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Abstract. Complex networks constitute the backbone of complex sys-
tems. They represent a powerful interpretation tool for describing and
analyzing many different kinds of systems from biology, economics, engi-
neering and social networks. Uncovering the community structure exhib-
ited by real networks is a crucial step towards a better understanding of
complex systems, revealing the internal organization of nodes. However,
existing algorithms in the literature up-to-date present several crucial
issues, and the question of how good an algorithm is, with respect to
others, is still open. Recently, Newman [14] suggested modularity as a
natural measure of the goodness of network community decompositions.
Here we propose an implementation of an Immunological Algorithm, a
population based computational systems inspired by the immune sys-
tem and its features, to perform community detection on the methods of
modularity maximization. The reliability and efficiency of the proposed
algorithm has been validate by comparing it with Louvain algorithm one
of the fastest and the popular algorithm based on a multiscale modularity
optimization scheme.
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1 Introduction

In modern interdisciplinary science, networks (graphs) are an extremely useful
for the representation of a wide number of complex systems. A large variety
of natural processes can be conveniently described and studied using graphs,
where nodes are the elementary parts of the system and edges between them
represent their mutual interactions [10, 3]. Usually complex systems are orga-
nized in compartments, where each of them has a role and/or a function that
satisfy a certain property of relative cohesiveness. In the context of the theory
of complex networks, compartments are represented by partitions of the set of
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nodes with a high density of internal links (whereas links between compartments
have a comparatively lower density), called communities or modules [8, 6]. Find-
ing compartments in a graph-theoretic background, has become a fundamental
problem in network science, since it may shed some light on the organization
of complex systems and on their function. Different compartments often exhibit
significantly different properties, therefore a global analysis of the network would
be inappropriate and unfeasible. A detailed analysis of individual communities,
instead, leads to more meaningful insights into the roles of individuals. Such an
approach can also allow the visualization and the analysis of a large and complex
network focusing on a new higher-level structure, where each identified commu-
nities can be compressed into a node belonging to the latter. Let us underline
that classical algorithms for graph clustering are not suitable to reveal the prop-
erties of community structures. They are mostly based on optimal subdivisions
of graphs in order to guarantee min-flow cut. Finding properties of community
structures, instead, requires a complex analysis of link patterns and relations.

In the last few years, a very large amount of new computational techniques
(often called network clustering), have been developed and are commonly used
for community detection in graphs as well as to optimize a graph structure so to
guarantee certain desired features,[6, 15, 13, 5]. Furthermore, many approaches
have been proposed for finding such partitions and some different metrics for
community structure evaluation have been introduced [12]. Wether or not to
search for a hierarchical partition, where the communities are recursively sub-
divided into sub-communities, as well as the definition of the size of the com-
munities (specified by the user or derived by the algorithm) along with other
parameters, are the substantial differences between the proposed approaches.

In this work, we propose an implementation of an Immunological Algorithm,
a population based computational systems inspired by the immune system and
its features, to perform community detection on the methods of modularity max-
imization. To evaluate its reliability and efficiency, the proposed algorithm has
been compared with Louvain’s algorithm [4], one of the fastest and popular
community detection methods in networks [2] which uses a multiscale modu-
larity optimization scheme in order to maximize a modularity score for each
community.

2 Community detection and modularity maximization

Modularity is a benefit function that measures the quality of a particular par-
titioning of a graph into communities, and it was proposed by Newman [14].
Originally defined for undirected graphs, the definition of modularity has been
subsequently extended to directed and weighted graphs [11, 9, 1]. The aim of
community detection in graphs is to identify, by using only the information en-
coded in the graph topology, the modules and their hierarchical organization.
Modularity maximization is the most popular and one of most widely used meth-
ods for community partition. It detects communities by searching over possible
partitions of a graph, over which modularity is maximized. Given a subgraph,
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a.k.a. a cluster, the modularity function is defined as the difference between the
actual density of edges inside the cluster and the expected density of such edges if
the graph was random conditioned on its degree distribution [14]. This expected
edge density depends on the chosen null model, a random copy of the original
graph that maintains the structural properties but not those on the structure of
the communities. The idea behind modularity is that a random graph does not
have a clustering structure. The edge density of a cluster should be greater than
the expected density of a subgraph whose nodes are randomly connected.

Given a graph G = (V,E) with |E| = m, and given a partition of G with nc
clusters, the benefit function of modularity can be written as:

Q =

nc∑
c=1

[
lc
m
−
(
dc
2m

)2
]

(1)

where, for each cluster, i.e. subgraphs c,

– lc is the total number of edges and
– dc is the sum of the degrees of its vertices,
–
(
lc
m

)
represents the fraction of edges inside a certain cluster and

–
(

dc

2m

)2
the fraction of the expected edges if the graph was random (null

model).

Although an important limit of resolution of the modularity measure has
been underlined by Fortunato and Barthelemy [7], modularity seems to be a
useful measure of the community structures. In fact, algorithms that search for
graph partitions that offer optimal modularity are already proposed, generally
claim to be able to successfully find communities in very large and complex
networks [12, 11].

Unfortunately, in modularity optimization methods, overlapping between the
communities is not allowed, i.e. each vertex of the graph can be inserted in a
single community. Furthermore, it is possible to discover sub-communities by
applying these algorithms iteratively, but it is not possible to discover partially
overlapping communities. The modularity defined in a heuristic way, considers
a good division one which places most of the edges of a network within groups
and only some of them between groups. High values of modularity indicate good
partitions. In particular, we desire a quality function Q which, given a network
and a candidate division of that network into groups, assigns a score to each
partition of a graph,so to rank partitions and evaluate when a partition is bet-
ter than another (in a graph the partition corresponding to its maximum value
should be the best, or at least a very good one). Maximization of modularity is
therefore sought at all costs. Obviously, a brute force search to optimize Q is im-
possible, due to the enormous number of ways in which it is possible to partition
a graph. Moreover, it has been proven that the optimization of modularity is an
NP-complete problem [4], so it is highly unlikely to perform the optimization
task and find an optimal solution in polynomial with with respect to the graph
dimension. Therefore, we need to turn to approximate methods of optimization,
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that can find fairly good approximations of maximum modularity in a reasonable
time, through the use of appropriate algorithms particularly suitable when the
solution space of a given problem is very large, and an exhaustive brute force
search for the optimal solution is unfeasible.

3 The Immunological Algorithm

Immunological-inspired computation is nowadays a wide family of successful
algorithms in searching and optimization that takes inspiration from the immune
system (IS). What makes the IS interesting and source of inspiration is its defence
dynamics and features that allow it to be able to protect living organisms against
invaders and diseases. It is also a robust and efficient recognition system, able
to detect and recognize the invaders, and distinguish between own cells, and
foreign ones (self/nonself discrimination). Other really interesting and inspiring
features that allow to design efficient solving methodologies are its high ability to
learn, memory usage; self-regulation; associative retrieval; threshold mechanism,
and the ability to perform parallel, and distributed cognitive tasks. In light
of all the above, immunological heuristics are mainly focused on three general
approaches: (1) clonal selection [?,?] (2) negative selection [?]; and (3) immune
networks [?]. Such algorithms have been successfully employed in a variety of
different application areas.

In this research work, we have developed an immunological algorithm inspired
by the clonal selection theory, which belongs to a special class of the immuno-
logical heuristics family called Clonal Selection Algorithms (CSA) [?,?,?,?]. The
developed algorithm is based on two main concepts/entities:

– antigen (Ag), i.e. the optimization problem to be solved, and

– B cell receptor, i.e. a point in the search space (solutions) for the problem
Ag.

The major features and points of strength of this kind of heuristics are the
operators: (i) cloning, (ii) inversely proportional hypermutation and (iii) aging.
The first operator generates a new population of B cells centered on the highest
affinity/fitness values; the second one explores the neighbourhood of each point
of the search space, perturbing each solution with a probability which is inversely
proportional to its fitness function; and the last one eliminates old solutions from
the current population with the goal of introducing diversity and avoiding local
minima during the evolutionary search process.

For simplicity, hereafter, we call the algorithm as Opt-IA. At each time
step t Opt-IA maintains a population of B cells P (t) of size d (i.e., d candidate
solutions). Each element of the population represents a possible subdivision of
the vertices of the graph G(V,E) in the community. More in details, if N is the
cardinality of the set of vertices V, a B cell c will be a sequence (array) of n
integers, between 1 and N, where c[i] = j represents the fact that the vertex i
is placed in the cluster j.
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These elements are randomly initialized at the time step t = 0, using the
uniform probability distribution. Once the population is initialized, the next
step is to evaluate the fitness function for each B cell x ∈ P (t) using the function
Compute Fitness(P (t)) which computes for each B cell c the value given by
equation 1.

A description of Opt-IA is presented in the pseudocode shown in Algorithm
1. The rest of the section describes the main steps performed by the immuno-
logical algorithm (algorithm 1).

Algorithm 1 Opt-IA (d, dup, ρ, τ)

1: t← 0
2: P (t) ← Initialize Population(d);
3: Compute Fitness(P (t))
4: repeat
5: P (clo) ← Cloning(P (t), dup);
6: P (hyp) ← Hypermutation(P (clo), ρ);
7: Compute Fitness(P (hyp))

8: P
(t)
p ← Precompetition(P (t));

9: P
(t)
a ← Aging Random(P

(t)
p , τ);

10: P (t+1) ← Selection(P
(t)
a , P (hyp))

11: t← t+ 1
12: until (termination criterion is satisfied)

Initialization phase: Each element of the population, denoted by P (t) in
the algorithm 1, represents a possible subdivision of the vertices of the graph
G(V,E) in the community. In the initialization phase (t = 0), the elements of the
population are randomly generated, assigning to the vertices a number included
in the interval [1, N ], where N = |V |. The assigned number is the cluster number
to which the vertex is assigned.

Cloning operator: The cloning operator has the simple purpose to dupli-
cate dup times the elements of the population, creating an intermediate popu-
lation P (clo) of dimensions d × dup. To avoid a premature convergence of the
algorithm, we made dup independent from the fitness of the element, If we had
chosen to increase the number of clones for high fitness elements, we would
have obtained quickly a very homogeneous population, causing in turn a poor
exploration of the search space.

Hypermutation operators: The hypermutation operator acts on each ele-
ment of the population P (clo) performing ρ mutations, where as for dup, ρ is a
constant determined by the user. Again, we wanted to avoid a premature conver-
gence of the algorithm, and so the mutation rate (ρ) does not depend upon the
fitness value. The cloning operator, coupled with the hypermutation operator,
performs a local search around the cloned solutions. The introduction of blind
mutation produces individuals with higher affinity (i.e. higher fitness function
values), which will be then selected forming the improved mature progenies. We
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considered different types of mutation operators which can act on a single ver-
tex of the sequence (local operators) or on a group of nodes (global operators).
Among them, we distinguish:

– TotalRandom: randomly selects a vertex of the solution and randomly
assigns it to a cluster among the N possible.

– Equiprobality: randomly selects a vertex of the solution and assigns it to a
cluster among those existing at time t. Each cluster has the same probability
of being selected.

– Existing: randomly selects a vertex of the solution and assigns it to a cluster
among those existing at time t. The probability with which a cluster is
selected is proportionate to its size: the larger the cluster, the greater the
probability that the vertex will be assigned to that cluster.

– Fuse: randomly selects a solution cluster and assigns all its nodes to a ran-
domly selected cluster among those existing at time t.

– Destroy: randomly selects a cluster of the solution and assigns a variable
percentage of its nodes to clusters chosen at random from the N possible.

Precompetition: This function randomly chooses two individuals from the
population and, if they have the same cluster number, it removes the lower fitness
element with a 50% probability. This strategy makes it possible to maintain
a more heterogeneous population during the evolutionary cycle, maintaining
solutions with a different number of communities, so as to better explore the
research space.

Random aging operator: To help the algorithm escape local maxima, we
introduced a random aging operator. In details, at each iteration the elements
of the population are removed with a given probability τ . The aging operator
reduces premature convergences and keeps high diversity into the population.

Selection operator: at this point the new population P (t+1) is created for
the next generation by using (µ+λ)-Selection operator, which selects the best d
survivors of the aging step from the populations P (t) and P (hyp).. Such operator,
with µ = d and λ = (d × dup), reduces the offspring B cell population of size
λ ≥ µ – created by cloning and hypermutation operators – to a new parent
population of size µ = d. The selection operator identifies the d best elements
from the offspring set and the old parent B cells, thus guaranteeing monotonicity
in the evolution dynamics.

Termination: Finally, the algorithm terminates its execution when the ter-
mination criterion is satisfied. In this research work, a maximum number of the
fitness function evaluations FFEMax has been considered for all experiments
performed.

4 Results

In this section, we present the results obtained by opt-IA, showing the com-
petitiveness of the proposed approach with respect to the state-of the-art. In
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particular, to properly evaluate the performance of our proposed Clonal algo-
rithm, we compared it with the deterministic Louvain algorithm, whic is able to
obtain good results in reasonable times. The analysis was conducted on a series
of networks, most commonly used as a benchmark in community detection in
graphs, whose set includes dolphins, karate and ukfaculty. Before running our
algorithm, we need to set both the population size and the number of clones, i.e.
the two fundamental parameters of the algorithm, d and dup. To determine the
best values to assign to them, we studied the fitness trend as they varied. The
points visible in the figure 1 represent the average values on 10 runs relative to
the graph almost lattice, chosen for its particularly complex landscape.

Fig. 1. Dependence of the algorithm on the parameters for mut rate = 3, on al-
most lattice graph

The best combinations of popsize and clone number are respectively d = 8
and dup = 4. The comparison between them, carried out before the choice of the
most advantageous combinations, is shown in figure 2, corresponding to three
different values of the mutation rate ρ. It is clear that both fuse and total random
do not offer good results. The first one leads to premature convergence of fitness,
while the second one, at each cycle, modifies the communities of a single element
with few improvements in fitness. On the other hand, equiprobality, existing
and destroy are very effective functions. The latter allows to escape from local
optima due to the presence of isolated nodes. In light of the tests carried out,
the equiprobality and destroy operators were used with the same probability,
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while the fuse operator was used with low probability in order to have a cluster
aggregation tool that allows to compete if minimally with the destroy operator.

Fig. 2. Comparison of mutations for MUT RATE = 1, 2, 3 in the dolphins graph

The choice of mutation rate was made on the almost lattice instance by
varying ρ (from 1 to 5). It was observed that the best results were obtained for
ρ = {1, 2, 3} (figure 3). Thus, at each t iteration, we chose to mutate the cloned
elements a number of times included between [1, ρ].

Fig. 3. Value of Fitness when MUT RATE changes in almost lattice graph
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For each instance, the algorithm was executed 10 times, and that’s the reason
why the best result obtained (max) is reported, with the relative number of
communities, the worst (min) and the average with the standard deviation. A
tuning was performed on the parameter τ used by the aging operator. The graph
in the figure 4, shows the trend of the best individual for each iteration as the
parameter τ varies: the values 1 and 0.001 represent the two extreme cases, that
is the one in which all the elements or no element is discarded by the population;
the intermediate values instead introduce a turnover among the elements of the
population, producing diversity within the same population and avoiding that
the algorithm converges in a premature way. The effectiveness of the operator

Fig. 4. Best fitness at every generation for various RANDOM DIE action probabilities
in the dolphins graph

is shown in the chart 5, in which the loss of the element with the best fitness
corresponds, a few generations later, to the discovery of solutions with a higher
fitness value.

Fig. 5. Comparison between the fitness of the best individual at each cycle and that
of the best up to that cycle



10 S. Cavallaro, V. Cutello et al.

Each experiment was performed with population size d = 8, duplication pa-
rameter dup = 2, mutation rate ρ = {1, 2, 3}, probability of removal from the
population τ = 0.01 and maximum number of the fitness function evaluations
FFEMax = 105. The fraz column represents the fraction of the times in which
the clonal exceeds or equals the deterministic of Louvain. Except for the mis-
erables and huckleberry networks, for which probably more generations would
be needed, in most cases, it succeeds in overcoming it. In fact the functions
exploited have been chosen precisely to avoid the entrapment of dynamics in
excellent premises, from which the deterministic it fails to escape instead. Fur-
thermore, the number of communities found is not particularly influential in this
disparity: there are cases in which the deterministic algorithm does not reach
the global optimum despite having identified the correct number of clusters that
maximizes modularity. Not even the number of nodes constituting N seems rel-
evant in this regard. At the same time, from a simple graphical examination it is
possible to note that the evolutionary (on the right) is a winner in cases where
the number of links between one community and another is very large (below),
therefore the network is rather complex, while for graphs with more evident
clusters the two algorithms lead almost to the same result (above). In the latter
case the landscape is in fact quite simple, so that the global optimum is easily
reachable even from the deterministic algorithm, while in the former only the
evolutionary algoritmh manages to explore the entire research space well.

Fig. 6. Deterministic algorithm of Louvain (left) vs Opt-IA (right) on the graphs karate
(top) and 3mixed (bottom)
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Table 1.

Opt-IA

Instance |V | Min Max Avg Dev.St Community

dolphins 62 0.5265 0.5285 0.5275 0.0008 5
karate 34 0.4198 0.4198 0.4198 0.0 4
ukfaculty 81 0.4488 0.4488 0.4488 0.0 4
miserables 77 0.5562 0.5600 0.5584 0.002 6
huckleberry 69 0.5308 0.5346 0.5334 0.0018 4
GN benchmark2 128 0.4336 0.4336 0.4336 0.0 2
GN benchmark4 128 0.5393 0.5393 0.5393 0.0 4
LFR benchmark 128 0.1869 0.1980 0.1936 0.0037 5
almost lattice 64 0.5436 0.5576 0.5576 0.0089 8
3mixed 128 0.4297 0.4297 0.4297 0.0 3

Table 2.

LOUVAIN Opt-IA

Instance |V | Q Community Q Community

dolphins 62 0.5188 5 0.5285 5
karate 34 0.4156 4 0.4198 4
ukfaculty 81 0.4488 4 0.4488 4
miserables 77 0.5583 6 0.5600 6
huckleberry 69 0.5346 4 0.5346 4
GN benchmark2 128 0.4336 2 0.4336 2
GN benchmark4 128 0.5393 4 0.5393 4
LFR benchmark 128 0.1560 6 0.1980 5
almost lattice 64 0.5279 8 0.5576 8
3mixed 128 0.3682 5 0.4297 3

5 Conclusions

We have introduced a clonal algorithm, denoted Opt-IA , for the optimization
of modularity function. The discovery of community structures is essentially
based on the maximization of the quality function Q, proposed by Newman
[11]. The maximization of sought modularity has been achieved through the
proposed heuristic algorithm which, with its performance, gives a significantly
good guarantee on the solution quality. To drive the system to escape from local
optima, we use, at each cycle, two special operators, equiprobality and destroy,
that separate the community structures ensuring great improvements in fitness.
When the equiprobality and destroy procedures eventually finish, we apply a fuse
operator to have a cluster aggregation tool in order to refine the community
structure. The proposed method outperforms, in most cases, the deterministic
Louvain algorithm in terms of higher modularity values found and in less CPU
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time for computer-generated graphs most commonly used as a benchmark in
community detection in networks. The number of communities found and the
number of nodes constituting the communities are not particularly influential in
this disparity. Furthermore, the evolutionary algorithm manages to well explore
the entire search space when the network is rather complex and the number of
links between one community and another is very large.
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