Section 1.1: Introduction

Discrete-Event Simulation: A First Course

(©2006 Pearson Ed., Inc. 0-13-142917-5

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Introduction

@ What is discrete-event simulation?

@ Modeling, simulation, and analyzing systems
@ Computation and mathematical techniques

@ Model: conceptual framework describing a system

o Simulate: perform experiments using computer
implementation of the model

@ Analyze: draw conclusions from output

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Characterizing a Model

stem model

deterministic stochastic

static | [dynamic | [static] [dynamic |
Monte Carlo simulation

[continuous | [discrete | [continuous | [discrete |
discrete-event simulation

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Characterizing a Model

@ Deterministic or Stochastic
o Does the model contain stochastic components?
@ Randomness is easy to add to a DES

@ Static or Dynamic
o Is time a significant variable?

@ Continuous or Discrete

@ How does the system state evolve?
@ Continuous: classical mechanics
o Discrete: queuing, inventory, machine shop models

Discrete-Event Simulation: A First Course Section 1.1: Introduction

@ Discrete-Event Simulation Model
@ Stochastic
@ Dynamic
o Discrete-Event

@ Monte Carlo Simulation

@ Stochastic
o Static

Discrete-Event Simulation: A First Course Section 1.1: Introduction

DES Model Development

Algorithm 1.1.1 — How to develop a model:

© Goals and objectives

@ Build a conceptual model

© Convert into a specification model
© Convert into a computational model
© Verify

@ Validate

Typically an iterative process

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Three Model Levels

o Conceptual
o Very high level
o How comprehensive should the model be?
¢ What are the state variables?

@ Specification
@ On paper
@ May involve equations, pseudocode, etc.
@ How will the model receive input?

@ Computational

@ A computer program
o General-purpose PL or simulation language?

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Verification vs. Validation

@ Verification
@ Computational model should be consistent with specification
model
o Did we build the model right?

@ Validation

@ Computational model should be consistent with the system
being analyzed

o Did we build the right model?

o Can an expert distinguish simulation output from system
output?

@ Interactive graphics can prove valuable

Discrete-Event Simulation: A First Course Section 1.1: Introduction

A Machine Shop Model

@ 150 identical machines:

o Operate continuously, 8 hr/day, 250 days/yr
o Operate independently
o Repaired in the order of failure
@ Income: $20/hr of operation
@ Service technicians(s):
o 2-year contract at $52,000/yr
o Each works 230 8-hr days/yr

@ How many service technicians should be hired?

Discrete-Event Simulation: A First Course Section 1.1: Introduction

A Machine Shop Model: System Diagram

[elNe}
[elNe}
[elNe}
[elye}
[ele]
[elNe}
[elNe}
oo
[elNe}
[elye}

[ele]

00000000
0000000
000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

o}

queue

()
e
()

service technicians

Simulation: A First Course

Algorithm 1.1.1 Applied

1. Goals and Objectives:
@ Find number of technicians for maximum profit
@ Extremes: one techie, one techie per machine
2. Conceptual Model:
@ State of each machine (failed, operational)
@ State of each techie (busy, idle)
@ Provides a high-level description of the system
at any time
3. Specification Model:
@ What is known about time between failures?
@ What is the distribution of the repair times?
@ How will time evolution be simulated

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Algorithm 1.1.1 Applied

4. Computational Model
@ Simulation clock data structure
@ Queue of failed machines
@ Queue of available techies

5. Verity

@ Software engineering activity

@ Usually done via extensive testing
6. Validate

@ |s the computational model a good
approximation of the actual machine shop?

o If operational, compare against the real thing

@ Otherwise, use consistency checks

Discrete-Event Simulation: A First Course Section 1.1: Introduction

@ Make each model as simple as possible

o Never simpler

@ Do not ignore relevant characteristics

¢ Do not include extraneous characteristics
@ Model development is not sequential

o Steps are often iterated

o For teams, steps may be in parallel

o Do not merge verification and validation
@ Develop models at three levels

s Think a little, program a lot (and poorly);
s Think a lot, program a little (and well).

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Simulation Studies

Algorithm 1.1.2 Using the resulting model:

7. Design simulations experiments

@ What parameters should be varied?
@ perhaps many combinatoric possibilities

8. Make production runs

@ Record initial conditions, input parameters
@ Record statistical output

9. Analyze the output
@ Use common statistical analysis tools (Ch. 4)
10. Make decisions

11. Document the results

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Algorithm 1.1.2 Applied

7. Design simulation experiments

@ Vary the number of technicians

@ What are the initial conditions?

@ How many replications are required?
8. Make production runs

@ Manage output wisely

@ Must be able to reproduce results exactly
9. Analyze the output

@ Observations are often correlated (not

independent)
@ Take care not to derive erroneous conclusions

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Algorithm 1.1.2 Applied

10. Make decisions
@ Graphical displays help
@ Implement the policy subject to external
conditions
11. Document results
@ System diagram
@ Assumptions about failure and repair rates
@ Description of specification model
@ software
@ Tables and figures of output
@ Description of output analysis

DES can provide valuable insight about the system

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Programming Languages

@ General-purpose programming languages
o Flexible and familiar
o Well suited for learning DES principles and techniques
o E.g.: C, C++, Java
@ Special-purpose simulation Languages
o Good for building models quickly
Provide built-in features (e.g., queue structures)

]
o Graphics and animation provided
¢ E.g.: Arena, Promodel

Discrete-Event Simulation: A First Course Section 1.1: Introduction

Terminology

Model vs. Simulation (noun)

@ Model can be used with respect to conceptual, specification,
or computational levels

@ Simulation is rarely used to describe the conceptual or
specification model

@ Simulation is frequently used to refer to the computational
model (program)

~

Model vs. Simulate (verb)

@ To model can refer to development of the levels

@ To simulate refers to the computational activity

@ Do not merge verification and validation

\

Meaning should be obvious from the context

Discrete-Event Simulation: A First Course Section 1.1: Introduction

