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Section 1.2: A Single-Server Queue

arrivals —= queue | server departures
| I

service node

@ A single-sever service node consists of a server plus its queue

@ If there is only one service technician, the machine shop
model from section 1.1 is a single-server queue
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Queue Discipline

Queue discipline: the algorithm used when a job is selected from
the queue to enter service

@ FIFO - first in, first out
@ LIFO — last in, first out
@ SIRO - serve in random order

@ Priority — typically shortest job first (SJF)
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@ FIFO is also known as first come, first serve (FCFS)

o The order of arrival and departure are the same

o This observation can be used to simplify the simulation

@ Unless otherwise specified, assume FIFO with infinite queue

capacity.

@ Service is non-preemptive

o Once initiated, service of a job will continue until completion
@ Service is conservative

@ Server will never remain idle if there is one or more jobs in the
service node
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Specification Model

For a job i:
@ The arrival time is a;
@ The delay in the queue is d;
@ The time that service begins is b; = a; + d;
@ The service time is s;
@ The wait in the node is w; = d; + s;

@ The departure time is ¢; = a; + w;

| v |
f d; | i ‘

T T T time

a; b; Ci

Discrete-Event Simulation: A First Course Section 1.2: A Single—Server Queue



Arrivals

@ The interarrival time between jobs i — 1 and i is
ri =aj—aj-1
where, by definition, ag = 0

=i —

T T T T time
Ai—2  Gi—1 Qi Qi+1

@ Note that a; = a;_1 + r; and so (by induction)

a;:r1+r2+...+fi i:172737"'
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Algorithmic Question

@ Given the arrival times and service times, can the delay times
be computed?

@ For some queue disciplines, this question is difficult to answer

o If the queue discipline is FIFO,

e d; is determined by when a; occurs relative to ¢;_1.

@ There are two cases to consider:
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Cases

o If a; < ¢;j_1, job i arrives before job i — 1 completes:

I di—1 I Si—1 —>‘
i1 bi—1 Ci-1
' T \ i T 3
a; bi ¢
] | d; | Si —

o If a; > ¢;j_1, job i arrives after job i — 1 completes:

| di—1 | Si—1 —
aj—1 bi_1 Ci—1
I I I
T T t
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Calculating Delay for Each Job

Algorithm 1.2.1

co = 0.0; /* assumes that ag = 0.0 */
i =0;
while ( more jobs to process ) {

[++:

a; = GetArrival();
if (a;<ci—1)
di = ci—1— aj;

else
d,' = 0.0;
s; = GetService();
¢ = aj+di+sj;
} .
n=ri;

return di, do, ..., d,;
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Example 1.2.2

@ Algorithm 1.2.1 used to process n = 10 jobs

i | 1 2 3 4 5 6 7 8 9 10
read from file a; | 15 47 71 111 123 152 166 226 310 320
from algorithm  d; 0 11 23 17 35 44 70 41 0 26
read from file s; 43 36 34 30 38 40 31 29 36 30

@ For future reference, note that for the last job

° a, =320
o cp=ap+d,+5s,=320+26+30 =376
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Output Statistics

@ The purpose of simulation is insight — gained by looking at
statistics
@ The importance of various statistics varies on perspective:

o Job perspective: wait time is most important
o Manager perspective: utilization is critical

@ Statistics are broken down into two categories

o Job-averaged statistics
o Time-averaged statistics

Discrete-Event Simulation: A First Course Section 1.2: A Single—Server Queue



Job-Averaged Statistics

Job-averaged statistics: computed via typical arithmetic mean

o Average interarrival time:

_ 1
r;z_:

@ 1/F is the arrival rate

o Average service time:

=]

]
Il
S|

Il
—

o 1/5 is the service rate
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Example 1.2.3

@ For the 10 jobs in Example 1.2.2

@ average interarrival time is
¥ = ap/n=320/10 = 32.0 seconds per job

@ average service is S = 34.7 seconds per job
o arrival rate is 1/7 ~ 0.031 jobs per second
o service rate is 1/5 ~ 0.029 jobs per second

@ The server is not quite able to process jobs at the rate they
arrive on average.

Discrete-Event Simulation: A First Course Section 1.2: A Single—Server Queue



Job-Averaged Statistics

@ The average delay and average wait are defined as

— 1 I
1=
@ Recall w; = d; + s; for all i

n n

Zw,_ Z d,+s,-):%Zd,-+%Zs,-:H+§
i:l

i=1 i=1

o Sufficient to compute any two of w,d,s
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Example 1.2.4

@ From the data in Example 1.2.2, d =267
From Example 1.2.3, 5 = 34.7
Therefore w = 26.7 + 34.7 = 61.4.

@ Recall verification is one (difficult) step of model development

o Consistency check: used to verify that a simulation satisfies
known equations
o Compute W, d, and 5 independently
o Then verify that w=d + 5
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Time-Averaged Statistics

® Time-averaged statistics: defined by area under a curve
(integration)

@ For SSQ, need three additional functions
@ /(t): number of jobs in the service node at time t
@ g(t): number of jobs in the queue at time t
@ x(t): number of jobs in service at time t

@ By definition, /(t) = q(t) + x(t).
o I(t)=0,1,2,...

g(t) =0,1,2, ...

x(t)=0,1
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Time-Averaged Statistics

@ All three functions are piece-wise constant

4
3
w2ck /.- /=
0= t
0 376

s Figures for g(-) and x(-) can be deduced

q(t) =0 and x(t) = 0 if and only if /(t) =0
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Time-Averaged Statistics

@ Over the time interval (0, 7):

-1
time-averaged number in the node: [ = —/ I(t)dt
T Jo
1 T
time-averaged number in the queue: G = —/ q(t)dt
T Jo
. . . 1 [
time-averaged number in service: X = — [ x(t)dt
T Jo

@ Since /(t) = q(t) + x(t) for all t >0
I=q+%

o Sufficient to calculate any two of /, g, x

Discrete-Event Simulation: A First Course Section 1.2: A Single—Server Queue



Example 1.2.5

@ From Example 1.2.2 (with 7 = ¢;9 = 376),
/=1633 Gg=0710 x=0.923

@ The average of numerous random observations (samples) of
the number in the service node should be close to /.

@ Same holds for g and X

@ Server utilization: time-averaged number in service (X)
@ X also represents the probability the server is busy
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Little's Theorem

How are job-averaged and time-average statistics related?

Theorem (Little, 1961)

If (a) queue discipline is FIFO,
(b) service node capacity is infinite, and
(c) server is idle both at t =0 and t = ¢,
then

Jo i(t)dt =37 wi  and

OC” q(t)dt =37 d; and

Jo x()dt =377y si
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Little’s Theorem Proof

For each job i =1,2,..., define an indicator function

1 a<t<g
0 otherwise

Yi(t) = {

Then .
/(t)zzwi(t) 0<t<cy
i=1
and so
“ieye= [T wna =3 [ ued =3 (e - a) =3 w
D)

The other two equations can be derived similarly.
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Example 1.2.6

cumulative number

of arrivals

cumulative number
of departures
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Little's Equations

@ Using 7 = ¢, in the definition of the time-averaged statistics,
along with Little's Theorem, we have

Cn n
c,,7:/ I(t)dt => " wi = nw
0 i=1

@ We can perform similar operations and ultimately have

7:<£>W and 6:<£>3 and 7:<£>§
Ch Cn Cn
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Computational Model

@ The ANSI C program ssql implements Algorithm 1.2.1

@ Data is read from the file ssql.dat consisting of arrival times
and service times in the format

a s
a2 5
an  Sp

@ Since queue discipline is FIFO, no need for a queue data
structure
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Example 1.2.8

@ Running program ssql with ssql.dat

1/F~0.10 and 1/5x0.14

o If you modify program ssql to compute /.G, and X

X ~ 0.28

@ Despite the significant idle time, g is nearly 2.
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Traffic Intensity

o Traffic intensity: ratio of arrival rate to service rate
1/7 5 Cn\ —
_— = = = —_— X
an/n an

1/3
@ Assuming c,/a, is close to 1.0, the traffic intensity and
utilization will be nearly equal

Sl »l
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Sven and Larry's Ice Cream Shoppe
@ owners considering adding new flavors and cone options

@ concerned about resulting service times and queue length

Can be modeled as a single-sever queue

® ssql.dat represents 1000 customer interactions
@ Multiply each service time by a constant

o In the following graph, the circled point uses unmodified data
@ Moving right, constants are 1.05, 1.10, 1.15, ...
@ Moving left, constants are 0.95, 0.90, 0.85, ...
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Sven and Larry
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@ Modest increase in service time produces significant increase
in queue length

@ Non-linear relationship between G and X

@ Sven and Larry will have to assess the impact of the increased
service times
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Graphical Considerations
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@ Since both X and g are continuous, we could calculate an
“infinite” number of points

@ Few would question the validity of “connecting the dots”
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@ If there is essentially no uncertainty and the resulting
interpolating curve is smooth, connecting the dots is OK

o Leave the dots as a reminder of the data points

@ If there is essentially no uncertainty but the curve is not
smooth, more dots should be generated

@ If the dots correspond to uncertain (noisy) data, then
interpolation is not justified

o Use approximation of a curve or do not superimpose at all

@ Discrete data should never have a solid curve

Discrete-Event Simulation: A First Course Section 1.2: A Single—Server Queue



