1. L'algoritmo di Aging per la sostituzione delle pagine prevede di mantenere un contatore C associato ad ogni pagina caricata in memoria. Tale contatore viene consultato nel momento in cui si deve scegliere quale pagina rimuovere dalla memoria: viene scelta quella con il contatore più basso.

Indicare esattamente qual'è l'aggiornamento periodico che viene effettuato su tale contatore.

- A. Somma del bit di referenziamento R al contatore C, con seguente shift a sinistra.
- B. Shift a sinistra di C e somma del bit di referenziamento R.
- C. Shift a sinistra di C ed inserimento del bit di referenziamento R come bit più significativo.
- D. Shift a destra di C ed inserimento del bit di referenziamento R come bit più significativo.
- E. Shift a destra di C ed inserimento del bit di modifica M come bit meno significativo.
- 2. Con riferimento alle tecniche che abbiamo visto per memorizzare il contenuto dei file sui blocchi del disco e di come il file-system ne tenga traccia, individuare quale tra le seguenti affermazioni è falsa.
 - A. Nell'allocazione contigua è necessario conoscere a priori la dimensione massima del file in fase di creazione.
 - B. Nell'allocazione concatenata (con liste collegate) è presente una certa perdita di spazio dovuto alla frammentazione interna.
 - C. L'allocazione contigua è la soluzione che richiede meno memoria RAM ed il minor numero di accessi al disco per determinare il blocco in cui è memorizzato un arbitrario contenuto all'interno di un file.
 - D. Usando una FAT per tenere traccia dei blocchi dei file non è necessario mantenere una ulteriore bitmap per tenere traccia dei blocchi liberi.
 - E. Nell'allocazione che fa uso della tabella di allocazione dei file (FAT) la capacità del singolo blocco su disco può essere solo parzialmente sfruttata per memorizzare i contenuti del file, dovendo memorizzare il numero del blocco successivo.
- 3. Consideriamo un sistema che fa uso di memoria virtuale con le seguenti caratteristiche: uno spazio di indirizzamento virtuale da 1 Gb, un numero di pagina virtuale a 22 bit e un indirizzo fisico a 20 bit. Determinare esattamente quanti frame fisici ci sono in memoria.
- 4. Supponiamo di avere 3 processi che condividono una variabile x e che i loro pseudo-codici siano i seguenti:

```
P1:
wait(S)
                        P2:
                                                P3:
x=x-2
                        wait(R)
                                                wait(T)
                                                if (x<0) signal(R)
signal(T)
                        x=x+2
wait(S)
                        signal(T)
                                                wait(T)
x=x-1
                        wait(R)
                                                print(x)
signal(T)
```

Determinare l'output del processo P3 assumendo che il valore iniziale di x è 1 e che i 3 semafori abbiano i seguenti valori iniziali: S=1, R=0, T=0.

5. Supponiamo di avere un file-system che utilizza per tenere traccia dei file in esso memorizzati la seguente FAT e che prevede le seguenti voci all'interno della cartella radice:

cartella radice

171				
indice				
1	4			
2	3			
3	15			
4	5			
5	10			
6	12			
7	1			
8	2			
9	3			
10	-1			

nome	primo blocco		
 pippo.txt	7		

Indicare esattamente in quale bloccho del disco (indicare il numero di blocco) è localizzabili l'offset 10100 all'interno del file pippo.txt. Indicare qual'è la dimensione minima presunta in byte dello stesso file. In tale calcolo tenere conto del fatto che un blocco del file-system è grande 4 kB.

Nota: gli offset sono espressi in byte e partono da 0.

6. [duplicato]Consideriamo un file-system UNIX basato su i-node: l'i-node di un file contiene, oltre ad una serie di meta-dati, un certo numero di voci che servono ad individuare i blocchi del disco su cui è memorizzato il contenuto del file stesso. In un i-node standard ci sono 13 di queste voci: le ultime 3 sono usate per indicare, rispettivamente, un blocco indiretto singolo, un blocco indiretto doppio ed, per ultimo, un blocco indiretto triplo. Prendiamo come esempio il seguente i-node ed il contenuto di alcuni blocchi sul disco (di alcuni blocchi dati sono indicate solo le word preliminari e finali):

blocco 112 blocco 444 blocco 333 blocco 233 blocco 322

ı-node 54	blocco 112	blocco 444	blocco 333	blocco 233	blocco 32
meta-dati					
del file					
321	16	200	233	821	323
322	544	288	322	822	212
239	20	201	444	915	999
234	555	280	530	50	0
235	922	399	742	51	843
236	942	400	221	53	212
14					
21					
233					
12	132	899	-1	881	233
112	134	900	-1	882	0
333		<u> </u>	<u> </u>	<u></u>	
-1					

Tenendo conto del fatto che i blocchi usati dal file-system sono da 4 kB e che i numeri di blocco sono a 32 bit: individuare in quali blocchi del disco (indicare il numero di blocco) risiedono i byte di offset XXX, YYY, ZZZ del contenuto del file a cui si riferisce l'i-node.

Nota: gli offset sono espressi in byte e partono da 0.

7. Supponiamo di avere un disco con 200 tracce (numerate da 0 a 199) la cui velocità di seek è di 1 traccia per ms. All'istante t=0 il sistema operativo sta servendo una richiesta sulla traccia 100 e in coda ci sono già le seguenti richieste per le tracce (50, 115, 180). Successivamente arrivano altre richieste all'istante t=70 per la traccia 150 e all'istante t=130 per la traccia 90. Si calcoli il tempo di ricerca complessivo (in ms) per servire tutte le richieste secondo la politica LOOK, iniziando in ordine ascendente (dalla traccia 0 verso la traccia 199) e trascurando la latenza rotazionale e il tempo di trasferimento. Indicare anche la sequenza di scheduling considerata.