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Section 3.1 Discrete-Event Simulation

@ ssql and sis1 are trace-driven discrete-event simulations
@ Both rely on input data from an external source

@ These realizations of naturally occurring stochastic processes
are limited

@ We cannot perform “what if" studies without modifying the
data

@ We will convert the single server service node and the simple
inventory system to utilize randomly generated input
_—
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Single Server Service Node

@ We need stochastic assumptions for service times and arrival
times

@ Assume service times are between 1.0 and 2.0 minutes

¢ The distribution within this range is unknown
o Without further knowledge, we assume no time is more likely
than any other

@ We will use a Uniform(1.0, 2.0) random variate
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Exponential Random Variates

@ In general, it is unreasonable to assume that all possible
values are equally likely.

@ Frequently, small values are more likely than large values

@ We need a non-linear transformation that maps 0.0 — 1.0 to
0.0 — o0.

x=—pn(l—u)

1.0
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Exponential Random Variates

@ The transformation is monotone increasing, one-to-one, and onto
0<(l-u)<1
—oo<In(l—u) <0

0< —pIn(l—u)<oo
0<x<oo

O<uxl1

I

Generating an Exponential Random Variate

double Exponential(double pu) /* use p > 0.0 */

{
}

return (-p * log(1.0 - Random()));

@ The parameter u specifies the sample mean

@ In the single-server service node simulation, we use Exponential()
interarrival times
a; = aj—1 + Exponential(u); i=1,2.3,....n
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Program ssq2

@ Program ssq2 is an extension of ssql

@ Interarrival times are drawn from Exponential(2.0)
& Service times are drawn from Uniform(1.0, 2.0)

@ The program generates all first-order statistics 7, w, d,s,/, g
and x
@ It can be used to study the steady-state behavior

o Will the statistics converge independent of the initial seed?
@ How many jobs does it take to achieve steady-state behavior?

)

@ |t can be used to study the transient behavior
o Fix the number of jobs processed and replicate the program
with the initial state fixed
o Each replication uses a different initial rng seed
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Example 3.1.3

@ The theoretical averages for a single-server service node using
Exponential(2.0) arrivals and Uniform(1.0, 2.0) service times
are

Foow d 5 li g x
2.00 3.83 233 150 1.92 1.17 0.75
@ Although the server is busy 75% of the time, on average there
are approximately two jobs in the service node

@ A job can expect to spend more time in the queue than in
service

@ To achieve these averages, many jobs must pass through node
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Example 3.1.3

@ The accumulated average wait was printed every 20 jobs
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@ The convergence of w is slow, erratic, and dependent on the
initial seed
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Geometric Random Variates

@ The Geometric(p) random variate is the discrete analog to a
continuous Exponential(;t) random variate
Let x = Exponential(j1) = —pIn(1 — u)
Let y = |x] and let p = Pr(y # 0).

y=x]#0 =

The cdf (Cumulative Distribution function), <~
F(p)=Pr(U<=p) =Pr(l-u<=p) = p

<
indeed: F(p)=Int(0,p,1/(1-u))=p/(1-u)=p

e
because u is Uniform(0,1)

x>1
—puin(l—u)>1
In(1—u)<—-1/p
1—u<exp(—1/u)

Since 1 — u is also Uniform(0.0,1.0)

(Int ==I )

p = Pr(y #0) = exp(—1/p)

Finally, since u = —1/In(p), (and y=floor(-nu In(1-u))

y = [In(1 = u)/In(p)]
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Geometric Random Variates

@ ANSI C function

Generating a Geometric Random Variate

long Geometric(double p) /* use 0.0 < p < 1.0 */

{
}

return ((long) (log(1.0 - Random()) / log(p)));

@ The mean of a Geometric(p) random variate is p/(1 — p)
@ If pis close to zero then the mean will be close to zero

@ If p is close to one, then the mean will be large
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Example 3.1.4

@ Assume that jobs arrive at random with a steady-state arrival
rate of 0.5 jobs per minute
@ Assume that Job service times are composite with two
components
@ The number of service tasks is 1 + Geometric(0.9)
@ The time (in minutes) per task is Uniform(0.1,0.2)

Get Service Method

double GetService(void)

{

long k;
double sum = 0.0;
long tasks = 1 + Geometric(0.9);
for (k = 0; k < tasks; k++)

sum += Uniform(0.1, 0.2);
return (sum);
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Example 3.1.4

w = 3.83, d=2.33, 1=1.92, g=1.17 (previous values)

@ The theoretical steady-state statistics for this model are
F w o d 5 1 el X
2.00 577 427 150 2.89 214 0.75

———

@ The arrival rate, service rate, and utilization are identical to
Example 3.1.3

@ The other four statistics are significantly larger

@ Performance measures are sensitive to the choice of service
time distribution
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Simple Inventory System

@ Program sis2 has randomly generated demands using an
Equilikely(a, b) random variate

@ Using random data, we can study transient and steady-state
behaviors

e If (a,b) = (10,50) and (s, S) = (20, 80), then the
approximate steady-state statistics are

d ) 7] N
30.00 30.00 0.39 42.86 0.26
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Example 3.1.6

@ The average inventory level /| = /T — ]~ approaches steady
state after several hundred time intervals
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@ Convergence is slow, erratic, and dependent on the initial seed
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Example 3.1.7

o If we fix 5, we can find the optimal cost by varying s

@ Recall that the dependent cost ignores the fixed cost of each

item
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Example 3.1.7

@ Using a fixed initial seed guarantees the exact same demand
sequence

o Any changes to the system are caused solely by the change of s
@ A steady state study of this system is unreasonable

o All parameters would have to remain fixed for many years
o When n = 100 we simulate approximately 2 years
@ When n = 10000 we simulate approximately 192 years

I.E., it is not real considering a world where things never changes,
--> steady state statistics is not very "meaningful" in this case
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Statistical Considerations

@ With Variance Reduction, we eliminate all sources of variance

except one (thjs approach allow us to "isolate" the variability of our interest
o Transient behavior will always have some inherent uncertainty
o We kept the same initial seed and changed only s &
@ Robust Estimation occurs when a data point that is not
sensitive to small changes in assumptions
o Values of s close to 23 have essentially the same cost

o Would the cost be more sensitive to changes in S or other
assumed values?
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