—+—>1I and
y' . C—4—J 1is the span [ —+—=J given by the right Kan extension [y, y’']
(observe that identities and composition in PC are defined by the universal
property of right Kan extensions).

PC is the first example of a locally internal category in the sense of [2] and
[3]. In particular, when C = 1 is the trivial internal category, PC reproduces &
as a locally internal category over itself, in a sense that will be more clear later.



50 RENATO BETTI

Any object y : C—F—1 of PC over I gives rise to the internal category
Intc(y) having I as object of objects and the monad [y, y1 as object of arrows.
This is the internal full subcategory generated by y.

Let B = (By, B) be an internal category. Define now a B-diagram A of
EC" by means of the following data: an object § : C—4—>B, of PC over
By, together with an internal functor B——Intc(8) which is the identity on
objects. It is easy to check that to assign a B-diagram of £” is equivalent
to assign a module C——=B whose component is §: the action 88§ = §
corresponds to the action on arrows 8 = [§, §] of the given functor. In
particular, when B = [ is a discrete category, an I-diagram of £ is exactly
an object of PC over I.

Denoting by A : B——¢£C€” a B-diagram of £”, one has a bijection:

A: B——gC¢

(4)
A:C—+>B
Now it is easy to prove that this bijection is stable under substitution in the
following sense. Suppose F = (f, ¢) is a functor A = (Ag, &)——(Bo, B) =
B: the substitution of A along F is the A-diagram F - A whose object over Ag
1s given by the composition

1y
C—4—=By— Ag

and whose functor A——Intc(f°8) is given by (the identity on objects and)
the correspondence on arrows:

o ——fBf ——f°[8,8]f = [f°8, f°8]

By recalling (Theorem of Section 3) that the component of a module of type
P F*is ¢f°,itis easy to check that the bijection (4) is stable under substitutions:

F A

A B EC”

C—4>B—H>A

As already observed, for B = J (discrete):

[ ——§£C*

C—r—>17

hence, in particular for I = 1 one has that PC can be regarded as the (Span &-
enriched) category of families of objects of £ indexed in &.



FORMAL THEORY OF INTERNAL CATEGORIES 51

Theorem. The tabulation ® = K, ®a H* of any object @ : C—+=1 of PC
is such that H : A——C is a discrete fibration. Conversely, any discrete
fibration can be constructed in this way for a suitable internal presheaf.

Proof. For the first part it is enough to observe that the diagram:

o —2 h°yh

4

k°8k —> k°kh°h

which defines the category structure of A as in the proof of Bénabou’s theorem
of Section 4 (here we use the same symbols) is a pullback if and only if the
corresponding diagram under the adjunction — -h°— — -4 is a pullback:

oh® -—w—> h°y

I

k°8kh® —> k°kh®

Now, when D = I is a discrete category, then § is the identity of Dy and ¢ is
an invertible 2-cell.

Conversely, the condition ¢ : ah® == h°y allows one to show that the
span (h,t) : C A 1 is the component of an internal presheaf @ :
C—+—1 such that its tabulation is given by the pair of functors H : A———C
and T : A——1. O

6. Internal completeness and cocompleteness.

In this section let £ admit pullback stable coequalizers. If C is any internal
category, consider the (unique) functor 7 : C——1. Then, by regarding
objects of £ as spans 1 —+—1, composition with 7, becomes a functor:

- I : E——>EC"

Foran X : 1—+=1, the object X®; T, of £ provides exactly a diagram
1—+>£C" which is easily described when £ = Sets. Namely, in this case,
X ®; T, is the presheaf C°?——Sets which is constant at X .

We know that — ®; T, has a left adjoint (Section 3), namely the functor
— ®c T*. Hence it is natural to call — ®, T, the internal colimit functor and to
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say that & is internally cocomplete. But, when & is locally cartesian closed, the
functor — ®c T, admits also a right adjoint, namely the functor Hom®(7,, —),
hence in this case £ is also internally complete.

More generally, consider a functor F : C——D. One has that the functor
— ®c F* provides the left Kan extension along F, in the sense of beeing the left

adjoint to the functor: ,
— ®p Fi : PD——PC

The right Kan extension along F exists when £ is locally cartesian closed.

It needs not exist under weaker assumptions on £. However, when F has a

left adjoint G, by taking into account (Section 3) that this means exactly that
. = G*, one has that Hom®(F,, —) = — Q¢ G,. Hence:

Theorem. If & admits pullback stable coequalizers, then there exist left Kan
extensions along arbitrary internal functors and right Kan extensions along
Jfunctors which admit a right adjoint.
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